2508001139
  • Open Access
  • Article

Sensitivity Analysis in Thermal Structure and Thermochronology Calculations

  • Stephanie Sparks *,   
  • Kip Hodges

Received: 25 Apr 2025 | Revised: 03 Jul 2025 | Accepted: 25 Jul 2025 | Published: 18 Aug 2025

Abstract

Sensitivity analysis should be an essential part of quantitative studies in the geosciences. It serves as an important first step in evaluating our confidence in the results of a numerical calculation, and it helps us identify what input parameters should be high-priority targets for further research to improve confidence in our modeling results. Here, we explore the fundamentals of sensitivity analysis as it applies to calculations related to the thermal structure of the lithosphere and thermochronologic calculations. After presenting simple examples using well-known approaches, we compare the results obtained using a less familiar approach: the Taguchi Method. Although the Taguchi Method is underutilized in the geosciences, it is often used in process engineering to reduce the number of experiments necessary to determine the sensitivity of systems to large numbers of interdependent variables. We demonstrate that the Taguchi Method yields sensitivity rankings comparable to those produced by more conventional approaches, while requiring substantially fewer model runs. This efficiency makes it particularly well-suited to the analysis of complex thermal-kinematic models, where high dimensionality and long compute times often limit systematic uncertainty evaluation. The method’s ability to identify dominant sources of uncertainty across parameter types provides a practical framework for guiding future data collection efforts.

