- 1.
Huang C. ; Shan W. ; Lian Z. ; et al . Recent advances in three-way catalysts of natural gas vehicles. Catal. Sci. Technol. 2020, 10( 19), 6407– 6419.
- 2.
Lloyd A.C. ; Cackette T . A. Diesel engines: environmental impact and control. J. Air Waste Manag. Assoc. 2001, 51( 6), 809‒ 47.
- 3.
Zhang N. ; Ye C. ; Yan H. ; et al . Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13( 12), 3165‒ 3182.
- 4.
Dusselier, M.; Davis, M. E. Small-Pore Zeolites: Synthesis and Catalysis. Chem. Rev. 2018, 118( 11), 5265‒ 5329.
- 5.
Han L. ; Cai S. ; Gao M. ; et al . Selective Catalytic Reduction of NOx with NH 3 by Using Novel Catalysts: State of the Art and Future Prospects . Chem. Rev. 2019, 119( 19), 10916‒ 10976.
- 6.
Hu Z. ; Allen F.M. ; Wan C.Z. ; et al . Performance and structure of Pt–Rh three-way catalysts: mechanism for Pt/Rh synergism. J. Catal. 1998, 174, 13‒ 21.
- 7.
Farrauto R.J. ; Deeba M. ; Alerasool S . Gasoline automobile catalysis and its historical journey to cleaner air. Nat. Catal. 2019, 2( 7), 603‒ 613.
- 8.
Bahaloo-Horeh N. ; Mousavi S . M. Comprehensive characterization and environmental risk assessment of end-of-life automotive catalytic converters to arrange a sustainable roadmap for future recycling practices. J. Hazard. Mater. 2020, 400, 123186.
- 9.
Santos H. ; Costa M . Evaluation of the conversion efficiency of ceramic and metallic three way catalytic converters. Energy Convers. Manag. 2008, 49( 2), 291‒ 300.
- 10.
Rood S. ; Eslava S. ; Manigrasso A. ; et al . Recent advances in gasoline three-way catalyst formulation: A review. Proc. Inst. Mech. Eng., Part D 2019, 234( 4), 936‒ 949.
- 11.
Kašpar J. ; Fornasiero P. ; Hickey N . Automotive catalytic converters: current status and some perspectives. Catal. Today 2003, 77( 4), 419‒ 449.
- 12.
Koga H. ; Hayashi A. ; Ato Y. ; et al . Effect of ceria and zirconia supports on NO reduction over platinum-group metal catalysts: A DFT study with comparative experiments. Catal. Today 2019, 332, 236‒ 244.
- 13.
Wang J. ; Chen H. ; Hu Z. ; et al . A Review on the Pd-Based Three-Way Catalyst. Catal. Rev. 2014, 57( 1), 79‒ 144.
- 14.
Machida M. ; Uchida Y. ; Ishikawa Y. ; et al . Thermostable Rh Metal Nanoparticles Formed on Al2O3 by High-Temperature H2 Reduction and Its Impact on Three-Way Catalysis. J. Phys. Chem. C 2019, 123( 40), 24584‒ 24591.
- 15.
Vedyagin A.A. ; Kenzhin R.M. ; Tashlanov M.Y. ; et al . Effect of La Addition on the Performance of Three-Way Catalysts Containing Palladium and Rhodium. Top. Catal. 2020, 63( 1), 152‒ 165.
- 16.
Li L. ; Zhang N. ; Wu R. ; et al . Comparative Study of Moisture-Treated Pd@CeO2/Al2O3 and Pd/CeO2/Al2O3 Catalysts for Automobile Exhaust Emission Reactions: Effect of Core-Shell Interface. ACS Appl. Mater. Interfaces 2020, 12( 9), 10350‒ 10358.
- 17.
Jing Y. ; Wang G. ; Mine S. ; et al . Role of Ba in an Al2O 3-Supported Pd-based Catalyst under Practical Three-Way Catalysis Conditions . ChemCatChem 2022, 14( 8), e202101462.
- 18.
Jing Y. ; Wang G. ; Ting K.W. ; et al . Roles of the basic metals La, Ba, and Sr as additives in Al2O3-supported Pd-based three-way catalysts. J. Catal. 2021, 400, 387‒ 396.
- 19.
Chen X. ; Cheng Y. ; Seo C.Y. ; et al . Aging, re-dispersion, and catalytic oxidation characteristics of model Pd/Al 2O3 automotive three-way catalysts . Appl. Catal. B 2015, 163, 499‒ 509.
- 20.
Heck R.M. ; Farrauto R . J. Automobile exhaust catalysts. Appl. Catal., A 2001, 221, 443‒ 457.
- 21.
