- 1.
Kang H.S. ; Lee J.Y. ; Choi S.S. ; et al . Smart manufacturing: past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3(1): 111-128.
- 2.
Oztemel E. ; Gursev S . Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 2020, 31(1): 127-182.
- 3.
Bartoš M. ; Bulej V. ; Bohušík M. ; et al . An overview of robot applications in automotive industry. Transportation Research Procedia, 2021, 55: 837-844.
- 4.
Anzolin G. ; Andreoni A. ; Zanfei A . Robot adoption and FDI driven transformation in the automotive industry. International Journal of Automotive Technology and Management, 2020, 20(2): 215-237.
- 5.
Bogue R . Robotic vision boosts automotive industry quality and productivity. Industrial Robot, 2013, 40(5): 415-419.
- 6.
Brogårdh T . Present and future robot control development-an industrial perspective. Annual Reviews in Control, 2007, 31(1): 69-79.
- 7.
Tsarouchi P. ; Makris S. ; Michalos G. ; et al . Robotized assembly process using dual arm robot. Procedia CIRP, 2014, 23: 47-52.
- 8.
Cavazzuti M. ; Baldini A. ; Bertocchi E. ; et al . High performance automotive chassis design: a topology optimization based approach. Structural and Multidisciplinary Optimization, 2011, 44(1): 45-56.
- 9.
Gobbi M. ; Mastinu G. ; Doniselli C . Optimising a car chassis. Vehicle System Dynamics, 1999, 32(2/3): 149-170.
- 10.
Sun W.C. ; Pan H.H. ; Gao H .J. Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4619-4626.
- 11.
Wennberg D . Light-weighting methodology in rail vehicle design through introduction of load carrying sandwich panels. Stockholm: KTH Royal Institute of Technology, 2011.
- 12.
Kuzyshyn A.Y. ; Batig V .V. Construction of mechanical model of the diesel-train DTKr-2 car and its features. Science and Transport Progress, 2017, 6(72): 20-29.
- 13.
Ning D.H. ; Sun S.S. ; Li H.Y. ; et al . Active control of an innovative seat suspension system with acceleration measurement based friction estimation. Journal of Sound and Vibration, 2016, 384: 28-44.
- 14.
Cherry S . That sinking feeling. IEEE Spectrum, 2009, 46(1): 49-50.
- 15.
Mathijsen D . This is the age of amphibious vehicles. Reinforced Plastics, 2004, 48(9): 32-35.
- 16.
Schmenn S. ; Heupel T . Evaluation alternativer automotive-innovationen. Barsch, T.; Heupel, T.; Trautmann, H. Die blue-ocean-strategie in theorie und praxis: diskurs und 16 beispiele erfolgreicher anwendung. Wiesbaden: Springer Fachmedien Wiesbaden, 2019: 213-225.
- 17.
Huang E. ; Davison K. ; Shreve S. ; et al . Bridging newsrooms and classrooms: preparing the next generation of journalists for converged media. Journalism & Communication Monographs, 2006, 8(3): 221-262.
- 18.
Shirsath P.S. ; Hajare M.S. ; Sonawane G.D. ; et al . A review on design and analysis of amphibious vehicle. International Journal of Science, Technology & Management, 2015, 4(1): 43-56.
- 19.
Ding X.L. ; Xu K . Design and analysis of a novel metamorphic wheel-legged rover mechanism. Journal of Central South University (Science and Technology), 2009, 40(S1): 91-101.
- 20.
Li M.X. ; Guo S.X. ; Hirata H. ; et al . A roller-skating/walking mode-based amphibious robot. Robotics and Computer-Integrated Manufacturing, 2017, 44: 17-29.
- 21.
Zhai Y. ; Gao P. ; Sun Y. ; et al . Gait planning for a multi-motion mode wheel-legged hexapod robot. 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China: IEEE, 2016: 449-454.
- 22.
Jehanno J.M. ; Cully A. ; Grand C. ; et al . Design of a wheel-legged hexapod robot for creative adaptation. Kozłowski, K.; Tokhi, M.O.; Virk, G.S. Mobile Service Robotics. Singapore: World Scientific, 2014: 267-276.
- 23.
Guo F. ; Wang S.K. ; Yue B.K. ; et al . A deformable configuration planning framework for a parallel wheel-legged robot equipped with lidar. Sensors, 2020, 20(19): 5614.