References 

  • 1.
    Buford Parks, V.M.; McQuarrie, N.; Falkowski, S.; et al. Timing and drivers of exhumation and sedimentation in the eastern Peruvian Andes: Insights from thermokinematic modelling. Earth Planet. Sci. Lett. 2023, 620, 118355.
  • 2.
    Eizenhöfer, P.R.; Glotzbach, C.; Kley, J.; et al. Thermo-Kinematic Evolution of the Eastern European Alps Along the TRANSALP Transect. Tectonics 2023, 42, 4.
  • 3.
    Feng, Q.; Qiu, N.; Wu, H.; et al. Thermo-kinematic constraints on restoration of the eastern Sichuan fold-and-thrust belt, South China. Tectonics 2023, 42, 9.
  • 4.
    Helfrich, A.L.; Thigpen, J.R.; Buford-Parks, V.M.; et al. Constraining Displacement Magnitude on Crustal-Scale Extensional Faults Using Thermochronology Combined with Flexural-Kinematic and Thermal-Kinematic Modeling: An Example from the Teton Fault, Wyoming, USA. Tectonics 2024, 43, 7.
  • 5.
    Brisson, S.; Degen, D.; Nathan, D.; et al. Combining 3-D probabilistic kinematic modeling with thermal resetting measurements: An approach to reduce uncertainty in exhumation histories. Geochem. Geophys. Geosystems 2025, 26, 1–21.
  • 6.
    Taguchi, G. Taguchi methods: Design of Experiments; Yokoyama, Y., Ed.; ASI Press: Dagenham, UK; Japanese Standards Association: Tokyo, Japan, 1993.
  • 7.
    Hamby, D.M. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 1994, 32, 135–154.
  • 8.
    Yates, F. The Design and Analysis of Factorial Experiments; Harpenden Imperial Bureau of Soil Science: Hertfordshire, UK, 1937.
  • 9.
    Box, G.E.P.; Hunter, W.G.; Hunter, J.S. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building; John Wiley & Sons: New York, NY, USA, 1978.
  • 10.
    Turcotte, D.L.; Schubert, G. Geodynamics: Applications of Continuum Physics to Geological Problems; John Wiley & Sons: New York, NY, USA, 1982; p. 450.
  • 11.
    Furlong, K.P.; Chapman, D.S. Heat flow, heat generation, and the thermal state of the lithosphere. Annu. Rev. Earth Planet. Sci. 2013, 41, 385–410.
  • 12.
    Pye, A.E.; Hodges, K.V.; Keller, C.B.; et al. Prolonged slip on the South Tibetan Detachment constrains tectonic models for synorogenic extension in the Central Himalaya. Tectonics 2022, 41, 1–33.
  • 13.
    Dodson, M.H. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 1973, 40, 259–274.
  • 14.
    Hodges, K.V. Thermochronology in Orogenic Systems. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; Volume 4, pp. 281–308.
  • 15.
    van Soest, M.C.; Monteleone, B.D.; Hodges, K.V.; et al. Laser depth profiling studies of helium diffusion in Durango fluorapatite, Geochim. Cosmochim. Acta 2011, 75, 2409–2419.
  • 16.
    Hedayat, A.S.; Sloane NJ, A.; Stufken, J. Orthogonal Arrays: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.
  • 17.
    Tsui, K.L. An overview of Taguchi method and newly developed statistical methods for robust design. IIE Trans. 1992, 24, 44–57.
  • 18.
    Roy, R.; Parmee, I.C.; Purchase, G. Sensitivity analysis of engineering designs using Taguchi’s methodology. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Irvine, CA, USA, 18 August 1996; American Society of Mechanical Engineers: New York, NY, USA, 1996; Volume 97591; p. V003T003A060.
  • 19.
    Singh, S.; Repaka, R.; Al-Jumaily, A. Sensitivity analysis of critical parameters affecting the efficacy of microwave ablation using Taguchi method. Int. J. RF Microw. Comput. Aided Eng. 2019, 29, e21581.
  • 20.
    Kacker, R.N.; Lagergren, E.S.; Filliben, J.J. Taguchi orthogonal arrays are classical designs of experiments. J. Res. Natl. Inst. Stand. Technol. 1991, 96, 577–591.
  • 21.
    Sparks, S. Chronictectonic/ThermoSAkit: Initial Release for GTTSR 1127 (v1.0). Zenodo. 2025. Available online: https://doi.org/10.5281/zenodo.15788043 (accessed on 1 July 2025).
  • 22.
    Anderson, G.M. Error propagation by the Monte Carlo method in geochemical calculations. Geochim. Cosmochim. Acta 1976, 40, 1533–1538.
  • 23.
    Bevington, P.R.; Robinson, D.K. Data Reduction and Error Analysis for the Physical Sciences, 3rd ed.; McGraw-Hill, Inc.: New York, NY, USA, 2003; p. 336.
  • 24.
    Čermák, V.; Rybach, L. Thermal conductivity and specific heat of minerals and rocks: Landolt-Börnstein. In Numerical Data and Functional Relationships in Science and Technology, New Series, Group V (Geophysics and Space Research); Volume Ia, (Physical Properties of Rocks); Springer-Verlag, Berlin, Germany, 1982; pp. 305–343.
  • 25.
    Martin, P.E.; Metcalf, J.R.; Flowers, R.M. Calculation of uncertainty in the (U–Th)/He system. Geochronology 2023, 5, 91–107.
  • 26.
    Braun, J.; van der Beek, P.; Valla, P.; et al. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics 2012, 524–525, 1–28.
  • 27.
    Murray, K.E.; Goddard AL, S.; Abbey, A.L.; et al. Thermal history modeling techniques and interpretation strategies: Applications using HeFTy. Geosphere 2022, 18, 1622–1642.
  • 28.
    Abbey, A.L.; Wildman, M.; Stevens Goddard, A.L.; et al. Thermal history modeling techniques and interpretation strategies: Applications using QTQt. Geosphere 2023, 19, 493–530.
  • 29.
    Van der Beek, P.; Schildgen, T.F. Short communication: age2exhume—A MATLAB/Python script to calculate steady-state vertical exhumation rates from thermochronometric ages and application to the Himalaya. Geochronology 2023, 5, 35–49.
  • 30.
    OpenAI. ChatGPT (Version 4o); OpenAI, Inc.: San Francisco, CA, USA, 2025. Available online: https://openai.com/chatgpt (accessed on 1 July 2025).
Share this article:
How to Cite
Sparks, S.; Hodges, K. Sensitivity Analysis in Thermal Structure and Thermochronology Calculations. Geochronology, Thermochronology and Time Scale Research 2025, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.