- 1.
- 2.
Atabani A.E. ; Badruddin I.A. ; Mekhilef S. ; et al . A review on global fuel economy standards, labels and technologies in the transportation sector. Renewable Sustainable Energy Rev. 2011, 15, 4586– 4610. doi: 10.1016/j.rser.2011.07.092 .
- 3.
Chan, C.C. The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 2007, 95, 704– 718. doi: 10.1109/JPROC.2007.892489.
- 4.
- 5.
Farrall S.D. ; Jones R . P. Energy management in an automotive electric/heat engine hybrid powertrain using fuzzy decision making. In Proceedings of 8th IEEE International Symposium on Intelligent Control, Chicago, IL, USA, 25– 27 August 1993; IEEE: Piscataway, NJ, USA, 1993. doi: 10.1109/isic.1993.397669 .
- 6.
Lee H.D. ; Sul S . K. Fuzzy-logic-based torque control strategy for parallel-type hybrid electric vehicle. IEEE Trans. Ind. Electron. 1998, 45, 625– 632. doi: 10.1109/41.704891 .
- 7.
Lin C.C. ; Peng H. ; Grizzle J.W. ; et al . Power management strategy for a parallel hybrid electric truck. IEEE Trans. Control Syst. Technol. 2003, 11, 839– 849. doi: 10.1109/TCST.2003.815606 .
- 8.
Piccolo A. ; Ippolito L. ; Zo Galdi V. ; et al . Optimisation of energy flow management in hybrid electric vehicles via genetic algorithms. In 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556), Como, Italy, 08– 12 July 2001; IEEE: Piscataway, NJ, USA, 2001. doi: 10.1109/aim.2001.936493 .
- 9.
Borhan H. ; Vahidi A. ; Phillips A.M. ; et al . MPC-based energy management of a power-split hybrid electric vehicle. IEEE Trans. Control Syst. Technol. 2012, 20, 593– 603. doi: 10.1109/TCST.2011.2134852 .
- 10.
Xie S. ; Hu X. ; Qi S. ; et al . An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles. Energy 2018, 163, 837– 848. doi: 10.1016/j.energy.2018.08.139 .
- 11.
Xu F. ; Chen H. ; Gong X. ; et al . Fast nonlinear model predictive control on FPGA using particle swarm optimization. IEEE Trans. Ind. Electron. 2016, 63, 310– 321. doi: 10.1109/TIE.2015.2464171 .
- 12.
Leng B. ; Jin D. ; Xiong L. ; et al . Estimation of tire-road peak adhesion coefficient for intelligent electric vehicles based on camera and tire dynamics information fusion. Mech. Syst. Signal Process. 2021, 150, 107275. doi: 10.1016/j.ymssp.2020.107275 .
- 13.
Li Y. ; He H. ; Peng J. ; et al . Deep Reinforcement Learning-Based Energy Management for a Series Hybrid Electric Vehicle Enabled by History Cumulative Trip Information. IEEE Trans. Veh. Technol. 2019, 68, 7416– 7430. doi: 10.1109/tvt.2019.2926472 .
- 14.
Han W. ; Xiong L. ; Yu Z . Analysis and optimization of minimum hydraulic brake-by-wire system for wheeled vehicles based on queueing theory. IEEE Trans. Veh. Technol. 2021, 70, 12491– 12505. doi: 10.1109/TVT.2021.3116760 .
- 15.
Li J. ; Zhou Q. ; Williams H. ; et al . Fuzzy-tree-constructed data-efficient modelling methodology for volumetric efficiency of dedicated hybrid engines. Appl. Energy 2022, 310, 118534. doi: 10.1016/j.apenergy.2022.118534 .
- 16.
Zhou Q. ; Zhang W. ; Cash S. ; et al . Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization. Appl. Energy 2017, 189, 588– 601. doi: 10.1016/j.apenergy.2016.12.074 .
- 17.
Li Z. ; Zhou Q. ; Zhang Y. ; et al . Enhanced intelligent proportional-integral-like fuzzy knowledge–based controller using chaos-enhanced accelerated particle swarm optimization algorithm for transient calibration of air–fuel ratio control system. Proc. Inst. Mech. Eng.; Part D 2019, 234, 39– 55. doi: 10.1177/0954407019862079 .
- 18.
Zhou Q. ; Zhang Y. ; Li Z. ; et al . Cyber-Physical Energy-Saving Control for Hybrid Aircraft-Towing Tractor based on Online Swarm Intelligent Programming. IEEE Trans. Ind. Inf. 2018, 14, 4149– 4158. doi: 10.1109/TII.2017.2781230 .
- 19.
Li J. ; Zhou Q. ; He Y. ; et al . Dual-loop Online Intelligent Programming for Driver-oriented Predict Energy Management of Plug-in Hybrid Electric Vehicles. Appl. Energy 2019, 253, 113617.