- 24.
Chen Z.H. ; Wang S.K. ; Wang J .Z,;et al. Control strategy of stable walking for a hexapod wheel-legged robot. ISA Transactions, 2021, 108: 367-380.
- 25.
Zhang H.L. ; Zhuang Z.M. ; Wei W. ; et al . Structure design and motion control of a hybrid quadruped robot with wheels and Legs. 2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE), Munich, Germany: IEEE, 2022: 122-128.
- 26.
Jiansheng D . Reconfigurable mechanisms and robots. Beijing: Higher Education Press, 2020.
- 27.
Rohmer E. ; Reina G. ; Yoshida K . Dynamic simulation-based action planner for a reconfigurable hybrid leg–wheel planetary exploration rover. Advanced Robotics, 2010, 24(8/9): 1219-1238.
- 28.
Baines R. ; Patiballa S .K; Booth J.;et al. Multi-environment robotic transitions through adaptive morphogenesis. Nature, 2022, 610(7931): 283-289.
- 29.
Unhelkar V.V. ; Dörr S. ; Bubeck A. ; et al . Introducing mobile robots to moving-floor assembly lines: design, evaluation, and deployment. IEEE Robotics & Automation Magazine, 2018, 25(2): 72-81.
- 30.
Čech M. ; Wicher P. ; Lenort R. ; et al . Autonomous Mobile robot technology for supplying assembly lines in the automotive industry. Acta logistica, 2020, 7(2): 103-109.
- 31.
Blatnický M. ; Dižo J. ; Gerlici J. ; et al . Design of a robotic manipulator for handling products of automotive industry. International Journal of Advanced Robotic Systems, 2020, 17(1): 1729881420906290.
- 32.
Krug R. ; Stoyanov T. ; Tincani V. ; et al . The next step in robot commissioning: autonomous picking and palletizing. IEEE Robotics and Automation Letters, 2016, 1(1): 546-553.
- 33.
Semeniuta O. ; Dransfeld S. ; Falkman P . Vision-based robotic system for picking and inspection of small automotive components. 2016 IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA: IEEE, 2016: 549-554.
- 34.
Xie F.G. ; Liu X.J. ; Wu C. ; et al . A novel spray painting robotic device for the coating process in automotive industry. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(11): 2081-2093.
- 35.
Ahmad B. ; Iqbal A. ; Saqib R. ; et al . Design and implementation of bluetooth controlled painting robot for auto industry. Intelligent Computing, Cham: Springer International Publishing, 2019: 359-367.
- 36.
IDRIS A .A.M. Improvement of painting and welding in automotive industry using robots. IOSR Journal of Mechanical and Civil Engineering, 2020, 17(5):18-28.
- 37.
Božek P . Robot path optimization for spot welding applications in automotive industry. Tehnički vjesnik, 2013, 20(5): 913-917.
- 38.
Toai T.T. ; Chu D.H. ; My C .A. Development of a new 6 DOFs welding robotic system for a specialized application. BalasV.E.; SolankiV.K.; KumarR. Further advances in internet of things in biomedical and cyber physical systems. Cham: Springer International Publishing, 2021: 135-150.
- 39.
Chen H.P. ; Eakins W. ; Wang J.J. ; et al . Robotic wheel loading process in automotive manufacturing automation. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Loui, MO, USA: IEEE, 2009: 3814-3819.
- 40.
Brito T. ; Queiroz J. ; Piardi L. ; et al . A machine learning approach for collaborative robot smart manufacturing inspection for quality control systems. Procedia Manufacturing, 2020, 51: 11-18.
- 41.
Javadi Y. ; Mohseni E. ; MacLeod C.N. ; et al . Continuous monitoring of an intentionally-manufactured crack using an automated welding and in-process inspection system. Materials & Design, 2020, 191: 108655.
- 42.
Zheng M.K. ; Ming X .G. Construction of cyber-physical system–integrated smart manufacturing workshops: a case study in automobile industry. Advances in Mechanical Engineering, 2017, 9(10): 1687814017733246.
- 43.
Qu Y.J. ; Ming X.G. ; Liu Z.W. ; et al . Smart manufacturing systems: state of the art and future trends. The International Journal of Advanced Manufacturing Technology, 2019, 103(9): 3751-3768.
- 44.
Vysocky A. ; Novak P . Human – robot collaboration in industry. MM Science Journal, 2016, 2016(2): 903-906.
