2504000068
  • Open Access
  • Review
A Review of Fuel Cell System Technology: From Fuel Cell Stack to System Integration
  • Weiqun Ren 1, *,   
  • Jun Shen 2,   
  • Xuebing Li 1,   
  • Changqing Du 2

Received: 14 Oct 2022 | Accepted: 08 Nov 2022 | Published: 18 Dec 2022

Abstract

The technology of hydrogen fuel cell vehicles (FCV) is the ultimate direction of clean energy vehicle development, and commercial vehicles are the most important application area for fuel cell commercialization. This paper summarizes the key components, technologies and development trends of the fuel cell stack, fuel cell system and vehicle integration at home and abroad, and points out that key materials (such as bipolar plates and membrane electrodes), key system components (such as air compressors and ejectors), high-power modular integration technologies, and fuel cell control technologies are the main factors influencing the commercialization of FCVs. Particularly, we put the main fouce on variable ejector or multi-stage ejector technology, integrated and optimized control technology, and multi-energy cooperative control technology due to their crucial roles in meeting the industrial development of FCVs in China. Furthermore, some guidance opinions are also provided for reference about the development and industrialization of FCVs.

References 

  • 1.
    Olabi A.G. ; Bahri A.S. ; Abdelghafar A.A. ; et al . Large-vscale hydrogen production and storage technologies: current status and future directions. International Journal of Hydrogen Energy, 2021, 46(45): 23498-23528.
  • 2.
    Ajanovic A. ; Haas R . Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. International Journal of Hydrogen Energy, 2021, 46(16): 10049-10058.
  • 3.
    Ajanovic A. ; Haas R . Economic and environmental prospects for battery electric- and fuel cell vehicles: a review. Fuel Cells, 2019, 19(5): 515-529.
  • 4.
    Scott K. ; Shukla A .K. Polymer electrolyte membrane fuel cells: principles and advances. Reviews in Environmental Science and Bio/Technology, 2004, 3(3): 273-280.
  • 5.
    Kuan Y.D. ; Ciou C.W. ; Shen M.Y. ; et al . Bipolar plate design and fabrication using graphite reinforced composite laminate for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2021, 46(31): 16801-16814.
  • 6.
    Amirfazli A. ; Asghari S. ; Sarraf M . An investigation into the effect of manifold geometry on uniformity of temperature distribution in a PEMFC stack. Energy, 2018, 145: 141-151.
  • 7.
    Manso A.P. ; Marzo F.F. ; Barranco J. ; et al . Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review. International Journal of Hydrogen Energy, 2012, 37(20): 15256-15287.
  • 8.
    Lim B.H. ; Majlan E.H. ; Daud W .R.W.; et al. Effects of flow field design on water management and reactant distribution in PEMFC: a review. Ionics, 2016, 22(3): 301-316.
  • 9.
    Mortazavi M. ; Santamaria A.D. ; Chauhan V. ; et al . Effect of PEM fuel cell porous media compression on in-plane transport phenomena. Journal of Power Sources Advances, 2020, 1: 100001.
  • 10.
    Chen T. ; Liu S.H. ; Zhang J.W. ; et al . Study on the characteristics of GDL with different PTFE content and its effect on the performance of PEMFC. International Journal of Heat and Mass Transfer, 2019, 128: 1168-1174.
  • 11.
    Silva L .M.G.; Leocádio G.N.; de Souza R.F.B.; et al. New approach by electrospray technique to prepare a gas diffusion layer for the proton exchange membrane fuel cell anode. Materials Today Advances, 2021, 12: 100161.
  • 12.
    Guo Y.Q. ; Pan F.W. ; Chen W.M. ; et al . The controllable design of catalyst inks to enhance PEMFC performance: a review. Electrochemical Energy Reviews, 2021, 4(1): 67-100.
  • 13.
    Ostroverkh A. ; Dubau M. ; Johánek V. ; et al . Efficient Pt-C MEA for PEMFC with low platinum content prepared by magnetron sputtering. Fuel Cells, 2018, 18(1): 51-56.
  • 14.
    Zheng Z.F. ; Yang F. ; Lin C. ; et al . Design of gradient cathode catalyst layer (CCL) structure for mitigating Pt degradation in proton exchange membrane fuel cells (PEMFCs) using mathematical method. Journal of Power Sources, 2020, 451: 227729.
  • 15.
    Mohanty S. ; Desai A.N. ; Singh S. ; et al . Effects of the membrane thickness and ionomer volume fraction on the performance of PEMFC with U-shaped serpentine channel. International Journal of Hydrogen Energy, 2021, 46(39): 20650-20663.
  • 16.
    Song K. ; Wang Y.M. ; Ding Y.H. ; et al . Assembly techniques for proton exchange membrane fuel cell stack: a literature review. Renewable and Sustainable Energy Reviews, 2022, 153: 111777.
  • 17.
    Porstmann S. ; Wannemacher T. ; Richter T . Overcoming the challenges for a mass manufacturing machine for the assembly of PEMFC stacks. Machines, 2019, 7(4): 66.
  • 18.
    Han J.Q. ; Feng J.M. ; Chen P. ; et al . A review of key components of hydrogen recirculation subsystem for fuel cell vehicles. Energy Conversion and Management: X, 2022, 15: 100265.
  • 19.