Beale A.M. ; Gao F. ; Lezcano-Gonzalez I. ; et al . Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44( 20), 7371‒ 405.
- 22.
Han F. ; Sun H. ; Zhao Z. ; et al . Selective Catalytic Reduction of NOx by Methanol on Metal-Free Zeolite with Brønsted and Lewis Acid Pair. ACS Catal. 2022, 12( 4), 2403‒ 2414.
- 23.
Andana T. ; Rappé K.G. ; Nelson N.C. ; et al . Selective catalytic reduction of NOx with NH3 over Ce-Mn oxide and Cu-SSZ-13 composite catalysts – Low temperature enhancement. Appl. Catal. B 2022, 316, 121522.
- 24.
Shan W. ; Yu Y. ; Zhang Y. ; et al . Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NO with NH3. Catal. Today 2021, 376, 292‒ 301.
- 25.
Russell A. ; Epling, Diesel Oxidation Catalysts W.S. . Catal. Rev. 2011, 53( 4), 337‒ 423.
- 26.
Han F. ; Yuan M. ; Chen H . Selective catalytic reduction of NOx with methanol on H-ZSM-5: The effect of extra-framework aluminum. Catal. Today 2020, 355, 443‒ 449.
- 27.
Johnson, T.V.; Joshi, A. Chapter 1 : Review of deNOx Technology for Mobile Applications . In NOx Trap Catalysts and Technologies: Fundamentals and Industrial Applications. Royal Society of Chemistry: Washington DC, USA, 2018; pp. 1- 35. DOI: 10.1039/9781788013239-00001
- 28.
Wu G. ; Liu S. ; Chen Z. ; et al . Promotion effect of alkaline leaching on the catalytic performance over Cu/Fe-SSZ-13 catalyst for selective catalytic reduction of NOx with NH3. J. Taiwan Inst. Chem. Eng. 2022, 134, 104355.
- 29.
Wang X. ; Xu Y. ; Qin M. ; et al . Insight into the effects of Cu2+ ions and CuO species in Cu-SSZ-13 catalysts for selective catalytic reduction of NO by NH3. J. Colloid Interface Sci. 2022, 622, 1‒ 10.
- 30.
Liu Q. ; Bian C. ; Ming S. ; et al . The opportunities and challenges of iron-zeolite as NH 3-SCR catalyst in purification of vehicle exhaust . Appl. Catal. A 2020, 607, 117865.
- 31.
Liu Z.G. ; Ottinger N.A. ; Cremeens C . M. Vanadium and tungsten release from V-based selective catalytic reduction diesel aftertreatment. Atmos. Environ. 2015, 104, 154‒ 161.
- 32.
Wang, D.-y.; Cao, J.-h.; Tan, P.-q.; et al . Full course evolution characteristics of DPF active regeneration under different inlet HC concentrations. Fuel 2022, 310, 122452.
- 33.
Bagi S. ; Kamp C.J. ; Sharma V. ; et al . Multiscale characterization of exhaust and crankcase soot extracted from heavy-duty diesel engine and implications for DPF ash. Fuel 2020, 282, 118878.
- 34.
Birkhold F. ; Meingast U. ; Wassermann P. ; et al . Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNOx-systems. Appl. Catal. B 2007, 70( 1‒ 4), 119‒ 127.
- 35.
Dhillon P.S. ; Harold M.P. ; Wang D. ; et al . Enhanced transport in washcoated monoliths: Application to selective lean NOx reduction and ammonia oxidation. Chem. Eng. J. 2019, 377, 119734.
- 36.
Dhillon P.S. ; Harold M.P. ; Wang D. ; et al . Modeling and analysis of transport and reaction in washcoated monoliths: Cu-SSZ-13 SCR and dual-layer Cu-SSZ-13 + Pt/Al2O3 ASC. React. Chem. Eng. 2019, 4( 6), 1103‒ 1115.
- 37.
Gao F. ; Szanyi J . On the hydrothermal stability of Cu/SSZ-13 SCR catalysts. Appl. Catal. A 2018, 560, 185‒ 194.
- 38.
Azzoni M.E. ; Franchi F.S. ; Usberti N. ; et al . Dual-layer AdSCR monolith catalysts: A new solution for NOx emissions control in cold start applications. Appl. Catal. B 2022, 315, 121544.
- 39.
Gao F. ; Peden C . Recent Progress in Atomic-Level Understanding of Cu/SSZ-13 Selective Catalytic Reduction Catalysts. Catalysts 2018, 8( 4), 140.
- 40.
Fu D. ; Park Y. ; Davis M . E. Confinement effects facilitate low-concentration carbon dioxide capture with zeolites. Proc. Natl. Acad. Sci. U. S. A. 2022, 119( 39), e2211544119.