2504000067
  • Open Access
  • Review
Reconfigurability in Automobiles—Structure, Manufacturing and Algorithm for Automobiles
  • Zheming Zhuang 1,   
  • Yuntao Guan 1,   
  • Shuangjia Xu 2, 4,   
  • Jian S. Dai 3, 4, *

Received: 09 Nov 2022 | Accepted: 10 Nov 2022 | Published: 18 Dec 2022

Abstract

For the automobile design and manufacturing, as a typical representative of the industry, the development and upgrading represent the application of the state-of-the-art technology in the industry. With a period of development, the related technology of traditional manufacturing factories for automobiles are found with some common issues while improving. As such, the reconfigurable intelligent manufacturing factory of the automobiles is fast developed with focus on reconfigurability in structures, manufactures and algorithms, thus advancing the level of the reconfigurable intelligent manufacturing continuously. With a sufficient reconfigurable manufacturing technology as the basis, reconfigurability can be better introduced to the structure design and the driving algorithms of the automobiles. Reconfigurability provides a new bridge for transforming the traditional automobile to the reconfigurable automobile, and a new driving force for the upgrading of the reconfigurable driving algorithms.

References 

  • 1.
    Kang H.S. ; Lee J.Y. ; Choi S.S. ; et al . Smart manufacturing: past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3(1): 111-128.
  • 2.
    Oztemel E. ; Gursev S . Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 2020, 31(1): 127-182.
  • 3.
    Bartoš M. ; Bulej V. ; Bohušík M. ; et al . An overview of robot applications in automotive industry. Transportation Research Procedia, 2021, 55: 837-844.
  • 4.
    Anzolin G. ; Andreoni A. ; Zanfei A . Robot adoption and FDI driven transformation in the automotive industry. International Journal of Automotive Technology and Management, 2020, 20(2): 215-237.
  • 5.
    Bogue R . Robotic vision boosts automotive industry quality and productivity. Industrial Robot, 2013, 40(5): 415-419.
  • 6.
    Brogårdh T . Present and future robot control development-an industrial perspective. Annual Reviews in Control, 2007, 31(1): 69-79.
  • 7.
    Tsarouchi P. ; Makris S. ; Michalos G. ; et al . Robotized assembly process using dual arm robot. Procedia CIRP, 2014, 23: 47-52.
  • 8.
    Cavazzuti M. ; Baldini A. ; Bertocchi E. ; et al . High performance automotive chassis design: a topology optimization based approach. Structural and Multidisciplinary Optimization, 2011, 44(1): 45-56.
  • 9.
    Gobbi M. ; Mastinu G. ; Doniselli C . Optimising a car chassis. Vehicle System Dynamics, 1999, 32(2/3): 149-170.
  • 10.
    Sun W.C. ; Pan H.H. ; Gao H .J. Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4619-4626.
  • 11.
    Wennberg D . Light-weighting methodology in rail vehicle design through introduction of load carrying sandwich panels. Stockholm: KTH Royal Institute of Technology, 2011.
  • 12.
    Kuzyshyn A.Y. ; Batig V .V. Construction of mechanical model of the diesel-train DTKr-2 car and its features. Science and Transport Progress, 2017, 6(72): 20-29.
  • 13.
    Ning D.H. ; Sun S.S. ; Li H.Y. ; et al . Active control of an innovative seat suspension system with acceleration measurement based friction estimation. Journal of Sound and Vibration, 2016, 384: 28-44.
  • 14.
    Cherry S . That sinking feeling. IEEE Spectrum, 2009, 46(1): 49-50.
  • 15.
    Mathijsen D . This is the age of amphibious vehicles. Reinforced Plastics, 2004, 48(9): 32-35.
  • 16.
    Schmenn S. ; Heupel T . Evaluation alternativer automotive-innovationen. Barsch, T.; Heupel, T.; Trautmann, H. Die blue-ocean-strategie in theorie und praxis: diskurs und 16 beispiele erfolgreicher anwendung. Wiesbaden: Springer Fachmedien Wiesbaden, 2019: 213-225.