- 20.
Liu T. ; Hu X. ; Hu W. ; et al . A Heuristic Planning Reinforcement Learning-Based Energy Management for Power-Split Plug-in Hybrid Electric Vehicles. IEEE Trans. Ind. Inf. 2019, 15, 6436– 6445. doi: 10.1109/TII.2019.2903098 .
- 21.
Zhou Q. ; Li Y. ; Zhao D. ; et al . Transferable representation modelling for real-time energy management of the plug-in hybrid vehicle based on k-fold fuzzy learning and Gaussian process regression. Appl. Energy 2022, 305, 117853. doi: 10.1016/j.apenergy.2021.117853 .
- 22.
Biswas A. ; Emadi A . Energy Management Systems for Electrified Powertrains: State-of-The-Art Review and Future Trends. IEEE Trans. Veh. Technol. 2019, 68, 6453– 6467. doi: 10.1109/tvt.2019.2914457 .
- 23.
- 24.
- 25.
Pourabdollah M. ; Egardt B. ; Murgovski N. ; et al . Convex Optimization Methods for Powertrain Sizing of Electrified Vehicles by Using Different Levels of Modeling Details. IEEE Trans. Veh. Technol. 2018, 67, 1881– 1893. doi: 10.1109/TVT.2017.2767201 .
- 26.
Zhang L. ; Hu X. ; Wang Z. ; et al . Multiobjective Optimal Sizing of Hybrid Energy Storage System for Electric Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 1027– 1035. doi: 10.1109/TVT.2017.2762368 .
- 27.
Wang X. ; Liang Q . Energy management strategy for plug-in hybrid electric vehicles via bidirectional vehicle-to-grid. IEEE Syst. J. 2015, 11, 1789– 1798. doi: 10.1109/JSYST.2015.2391284 .
- 28.
Lv C. ; Hu X. ; Sangiovanni-Vincentelli A. ; et al . Driving-Style-Based Codesign Optimization of an Automated Electric Vehicle: A Cyber-Physical System Approach. IEEE Trans. Ind. Electron. 2018, 66, 2965– 2975. doi: 10.1109/TIE.2018.2850031 .
- 29.
Zhou Q. ; He Y. ; Zhao D. ; et al . Modified Particle Swarm Optimization with Chaotic Attraction Strategy for Modular Design of Hybrid Powertrains. IEEE Trans. Transp. Electrif. 2020, 7, 616– 625. doi: 10.1109/TTE.2020.3014688 .
- 30.
Liu M. ; Fang S. ; Dong H. ; et al . Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021, 58, 346– 361. doi: 10.1016/j.jmsy.2020.06.017 .
- 31.
Zhou Q. ; Zhang C. ; Li Y. ; et al . Robust optimization of energy management strategy in hybrid vehicles based on digital twin and PSO algorithm (in Chinese). J. Automot. Saf. Energy 2022, 13, 517– 525. doi: 10.3969/j.issn.1674-8484.2022.03.013 .
- 32.
Bolton R.N. ; McColl-Kennedy J.R. ; Cheung L. ; et al . Customer experience challenges: bringing together digital, physical and social realms. J. Serv. Manag. 2018, 29, 776– 808. doi: 10.1108/JOSM-04-2018-0113 .
- 33.
Li W. ; Rentemeister M. ; Badeda J. ; et al . Digital twin for battery systems: Cloud battery management system with online state-of-charge and state-of-health estimation. J. Energy Storage 2020, 30, 101557. doi: 10.1016/j.est.2020.101557 .
- 34.
Bhatti G. ; Mohan H. ; Singh R . R. Towards the future of ssmart electric vehicles: Digital twin technology. Renewable Sustainable Energy Rev. 2021, 141, 110801. doi: 10.1016/j.rser.2021.110801 .
- 35.
Venkatesan S. ; Manickavasagam K. ; Tengenkai N. ; et al . Health monitoring and prognosis of electric vehicle motor using intelligent-digital twin. IET Electr. Power Appl. 2019, 13, 1328– 1335. doi: 10.1049/iet-epa.2018.5732 .
- 36.
Liu Y. ; Wang Z. ; Han K. ; et al . Sensor Fusion of Camera and Cloud Digital Twin Information for Intelligent Vehicles. In 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; IEEE: Piscataway, NJ, USA, 2020. doi: 10.1109/IV47402.2020.9304643 .
- 37.
Zhou Q. ; Guo S. ; Xu L. ; et al . Global Optimization of the Hydraulic-electromagnetic Energy-harvesting Shock Absorber for Road Vehicles with Human-knowledge-integrated Particle Swarm Optimization Scheme. IEEE/ASME Trans. Mechatron. 2021, 26, 1225– 1235. doi: 10.1109/tmech.2021.3055815 .
- 38.
