2504000071
  • Open Access
  • Review
Exhaust Gas After-Treatment Systems for Gasoline and Diesel Vehicles
  • Liye Bao 1,   
  • Jihua Wang 2,   
  • Lihui Shi 2,   
  • Haijun Chen 1, *

Received: 05 Oct 2022 | Accepted: 10 Nov 2022 | Published: 25 Dec 2022

Abstract

Exhaust gases released from vehicle engines have been a major cause of air pollution, and the emission limits have become much stricter in recent years due to a worldwide concern about the impact of air pollution on public health. These regulations have been complied to minimize the emissions of carbon monoxide (CO), hydrocarbons (HCs), nitrogen oxides (NO x) and particulate matter (PM) from gasoline and diesel vehicles engines. Different after-treatment systems (ATS) have been developed for the treatment of exhaust gases from gasoline and diesel engines, respectively. The ATS for gasoline engine based on the three-way catalysts (TWCs), as well as the ATS for diesel engines including diesel oxidation catalysts (DOC), selective catalytic reduction (SCR), diesel particulate filters (DPF) and ammonia slip catalysts (ASC), are summarized in this mini-review.

References 

  • 1.
    Huang C. ; Shan W. ; Lian Z. ; et al . Recent advances in three-way catalysts of natural gas vehicles. Catal. Sci. Technol. 2020, 10( 19), 6407– 6419.
  • 2.
    Lloyd A.C. ; Cackette T . A. Diesel engines: environmental impact and control. J. Air Waste Manag. Assoc. 2001, 51( 6), 809‒ 47.
  • 3.
    Zhang N. ; Ye C. ; Yan H. ; et al . Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13( 12), 3165‒ 3182.
  • 4.
    Dusselier, M.; Davis, M. E. Small-Pore Zeolites: Synthesis and Catalysis. Chem. Rev. 2018, 118( 11), 5265‒ 5329.
  • 5.
    Han L. ; Cai S. ; Gao M. ; et al . Selective Catalytic Reduction of NOx with NH 3 by Using Novel Catalysts: State of the Art and Future Prospects . Chem. Rev. 2019, 119( 19), 10916‒ 10976.
  • 6.
    Hu Z. ; Allen F.M. ; Wan C.Z. ; et al . Performance and structure of Pt–Rh three-way catalysts: mechanism for Pt/Rh synergism. J. Catal. 1998, 174, 13‒ 21.
  • 7.
    Farrauto R.J. ; Deeba M. ; Alerasool S . Gasoline automobile catalysis and its historical journey to cleaner air. Nat. Catal. 2019, 2( 7), 603‒ 613.
  • 8.
    Bahaloo-Horeh N. ; Mousavi S . M. Comprehensive characterization and environmental risk assessment of end-of-life automotive catalytic converters to arrange a sustainable roadmap for future recycling practices. J. Hazard. Mater. 2020, 400, 123186.
  • 9.
    Santos H. ; Costa M . Evaluation of the conversion efficiency of ceramic and metallic three way catalytic converters. Energy Convers. Manag. 2008, 49( 2), 291‒ 300.
  • 10.
    Rood S. ; Eslava S. ; Manigrasso A. ; et al . Recent advances in gasoline three-way catalyst formulation: A review. Proc. Inst. Mech. Eng., Part D 2019, 234( 4), 936‒ 949.
  • 11.
    Kašpar J. ; Fornasiero P. ; Hickey N . Automotive catalytic converters: current status and some perspectives. Catal. Today 2003, 77( 4), 419‒ 449.
  • 12.
    Koga H. ; Hayashi A. ; Ato Y. ; et al . Effect of ceria and zirconia supports on NO reduction over platinum-group metal catalysts: A DFT study with comparative experiments. Catal. Today 2019, 332, 236‒ 244.
  • 13.
    Wang J. ; Chen H. ; Hu Z. ; et al . A Review on the Pd-Based Three-Way Catalyst. Catal. Rev. 2014, 57( 1), 79‒ 144.
  • 14.
    Machida M. ; Uchida Y. ; Ishikawa Y. ; et al . Thermostable Rh Metal Nanoparticles Formed on Al2O3 by High-Temperature H2 Reduction and Its Impact on Three-Way Catalysis. J. Phys. Chem. C 2019, 123( 40), 24584‒ 24591.
  • 15.
    Vedyagin A.A. ; Kenzhin R.M. ; Tashlanov M.Y. ; et al . Effect of La Addition on the Performance of Three-Way Catalysts Containing Palladium and Rhodium. Top. Catal. 2020, 63( 1), 152‒ 165.
  • 16.
    Li L. ; Zhang N. ; Wu R. ; et al . Comparative Study of Moisture-Treated Pd@CeO2/Al2O3 and Pd/CeO2/Al2O3 Catalysts for Automobile Exhaust Emission Reactions: Effect of Core-Shell Interface. ACS Appl. Mater. Interfaces 2020, 12( 9), 10350‒ 10358.
  • 17.
    Jing Y. ; Wang G. ; Mine S. ; et al . Role of Ba in an Al2O 3-Supported Pd-based Catalyst under Practical Three-Way Catalysis Conditions . ChemCatChem 2022, 14( 8), e202101462.
  • 18.
    Jing Y. ; Wang G. ; Ting K.W. ; et al . Roles of the basic metals La, Ba, and Sr as additives in Al2O3-supported Pd-based three-way catalysts. J. Catal. 2021, 400, 387‒ 396.