  • 17.
    Huang E. ; Davison K. ; Shreve S. ; et al . Bridging newsrooms and classrooms: preparing the next generation of journalists for converged media. Journalism & Communication Monographs, 2006, 8(3): 221-262.
  • 18.
    Shirsath P.S. ; Hajare M.S. ; Sonawane G.D. ; et al . A review on design and analysis of amphibious vehicle. International Journal of Science, Technology & Management, 2015, 4(1): 43-56.
  • 19.
    Ding X.L. ; Xu K . Design and analysis of a novel metamorphic wheel-legged rover mechanism. Journal of Central South University (Science and Technology), 2009, 40(S1): 91-101.
  • 20.
    Li M.X. ; Guo S.X. ; Hirata H. ; et al . A roller-skating/walking mode-based amphibious robot. Robotics and Computer-Integrated Manufacturing, 2017, 44: 17-29.
  • 21.
    Zhai Y. ; Gao P. ; Sun Y. ; et al . Gait planning for a multi-motion mode wheel-legged hexapod robot. 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China: IEEE, 2016: 449-454.
  • 22.
    Jehanno J.M. ; Cully A. ; Grand C. ; et al . Design of a wheel-legged hexapod robot for creative adaptation. Kozłowski, K.; Tokhi, M.O.; Virk, G.S. Mobile Service Robotics. Singapore: World Scientific, 2014: 267-276.
  • 23.
    Guo F. ; Wang S.K. ; Yue B.K. ; et al . A deformable configuration planning framework for a parallel wheel-legged robot equipped with lidar. Sensors, 2020, 20(19): 5614.
  • 24.
    Chen Z.H. ; Wang S.K. ; Wang J .Z,;et al. Control strategy of stable walking for a hexapod wheel-legged robot. ISA Transactions, 2021, 108: 367-380.
  • 25.
    Zhang H.L. ; Zhuang Z.M. ; Wei W. ; et al . Structure design and motion control of a hybrid quadruped robot with wheels and Legs. 2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE), Munich, Germany: IEEE, 2022: 122-128.
  • 26.
    Jiansheng D . Reconfigurable mechanisms and robots. Beijing: Higher Education Press, 2020.
  • 27.
    Rohmer E. ; Reina G. ; Yoshida K . Dynamic simulation-based action planner for a reconfigurable hybrid leg–wheel planetary exploration rover. Advanced Robotics, 2010, 24(8/9): 1219-1238.
  • 28.
    Baines R. ; Patiballa S .K; Booth J.;et al. Multi-environment robotic transitions through adaptive morphogenesis. Nature, 2022, 610(7931): 283-289.
  • 29.
    Unhelkar V.V. ; Dörr S. ; Bubeck A. ; et al . Introducing mobile robots to moving-floor assembly lines: design, evaluation, and deployment. IEEE Robotics & Automation Magazine, 2018, 25(2): 72-81.
  • 30.
    Čech M. ; Wicher P. ; Lenort R. ; et al . Autonomous Mobile robot technology for supplying assembly lines in the automotive industry. Acta logistica, 2020, 7(2): 103-109.
  • 31.
    Blatnický M. ; Dižo J. ; Gerlici J. ; et al . Design of a robotic manipulator for handling products of automotive industry. International Journal of Advanced Robotic Systems, 2020, 17(1): 1729881420906290.
  • 32.
    Krug R. ; Stoyanov T. ; Tincani V. ; et al . The next step in robot commissioning: autonomous picking and palletizing. IEEE Robotics and Automation Letters, 2016, 1(1): 546-553.
  • 33.
    Semeniuta O. ; Dransfeld S. ; Falkman P . Vision-based robotic system for picking and inspection of small automotive components. 2016 IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA: IEEE, 2016: 549-554.
  • 34.