Zhou Q. ; Wang C. ; Sun Z. ; et al . Human-knowledge-augmented Gaussian Process Regression for State-of-Health Prediction of Lithium-ion Batteries with Charging Curves. J. Electrochem. Energy Convers. Storage 2021, 18, 030907. doi: 10.1115/1.4050798 .
- 39.
Wang H. ; Huang Y. ; Soltani A. ; et al . Cyber-Physical Predictive Energy Management for Through-The-Road Hybrid Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 3246– 3256. doi: 10.1109/TVT.2019.2902485 .
- 40.
Martínez, C.M.; Cao, D. Integrated energy management for electrified vehicles. In Ihorizon-Enabled Energy Management for Electrified Vehicles; Butterworth-Heinemann: Oxford, UK, 2019; pp. 15– 75. doi: 10.1016/B978-0-12-815010-8.00002-8.
- 41.
Silver D. ; Huang A. ; Maddison C.J. ; et al . Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484– 489. doi: 10.1038/nature16961 .
- 42.
Bellman, R. Dynamic Programming and a New Formalism in the Calculus of Variations. Proc. Natl. Acad. Sci. 1954, 40, 231– 235. doi: 10.1073/pnas.40.4.231.
- 43.
Hu Y. ; Wang W. ; Liu H. ; et al . Reinforcement Learning Tracking Control for Robotic Manipulator with Kernel-Based Dynamic Model. IEEE Trans. Neural Networks Learn. Syst. 2019, 31, 3570– 3578. doi: 10.1109/tnnls.2019.2945019 .
- 44.
Radac M.B. ; Precup R . E. Data-driven model-free slip control of anti-lock braking systems using reinforcement Q-learning. Neurocomputing 2018, 275, 317– 329. doi: 10.1016/j.neucom.2017.08.036 .
- 45.
Liu T. ; Zou Y. ; Liu D. ; et al . Reinforcement Learning of Adaptive Energy Management with Transition Probability for a Hybrid Electric Tracked Vehicle. IEEE Trans. Ind. Electron. 2015, 62, 7837– 7846.
- 46.
Shuai B. ; Zhou Q. ; Li J. ; et al . Heuristic action execution for energy efficient charge-sustaining control of connected hybrid vehicles with model-free double Q-learning. Appl. Energy 2020, 267, 114900.
- 47.
Zhou Q. ; Li J. ; Shuai B. ; et al . Multi-step Reinforcement Learning for Model-Free Predictive Energy Management of an Electrified Off-highway Vehicle. Appl. Energy 2019, 255, 113755. doi: 10.1016/j.apenergy.2019.113755 .
- 48.
Pei H. ; Hu X. ; Yang Y. ; et al . Designing Multi-Mode Power Split Hybrid Electric Vehicles Using the Hierarchical Topological Graph Theory. IEEE Trans. Veh. Technol. 2020, 69, 7159– 7171. doi: 10.1109/TVT.2020.2993019 .
- 49.
Xu R. ; Li J. ; Dong X. ; et al . Bridging the Domain Gap for Multi-Agent Perception. arXiv preprint Unpublished work, 2022. doi: arXiv: 2210.08451.
- 50.
Chen W. ; Xu R. ; Xiang H. ; et al . Model-Agnostic Multi-Agent Perception Framework. arXiv preprint Unpublished work, 2022. doi: arXiv: 2203.13168.
- 51.
Schmidt L.M. ; Brosig J. ; Plinge A. ; et al . An Introduction to Multi-Agent Reinforcement Learning and Review of its Application to Autonomous Mobility. arXiv preprint Unpublished work, 2022. doi: arXiv: 2203.07676.
- 52.
Lowe R. ; Wu Y.I. ; Tamar A. ; et al . Multi-agent actor-critic for mixed cooperative-competitive environments. In Advances in Neural Information Processing Systems 30 (NIPS 2017), Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4– 9 December 2017; pp. 6380– 6391.
- 53.
Zhao Z.Q. ; Zheng P. ; Xu S.T. ; et al . Object Detection with Deep Learning: A Review. IEEE Trans. Neural Networks Learn. Syst. 2019, 30, 3212– 3232. doi: 10.1109/TNNLS.2018.2876865 .
- 54.
Ashok Kumar P.M. ; Vaidehi V . A transfer learning framework for traffic video using neuro-fuzzy approach. Sādhanā 2017, 42, 1431– 1442. doi: 10.1007/s12046-017-0705-x .
- 55.
Zhou Q. ; Zhao D. ; Shuai B. ; et al . Knowledge Implementation and Transfer With an Adaptive Learning Network for Real-Time Power Management of the Plug-in Hybrid Vehicle. IEEE Trans. Neural Networks Learn. Syst. 2021, 32, 5298– 5308.
- 56.
Williams C.K. ; Rasmussen C . E. Gaussian Processes for Machine Learning. MIT Press: Cambridge, MA, USA, 2006.