- 1.
Buford Parks, V.M.; McQuarrie, N.; Falkowski, S.; et al. Timing and drivers of exhumation and sedimentation in the eastern Peruvian Andes: Insights from thermokinematic modelling. Earth Planet. Sci. Lett. 2023, 620, 118355.
- 2.
Eizenhöfer, P.R.; Glotzbach, C.; Kley, J.; et al. Thermo-Kinematic Evolution of the Eastern European Alps Along the TRANSALP Transect. Tectonics 2023, 42, 4.
- 3.
Feng, Q.; Qiu, N.; Wu, H.; et al. Thermo-kinematic constraints on restoration of the eastern Sichuan fold-and-thrust belt, South China. Tectonics 2023, 42, 9.
- 4.
Helfrich, A.L.; Thigpen, J.R.; Buford-Parks, V.M.; et al. Constraining Displacement Magnitude on Crustal-Scale Extensional Faults Using Thermochronology Combined with Flexural-Kinematic and Thermal-Kinematic Modeling: An Example from the Teton Fault, Wyoming, USA. Tectonics 2024, 43, 7.
- 5.
Brisson, S.; Degen, D.; Nathan, D.; et al. Combining 3-D probabilistic kinematic modeling with thermal resetting measurements: An approach to reduce uncertainty in exhumation histories. Geochem. Geophys. Geosystems 2025, 26, 1–21.
- 6.
Taguchi, G. Taguchi methods: Design of Experiments; Yokoyama, Y., Ed.; ASI Press: Dagenham, UK; Japanese Standards Association: Tokyo, Japan, 1993.
- 7.
Hamby, D.M. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 1994, 32, 135–154.
- 8.
Yates, F. The Design and Analysis of Factorial Experiments; Harpenden Imperial Bureau of Soil Science: Hertfordshire, UK, 1937.
- 9.
Box, G.E.P.; Hunter, W.G.; Hunter, J.S. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building; John Wiley & Sons: New York, NY, USA, 1978.
- 10.
Turcotte, D.L.; Schubert, G. Geodynamics: Applications of Continuum Physics to Geological Problems; John Wiley & Sons: New York, NY, USA, 1982; p. 450.
- 11.
Furlong, K.P.; Chapman, D.S. Heat flow, heat generation, and the thermal state of the lithosphere. Annu. Rev. Earth Planet. Sci. 2013, 41, 385–410.
- 12.
Pye, A.E.; Hodges, K.V.; Keller, C.B.; et al. Prolonged slip on the South Tibetan Detachment constrains tectonic models for synorogenic extension in the Central Himalaya. Tectonics 2022, 41, 1–33.
- 13.
Dodson, M.H. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 1973, 40, 259–274.
- 14.
Hodges, K.V. Thermochronology in Orogenic Systems. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; Volume 4, pp. 281–308.
- 15.
van Soest, M.C.; Monteleone, B.D.; Hodges, K.V.; et al. Laser depth profiling studies of helium diffusion in Durango fluorapatite, Geochim. Cosmochim. Acta 2011, 75, 2409–2419.
- 16.
Hedayat, A.S.; Sloane NJ, A.; Stufken, J. Orthogonal Arrays: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.
- 17.
Tsui, K.L. An overview of Taguchi method and newly developed statistical methods for robust design. IIE Trans. 1992, 24, 44–57.
- 18.
Roy, R.; Parmee, I.C.; Purchase, G. Sensitivity analysis of engineering designs using Taguchi’s methodology. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Irvine, CA, USA, 18 August 1996; American Society of Mechanical Engineers: New York, NY, USA, 1996; Volume 97591; p. V003T003A060.
- 19.
Singh, S.; Repaka, R.; Al-Jumaily, A. Sensitivity analysis of critical parameters affecting the efficacy of microwave ablation using Taguchi method. Int. J. RF Microw. Comput. Aided Eng. 2019, 29, e21581.
- 20.
Kacker, R.N.; Lagergren, E.S.; Filliben, J.J. Taguchi orthogonal arrays are classical designs of experiments. J. Res. Natl. Inst. Stand. Technol. 1991, 96, 577–591.
- 21.
Sparks, S. Chronictectonic/ThermoSAkit: Initial Release for GTTSR 1127 (v1.0). Zenodo. 2025. Available online: https://doi.org/10.5281/zenodo.15788043 (accessed on 1 July 2025).
- 22.
Anderson, G.M. Error propagation by the Monte Carlo method in geochemical calculations. Geochim. Cosmochim. Acta 1976, 40, 1533–1538.
- 23.
Bevington, P.R.; Robinson, D.K. Data Reduction and Error Analysis for the Physical Sciences, 3rd ed.; McGraw-Hill, Inc.: New York, NY, USA, 2003; p. 336.
- 24.
Čermák, V.; Rybach, L. Thermal conductivity and specific heat of minerals and rocks: Landolt-Börnstein. In Numerical Data and Functional Relationships in Science and Technology, New Series, Group V (Geophysics and Space Research); Volume Ia, (Physical Properties of Rocks); Springer-Verlag, Berlin, Germany, 1982; pp. 305–343.
- 25.
Martin, P.E.; Metcalf, J.R.; Flowers, R.M. Calculation of uncertainty in the (U–Th)/He system. Geochronology 2023, 5, 91–107.
- 26.
Braun, J.; van der Beek, P.; Valla, P.; et al. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics 2012, 524–525, 1–28.
- 27.
Murray, K.E.; Goddard AL, S.; Abbey, A.L.; et al. Thermal history modeling techniques and interpretation strategies: Applications using HeFTy. Geosphere 2022, 18, 1622–1642.
- 28.
Abbey, A.L.; Wildman, M.; Stevens Goddard, A.L.; et al. Thermal history modeling techniques and interpretation strategies: Applications using QTQt. Geosphere 2023, 19, 493–530.
- 29.
Van der Beek, P.; Schildgen, T.F. Short communication: age2exhume—A MATLAB/Python script to calculate steady-state vertical exhumation rates from thermochronometric ages and application to the Himalaya. Geochronology 2023, 5, 35–49.
- 30.
OpenAI. ChatGPT (Version 4o); OpenAI, Inc.: San Francisco, CA, USA, 2025. Available online: https://openai.com/chatgpt (accessed on 1 July 2025).