    Xie F.G. ; Liu X.J. ; Wu C. ; et al . A novel spray painting robotic device for the coating process in automotive industry. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(11): 2081-2093.
  • 35.
    Ahmad B. ; Iqbal A. ; Saqib R. ; et al . Design and implementation of bluetooth controlled painting robot for auto industry. Intelligent Computing, Cham: Springer International Publishing, 2019: 359-367.
  • 36.
    IDRIS A .A.M. Improvement of painting and welding in automotive industry using robots. IOSR Journal of Mechanical and Civil Engineering, 2020, 17(5):18-28.
  • 37.
    Božek P . Robot path optimization for spot welding applications in automotive industry. Tehnički vjesnik, 2013, 20(5): 913-917.
  • 38.
    Toai T.T. ; Chu D.H. ; My C .A. Development of a new 6 DOFs welding robotic system for a specialized application. BalasV.E.; SolankiV.K.; KumarR. Further advances in internet of things in biomedical and cyber physical systems. Cham: Springer International Publishing, 2021: 135-150.
  • 39.
    Chen H.P. ; Eakins W. ; Wang J.J. ; et al . Robotic wheel loading process in automotive manufacturing automation. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Loui, MO, USA: IEEE, 2009: 3814-3819.
  • 40.
    Brito T. ; Queiroz J. ; Piardi L. ; et al . A machine learning approach for collaborative robot smart manufacturing inspection for quality control systems. Procedia Manufacturing, 2020, 51: 11-18.
  • 41.
    Javadi Y. ; Mohseni E. ; MacLeod C.N. ; et al . Continuous monitoring of an intentionally-manufactured crack using an automated welding and in-process inspection system. Materials & Design, 2020, 191: 108655.
  • 42.
    Zheng M.K. ; Ming X .G. Construction of cyber-physical system–integrated smart manufacturing workshops: a case study in automobile industry. Advances in Mechanical Engineering, 2017, 9(10): 1687814017733246.
  • 43.
    Qu Y.J. ; Ming X.G. ; Liu Z.W. ; et al . Smart manufacturing systems: state of the art and future trends. The International Journal of Advanced Manufacturing Technology, 2019, 103(9): 3751-3768.
  • 44.
    Vysocky A. ; Novak P . Human – robot collaboration in industry. MM Science Journal, 2016, 2016(2): 903-906.
  • 45.
    Müller R. ; Vette M. ; Scholer M . Robot workmate: a trustworthy coworker for the continuous automotive assembly line and its implementation. Procedia CIRP, 2016, 44: 263-268.
  • 46.
    Inkulu A.K. ; Bahubalendruni M .V.A.R.; Dara A.; et al. Challenges and opportunities in human robot collaboration context of Industry 4.0 - a state of the art review. Industrial Robot, 2021, 49(2): 226-239.
  • 47.
    Asadi E. ; Li B.B. ; Chen I .M. Pictobot: a cooperative painting robot for interior finishing of industrial developments. IEEE Robotics & Automation Magazine, 2018, 25(2): 82-94.
  • 48.
    Michalos G. ; Kousi N. ; Karagiannis, P,; et al . Seamless human robot collaborative assembly – an automotive case study. Mechatronics, 2018, 55: 194-211.
  • 49.
    di Marino C. ; Tarallo A. ; Vitali A. ; et al . Collaborative robotics and ergonomics: a scientific review. Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition, Virtual, Online: ASME, 2021: V006T06A020.
  • 50.
    Boy G .A. Design for flexibility: a human systems integration approach. Cham: Springer, 2021.
  • 51.
    Dai J.S. ; Rees Jones J . Mobility in metamorphic mechanisms of foldable/erectable kinds. Journal of Mechanical Design, 1999, 121(3): 375-382.
  • 52.
    Dai J .S. Metamorphic mechanisms and their configuration models. Chinese Journal of Mechanical Engineering (English Edition), 2000, 13(3): 212.
  • 53.