- 45.
Müller R. ; Vette M. ; Scholer M . Robot workmate: a trustworthy coworker for the continuous automotive assembly line and its implementation. Procedia CIRP, 2016, 44: 263-268.
- 46.
Inkulu A.K. ; Bahubalendruni M .V.A.R.; Dara A.; et al. Challenges and opportunities in human robot collaboration context of Industry 4.0 - a state of the art review. Industrial Robot, 2021, 49(2): 226-239.
- 47.
Asadi E. ; Li B.B. ; Chen I .M. Pictobot: a cooperative painting robot for interior finishing of industrial developments. IEEE Robotics & Automation Magazine, 2018, 25(2): 82-94.
- 48.
Michalos G. ; Kousi N. ; Karagiannis, P,; et al . Seamless human robot collaborative assembly – an automotive case study. Mechatronics, 2018, 55: 194-211.
- 49.
di Marino C. ; Tarallo A. ; Vitali A. ; et al . Collaborative robotics and ergonomics: a scientific review. Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition, Virtual, Online: ASME, 2021: V006T06A020.
- 50.
Boy G .A. Design for flexibility: a human systems integration approach. Cham: Springer, 2021.
- 51.
Dai J.S. ; Rees Jones J . Mobility in metamorphic mechanisms of foldable/erectable kinds. Journal of Mechanical Design, 1999, 121(3): 375-382.
- 52.
Dai J .S. Metamorphic mechanisms and their configuration models. Chinese Journal of Mechanical Engineering (English Edition), 2000, 13(3): 212.
- 53.
Yan H.S. ; Liu N .T. Joint-codes representations for mechanisms and chains with variable topologies. Transactions of the Canadian Society for Mechanical Engineering, 2003, 27(1/2): 131-143.
- 54.
Aimedee F. ; Gogu G. ; Dai J.S. ; et al . Systematization of morphing in reconfigurable mechanisms. Mechanism and Machine Theory, 2016, 96, Part 2: 215-224.
- 55.
Zhuang Z.M. ; Zhang Z. ; Guan Y.T. ; et al . Design and control of SLPM-based extensible continuum arm. Journal of Mechanisms and Robotics, 2022, 14(6): 061011.
- 56.
Kang X. ; Zhang X.S. ; Dai J .S. First- and second-order kinematics-based constraint system analysis and reconfiguration identification for the queer-square mechanism. Journal of Mechanisms and Robotics, 2019, 11(1): 011004.
- 57.
- 58.
Neven D. ; de Brabandere D. ; Georgoulis S. ; et al . Towards End-to-End lane detection: an instance segmentation approach. 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China: IEEE, 2018: 286-291.
- 59.
Chai R.Q. ; Tsourdos A. ; Savvaris A. ; et al . Design and implementation of deep neural Network-Based control for automatic parking maneuver process. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(4): 1400-1413.
- 60.
Gao H.B. ; Zhu J.P. ; Li X.D. ; et al . Automatic parking control of unmanned vehicle based on switching control algorithm and backstepping. IEEE/ASME Transactions on Mechatronics, 2022, 27(3): 1233-1243.
- 61.
Wang Q. ; Gao J.Y. ; Yuan Y . Embedding structured contour and location prior in siamesed fully convolutional networks for road detection. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1): 230-241.
- 62.
Chen L.C. ; Papandreou G. ; Kokkinos I. ; et al . DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
- 63.
Choi W . Near-online multi-target tracking with aggregated local flow descriptor. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile: IEEE, 2015: 3029- 3037.
- 64.
Lin T.Y. ; Dollár P. ; Girshick R. ; et al . Feature pyramid networks for object detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA: IEEE, 2017: 936-944.
- 65.
Xu S.B. ; Peng H. ; Song Z.Y. ; et al . Accurate and smooth speed control for an autonomous vehicle. 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China: IEEE, 2018: 1976-1982.
- 66.
Kim H. ; Kim D. ; Shu I. ; et al . Time-varying parameter adaptive vehicle speed control IEEE Transactions on Vehicular Technology, 2016, 65(2): 581-588.
- 67.
Chatzikomis C. ; Sorniotti A. ; Gruber P. ; et al . Comparison of path tracking and torque-vectoring controllers for autonomous electric vehicles. IEEE Transactions on Intelligent Vehicles, 2018, 3(4): 559-570.