    Zhang Q.Q. ; Feng J.M. ; Zhang Q.Q. ; et al . Performance prediction and evaluation of the scroll-type hydrogen pump for FCVs based on CFD–Taguchi method. International Journal of Hydrogen Energy, 2019, 44(29): 15333-15343.
  • 20.
    He H.W. ; Quan S.W. ; Wang Y .X. Hydrogen circulation system model predictive control for polymer electrolyte membrane fuel cell-based electric vehicle application. International Journal of Hydrogen Energy, 2020, 45(39): 20382-20390.
  • 21.
    Yin Y. ; Fan M.Z. ; Jiao K. ; et al . Numerical investigation of an ejector for anode recirculation in proton exchange membrane fuel cell system. Energy Conversion and Management, 2016, 126: 1106-1117.
  • 22.
    Xue H.Y. ; Wang L. ; Zhang H.L. ; et al . Design and investigation of multi-nozzle ejector for PEMFC hydrogen recirculation. International Journal of Hydrogen Energy, 2020, 45(28): 14500-14516.
  • 23.
    Zhou S. ; Xie Z.H. ; Chen C.G. ; et al . Design and energy consumption research of an integrated air supply device for multi-stack fuel cell systems. Applied Energy, 2022, 324: 119704.
  • 24.
    Deng H.W. ; Li Q. ; Cui Y.L. ; et al . Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems. International Journal of Hydrogen Energy, 2019, 44(35): 19357-19369.
  • 25.
    Hou J.B. ; Yang M. ; Ke C.C. ; et al . Control logics and strategies for air supply in PEM fuel cell engines. Applied Energy, 2020, 269: 115059.
  • 26.
    Gong C.Y. ; Shen J. ; Yu Y. ; et al . Heat dissipation characteristic in the intake grille and radiator of a fuel cell vehicle. International Journal of Green Energy, 2020, 17(10): 591-601.
  • 27.
    Gong C.Y. ; Du Y.M. ; Yu Y. ; et al . Numerical and experimental investigation of enhanced heat transfer radiator through air deflection used in fuel cell vehicles. International Journal of Heat and Mass Transfer, 2022, 183, Part C: 122205.
  • 28.
    Zakaria I.A. ; Mohamed W .A.N.W.; Azid N.H.A.; et al. Heat transfer and electrical discharge of hybrid nanofluid coolants in a fuel cell cooling channel application. Applied Thermal Engineering, 2022, 210: 118369.
  • 29.
    Wei Y.Q. ; Zhao Y.L. ; Yun H .T. Research on PEMFC internal temperature predictions and thermal management strategy based on a Kalman algorithm. Journal of Energy Engineering, 2021, 147(3): 04021010.
  • 30.
    Han J. ; Yu S. ; Yi S . Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm. International Journal of Hydrogen Energy, 2017, 42(7): 4328-4341.
  • 31.
    Daud W .R.W.; Rosli R.E.; Majlan E.H.; et al. PEM fuel cell system control: a review. Renewable Energy, 2017, 113: 620-638.
  • 32.
    Han J. ; Yu S. ; Yi S . Adaptive control for robust air flow management in an automotive fuel cell system. Applied Energy, 2017, 190: 73-83.
  • 33.
    Reddy K.J. ; Sudhakar N . ANFIS-MPPT control algorithm for a PEMFC system used in electric vehicle applications. International Journal of Hydrogen Energy, 2019, 44(29): 15355-15369.
  • 34.
    Yang D. ; Wang Y.J. ; Chen Z .H. Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer. International Journal of Hydrogen Energy, 2020, 45(24): 13508-13522.
  • 35.
    Wang H.Q. ; Gaillard A. ; Hissel D . A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles. Renewable Energy, 2019, 141: 124-138.
  • 36.
    Hasegawa T. ; Imanishi H. ; Nada M. ; et al . Development of the fuel cell system in the Mirai FCV: 2016-01-1185. Pittsburgh: SAE International, 2016.
  • 37.
    Yoshida T. ; Kojima K . Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. The Electrochemical Society Interface, 2015, 24(2): 45-49.
  • 38.
    Yoshizumi T. ; Kubo H. ; Okumura M . Development of high-performance FC stack for the new MIRAI: 2021-01-0740. Pittsburgh: SAE International, 2021.
  • 39.
    Tanaka S. ; Nagumo K. ; Yamamoto M. ; et al . Fuel cell system for Honda CLARITY fuel cell. eTransportation, 2020, 3: 100046.
  • 40.
    Çabukoglu E. ; Georges G. ; Küng L. ; et al . Fuel cell electric vehicles: an option to decarbonize heavy-duty transport? Results from a Swiss case-study. Transportation Research Part D: Transport and Environment, 2019, 70: 35-48.
  • 41.
    de las Nieves Camacho, M.; Jurburg D. ; Tanco M . Hydrogen fuel cell heavy-duty trucks: review of main research topics. International Journal of Hydrogen Energy, 2022, 47(68): 29505-29525.
  • 42.
    Sun T. ; Zhang X. ; Chen B. ; et al . Coordination control strategy for the air management of heavy vehicle fuel cell engine. International Journal of Hydrogen Energy, 2020, 45(39): 20360-20368.
  • 43.
    Cullen D.A. ; Neyerlin K.C. ; Ahluwalia R.K. ; et al . New roads and challenges for fuel cells in heavy-duty transportation. Nature Energy, 2021, 6(5): 462-474.
Share this article:
How to Cite
Ren, W.; Shen, J.; Li, X.; Du, C. A Review of Fuel Cell System Technology: From Fuel Cell Stack to System Integration. International Journal of Automotive Manufacturing and Materials 2022, 1 (1), 5. https://doi.org/10.53941/ijamm0101005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2022 by the authors.