    Yan H.S. ; Liu N .T. Joint-codes representations for mechanisms and chains with variable topologies. Transactions of the Canadian Society for Mechanical Engineering, 2003, 27(1/2): 131-143.
  • 54.
    Aimedee F. ; Gogu G. ; Dai J.S. ; et al . Systematization of morphing in reconfigurable mechanisms. Mechanism and Machine Theory, 2016, 96, Part 2: 215-224.
  • 55.
    Zhuang Z.M. ; Zhang Z. ; Guan Y.T. ; et al . Design and control of SLPM-based extensible continuum arm. Journal of Mechanisms and Robotics, 2022, 14(6): 061011.
  • 56.
    Kang X. ; Zhang X.S. ; Dai J .S. First- and second-order kinematics-based constraint system analysis and reconfiguration identification for the queer-square mechanism. Journal of Mechanisms and Robotics, 2019, 11(1): 011004.
  • 57.
    DH-Robotics . Industrial applications: auto parts. Available online: https://www.dh-robotics.com/applications/industry/automotive (accessed on 5 November 2022).
  • 58.
    Neven D. ; de Brabandere D. ; Georgoulis S. ; et al . Towards End-to-End lane detection: an instance segmentation approach. 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China: IEEE, 2018: 286-291.
  • 59.
    Chai R.Q. ; Tsourdos A. ; Savvaris A. ; et al . Design and implementation of deep neural Network-Based control for automatic parking maneuver process. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(4): 1400-1413.
  • 60.
    Gao H.B. ; Zhu J.P. ; Li X.D. ; et al . Automatic parking control of unmanned vehicle based on switching control algorithm and backstepping. IEEE/ASME Transactions on Mechatronics, 2022, 27(3): 1233-1243.
  • 61.
    Wang Q. ; Gao J.Y. ; Yuan Y . Embedding structured contour and location prior in siamesed fully convolutional networks for road detection. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1): 230-241.
  • 62.
    Chen L.C. ; Papandreou G. ; Kokkinos I. ; et al . DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
  • 63.
    Choi W . Near-online multi-target tracking with aggregated local flow descriptor. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile: IEEE, 2015: 3029- 3037.
  • 64.
    Lin T.Y. ; Dollár P. ; Girshick R. ; et al . Feature pyramid networks for object detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA: IEEE, 2017: 936-944.
  • 65.
    Xu S.B. ; Peng H. ; Song Z.Y. ; et al . Accurate and smooth speed control for an autonomous vehicle. 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China: IEEE, 2018: 1976-1982.
  • 66.
    Kim H. ; Kim D. ; Shu I. ; et al . Time-varying parameter adaptive vehicle speed control IEEE Transactions on Vehicular Technology, 2016, 65(2): 581-588.
  • 67.
    Chatzikomis C. ; Sorniotti A. ; Gruber P. ; et al . Comparison of path tracking and torque-vectoring controllers for autonomous electric vehicles. IEEE Transactions on Intelligent Vehicles, 2018, 3(4): 559-570.
  • 68.
    Guo J.H. ; Luo Y.G. ; Li K .Q. An adaptive hierarchical trajectory following control approach of autonomous four-wheel independent drive electric vehicles. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2482-2492.
  • 69.
    Nam H. ; Choi W. ; Ahn C . Model predictive control for evasive steering of an autonomous vehicle International Journal of Automotive Technology, 2019, 20(5): 1033-1042.
  • 70.
    Brown M. ; Funke J. ; Erlien S. ; et al . Safe driving envelopes for path tracking in autonomous vehicles. Control Engineering Practice, 2017, 61: 307-316.
  • 71.
    Wei H. ; Mu X.X. ; Zhang L. ; et al . Modeling and trajectory tracking control for flapping-wing micro aerial vehicles. IEEE/CAA Journal of Automatica Sinica, 2021, 8(1): 148-156.
  • 72.