- 68.
Guo J.H. ; Luo Y.G. ; Li K .Q. An adaptive hierarchical trajectory following control approach of autonomous four-wheel independent drive electric vehicles. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2482-2492.
- 69.
Nam H. ; Choi W. ; Ahn C . Model predictive control for evasive steering of an autonomous vehicle International Journal of Automotive Technology, 2019, 20(5): 1033-1042.
- 70.
Brown M. ; Funke J. ; Erlien S. ; et al . Safe driving envelopes for path tracking in autonomous vehicles. Control Engineering Practice, 2017, 61: 307-316.
- 71.
Wei H. ; Mu X.X. ; Zhang L. ; et al . Modeling and trajectory tracking control for flapping-wing micro aerial vehicles. IEEE/CAA Journal of Automatica Sinica, 2021, 8(1): 148-156.
- 72.
Alcala E. ; Puig V. ; Quevedo J. ; et al . Autonomous vehicle control using a kinematic Lyapunov-based technique with LQR-LMI tuning. Control Engineering Practice, 2018, 73: 1-12.
- 73.
Niu S. ; Ye L.Q. ; Liu H.D. ; et al . Ant3DBot: a modular self-reconfigurable robot with multiple configurations. Intelligent Robotics and Applications, Cham: Springer International Publishing, 2022: 552-563.
- 74.
Tu Y.X. ; Liang G.Q. ; Lam T .L. FreeSN: a freeform strut-node structured modular self-reconfigurable robot - design and implementation. 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA: IEEE, 2022: 4239- 4245.
- 75.
Pallottino F. ; Antonucci F. ; Costa C. ; et al . Optoelectronic proximal sensing vehicle-mounted technologies in precision agriculture: a review. Computers and Electronics in Agriculture, 2019, 162: 859-873.
- 76.
Lynch L. ; Newe T. ; Clifford J. ; et al . Automated ground vehicle (AGV) and sensor technologies- a review. 2018 12th International Conference on Sensing Technology (ICST), Limerick, Ireland: IEEE, 2018: 347-352.
- 77.
Jiansheng D . Geometrical foundations and screw algebra for mechanisms and robotics. Beijing: Higher Education Press, 2014.
- 78.
Bortolini,M; Galizia,G.G; Mora,C. Reconfigurable manufacturing systems: Literature review and research trend. Journal of Manufacturing Systems, 2018, 49: 93-106.
- 79.
Andersen A.L. ; Larsen J.K. ; Brunoe T.D. ; et al . Critical enablers of changeable and reconfigurable manufacturing and their industrial implementation. Journal of Manufacturing Technology Management, 2018, 29(6): 983-1002.
- 80.
Pansare R. ; Yadav G. ; Nagare M .R. Reconfigurable manufacturing system: a systematic review,meta-analysis and future research directions. Journal of Engineering, Design and Technology, 2021, submitted.
- 81.
Liu G.J. ; Abdul S. ; Goldenberg A .A. Distributed control of modular and reconfigurable robot with torque sensing. Robotica, 2008, 26(1): 75-84.
- 82.
Li Y. ; Lu Z.P. ; Zhou F. ; et al . Decentralized trajectory tracking control for modular and reconfigurable robots with torque sensor: adaptive terminal sliding control-based approach. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(6): 061003.
- 83.
Le A.V. ; Kyaw P.T. ; Mohan R.E. ; et al . Autonomous floor and staircase cleaning framework by reconfigurable sTetro robot with perception sensors. Journal of Intelligent & Robotic Systems, 2020, 101(1): 17.
- 84.
Huang J.L. ; Zhakypov Z. ; Sonar H. ; et al . A reconfigurable interactive interface for controlling robotic origami in virtual environments. The International Journal of Robotics Research, 2018, 37(6): 629-647.
- 85.
Huang J .L. Development and control of interactive reconfigurable robotic systems. Lausanne: École Polytechnique Fédérale de Lausanne, 2021.
- 86.
Yi L. ; Le A.V. ; Hayat A.A. ; et al . Anti-collision static rotation local planner for four independent steering drive self-reconfigurable robot. 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA: IEEE, 2022: 5835-5841.
- 87.
Thalamy P. ; Piranda B. ; Bourgeois J . A survey of autonomous self-reconfiguration methods for robot-based programmable matter. Robotics and Autonomous Systems, 2019, 120: 103242.