  • 19.
    Chen X. ; Cheng Y. ; Seo C.Y. ; et al . Aging, re-dispersion, and catalytic oxidation characteristics of model Pd/Al 2O3 automotive three-way catalysts . Appl. Catal. B 2015, 163, 499‒ 509.
  • 20.
    Heck R.M. ; Farrauto R . J. Automobile exhaust catalysts. Appl. Catal., A 2001, 221, 443‒ 457.
  • 21.
    Beale A.M. ; Gao F. ; Lezcano-Gonzalez I. ; et al . Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44( 20), 7371‒ 405.
  • 22.
    Han F. ; Sun H. ; Zhao Z. ; et al . Selective Catalytic Reduction of NOx by Methanol on Metal-Free Zeolite with Brønsted and Lewis Acid Pair. ACS Catal. 2022, 12( 4), 2403‒ 2414.
  • 23.
    Andana T. ; Rappé K.G. ; Nelson N.C. ; et al . Selective catalytic reduction of NOx with NH3 over Ce-Mn oxide and Cu-SSZ-13 composite catalysts – Low temperature enhancement. Appl. Catal. B 2022, 316, 121522.
  • 24.
    Shan W. ; Yu Y. ; Zhang Y. ; et al . Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NO with NH3. Catal. Today 2021, 376, 292‒ 301.
  • 25.
    Russell A. ; Epling, Diesel Oxidation Catalysts W.S. . Catal. Rev. 2011, 53( 4), 337‒ 423.
  • 26.
    Han F. ; Yuan M. ; Chen H . Selective catalytic reduction of NOx with methanol on H-ZSM-5: The effect of extra-framework aluminum. Catal. Today 2020, 355, 443‒ 449.
  • 27.
    Johnson, T.V.; Joshi, A. Chapter 1 : Review of deNOx Technology for Mobile Applications . In NOx Trap Catalysts and Technologies: Fundamentals and Industrial Applications. Royal Society of Chemistry: Washington DC, USA, 2018; pp. 1- 35. DOI: 10.1039/9781788013239-00001
  • 28.
    Wu G. ; Liu S. ; Chen Z. ; et al . Promotion effect of alkaline leaching on the catalytic performance over Cu/Fe-SSZ-13 catalyst for selective catalytic reduction of NOx with NH3. J. Taiwan Inst. Chem. Eng. 2022, 134, 104355.
  • 29.
    Wang X. ; Xu Y. ; Qin M. ; et al . Insight into the effects of Cu2+ ions and CuO species in Cu-SSZ-13 catalysts for selective catalytic reduction of NO by NH3. J. Colloid Interface Sci. 2022, 622, 1‒ 10.
  • 30.
    Liu Q. ; Bian C. ; Ming S. ; et al . The opportunities and challenges of iron-zeolite as NH 3-SCR catalyst in purification of vehicle exhaust . Appl. Catal. A 2020, 607, 117865.
  • 31.
    Liu Z.G. ; Ottinger N.A. ; Cremeens C . M. Vanadium and tungsten release from V-based selective catalytic reduction diesel aftertreatment. Atmos. Environ. 2015, 104, 154‒ 161.
  • 32.
    Wang, D.-y.; Cao, J.-h.; Tan, P.-q.; et al . Full course evolution characteristics of DPF active regeneration under different inlet HC concentrations. Fuel 2022, 310, 122452.
  • 33.
    Bagi S. ; Kamp C.J. ; Sharma V. ; et al . Multiscale characterization of exhaust and crankcase soot extracted from heavy-duty diesel engine and implications for DPF ash. Fuel 2020, 282, 118878.
  • 34.
    Birkhold F. ; Meingast U. ; Wassermann P. ; et al . Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNOx-systems. Appl. Catal. B 2007, 70( 1‒ 4), 119‒ 127.
  • 35.
    Dhillon P.S. ; Harold M.P. ; Wang D. ; et al . Enhanced transport in washcoated monoliths: Application to selective lean NOx reduction and ammonia oxidation. Chem. Eng. J. 2019, 377, 119734.
  • 36.
    Dhillon P.S. ; Harold M.P. ; Wang D. ; et al . Modeling and analysis of transport and reaction in washcoated monoliths: Cu-SSZ-13 SCR and dual-layer Cu-SSZ-13 + Pt/Al2O3 ASC. React. Chem. Eng. 2019, 4( 6), 1103‒ 1115.
  • 37.
    Gao F. ; Szanyi J . On the hydrothermal stability of Cu/SSZ-13 SCR catalysts. Appl. Catal. A 2018, 560, 185‒ 194.
  • 38.
    Azzoni M.E. ; Franchi F.S. ; Usberti N. ; et al . Dual-layer AdSCR monolith catalysts: A new solution for NOx emissions control in cold start applications. Appl. Catal. B 2022, 315, 121544.
  • 39.
    Gao F. ; Peden C . Recent Progress in Atomic-Level Understanding of Cu/SSZ-13 Selective Catalytic Reduction Catalysts. Catalysts 2018, 8( 4), 140.
  • 40.
    Fu D. ; Park Y. ; Davis M . E. Confinement effects facilitate low-concentration carbon dioxide capture with zeolites. Proc. Natl. Acad. Sci. U. S. A. 2022, 119( 39), e2211544119.
Share this article:
How to Cite
Bao, L.; Wang, J.; Shi, L.; Chen, H. Exhaust Gas After-Treatment Systems for Gasoline and Diesel Vehicles. International Journal of Automotive Manufacturing and Materials 2022, 1 (1), 9. https://doi.org/10.53941/ijamm0101009.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2022 by the authors.