    Alcala E. ; Puig V. ; Quevedo J. ; et al . Autonomous vehicle control using a kinematic Lyapunov-based technique with LQR-LMI tuning. Control Engineering Practice, 2018, 73: 1-12.
  • 73.
    Niu S. ; Ye L.Q. ; Liu H.D. ; et al . Ant3DBot: a modular self-reconfigurable robot with multiple configurations. Intelligent Robotics and Applications, Cham: Springer International Publishing, 2022: 552-563.
  • 74.
    Tu Y.X. ; Liang G.Q. ; Lam T .L. FreeSN: a freeform strut-node structured modular self-reconfigurable robot - design and implementation. 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA: IEEE, 2022: 4239- 4245.
  • 75.
    Pallottino F. ; Antonucci F. ; Costa C. ; et al . Optoelectronic proximal sensing vehicle-mounted technologies in precision agriculture: a review. Computers and Electronics in Agriculture, 2019, 162: 859-873.
  • 76.
    Lynch L. ; Newe T. ; Clifford J. ; et al . Automated ground vehicle (AGV) and sensor technologies- a review. 2018 12th International Conference on Sensing Technology (ICST), Limerick, Ireland: IEEE, 2018: 347-352.
  • 77.
    Jiansheng D . Geometrical foundations and screw algebra for mechanisms and robotics. Beijing: Higher Education Press, 2014.
  • 78.
    Bortolini,M; Galizia,G.G; Mora,C. Reconfigurable manufacturing systems: Literature review and research trend. Journal of Manufacturing Systems, 2018, 49: 93-106.
  • 79.
    Andersen A.L. ; Larsen J.K. ; Brunoe T.D. ; et al . Critical enablers of changeable and reconfigurable manufacturing and their industrial implementation. Journal of Manufacturing Technology Management, 2018, 29(6): 983-1002.
  • 80.
    Pansare R. ; Yadav G. ; Nagare M .R. Reconfigurable manufacturing system: a systematic review,meta-analysis and future research directions. Journal of Engineering, Design and Technology, 2021, submitted.
  • 81.
    Liu G.J. ; Abdul S. ; Goldenberg A .A. Distributed control of modular and reconfigurable robot with torque sensing. Robotica, 2008, 26(1): 75-84.
  • 82.
    Li Y. ; Lu Z.P. ; Zhou F. ; et al . Decentralized trajectory tracking control for modular and reconfigurable robots with torque sensor: adaptive terminal sliding control-based approach. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(6): 061003.
  • 83.
    Le A.V. ; Kyaw P.T. ; Mohan R.E. ; et al . Autonomous floor and staircase cleaning framework by reconfigurable sTetro robot with perception sensors. Journal of Intelligent & Robotic Systems, 2020, 101(1): 17.
  • 84.
    Huang J.L. ; Zhakypov Z. ; Sonar H. ; et al . A reconfigurable interactive interface for controlling robotic origami in virtual environments. The International Journal of Robotics Research, 2018, 37(6): 629-647.
  • 85.
    Huang J .L. Development and control of interactive reconfigurable robotic systems. Lausanne: École Polytechnique Fédérale de Lausanne, 2021.
  • 86.
    Yi L. ; Le A.V. ; Hayat A.A. ; et al . Anti-collision static rotation local planner for four independent steering drive self-reconfigurable robot. 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA: IEEE, 2022: 5835-5841.
  • 87.
    Thalamy P. ; Piranda B. ; Bourgeois J . A survey of autonomous self-reconfiguration methods for robot-based programmable matter. Robotics and Autonomous Systems, 2019, 120: 103242.
Share this article:
How to Cite
Zhuang, Z.; Guan, Y.; Xu, S.; Dai, J. S. Reconfigurability in Automobiles—Structure, Manufacturing and Algorithm for Automobiles. International Journal of Automotive Manufacturing and Materials 2022, 1 (1), 1. https://doi.org/10.53941/ijamm0101001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2022 by the authors.