- 1.
- 2.
- 3.
- 4.
BraffW.A.; MuellerJ.M.; TrancikJ.E. Value of storage technologies for wind and solar energy. Nature Climate Change, 2016, 6(10): 964-969.
- 5.
- 6.
- 7.
- 8.
- 9.
KamranM.; FazalM.R. Renewable energy conversion systems. Pittsburgh: Academic Press, 2021.
- 10.
- 11.
- 12.
SaarinenL.; NorrlundP.; LundinU. Field measurements and system identification of three frequency controlling hydropower plants. IEEE Transactions on Energy Conversion, 2015, 30(3): 1061-1068.
- 13.
Chaudhury, B. Hydropower. London: Imperial College London, 2022.
- 14.
BartleA. Hydropower potential and development activities. Energy Policy, 2002, 30(14): 1231-1239.
- 15.
MussaM.; TekaH.; AyichoH. Environmental impacts of hydropower and alternative mitigation measures. Current Investigations in Agriculture and Current Research, 2018, 2(2): 184-186.
- 16.
- 17.
- 18.
GWEC. Global wind report 2021. Brussels, Belgium: Global Wind Energy Council, 2021.
- 19.
- 20.
KomusanacI.; BrindleyG.; FraileD.; et al. Wind energy in Europe: 2020 statistics and the outlook for 2021-2025. Brussels, Belgium: WindEurope, 2021.
- 21.
Center for Sustainable Systems, University of Michigan. Wind Energy Factsheet: CSS07-09. Ann Arbor: University of Michigan, 2021.
- 22.
- 23.
RodrÍguezP.; TimbusA.; TeodorescuR.; et al. Reactive power control for improving wind turbine system behavior under grid faults. IEEE Transactions on Power Electronics, 2009, 24(7): 1798-1801.
- 24.
MolinaM.G.; MercadoP.E. Modelling and control design of pitch-controlled variable speed wind turbines. Al-Bahadly, I. Wind Turbines. Rijeka: IntechOpen, 2011: 373-402.
- 25.
- 26.
TylerS.; PhilippB.; PatrickD. 2019 cost of wind energy review: NREL/TP-5000-78471. Golden, CO: National Renewable Energy Laboratory, 2020.
- 27.
IEA. Offshore wind outlook 2019. Paris: IEA, 2019.
- 28.
WiserR.; RandJ.; SeelJ.; et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nature Energy, 2021, 6(5): 555-565.
- 29.
PossnerA.; CaldeiraK. Geophysical potential for wind energy over the open oceans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(43): 11338-11343.
- 30.
- 31.
- 32.
- 33.
Scott, ChapterK. 1: Introduction to electrolysis, electrolysers and hydrogen production. Scott, K. Electrochemical methods for hydrogen production. Cambridge, UK: Royal Society of Chemistry, 2020: 1-27.
- 34.
ChapmanA.; ItaokaK.; HiroseK.; et al. A review of four case studies assessing the potential for hydrogen penetration of the future energy system. International Journal of Hydrogen Energy, 2019, 44(13): 6371-6382.
- 35.
SukhatmeS.P.; NayakJ.K. Solar energy. 4th ed. New York: Mc Graw Hill Education, 2017.
- 36.
- 37.
SansomR. Challenges of decarbonising space and water heating for a low carbon future. London: Imperial College London, 2022.
- 38.
GreeningB.; AzapagicA. Domestic solar thermal water heating: a sustainable option for the UK?. Renewable Energy, 2014, 63: 23-36.
- 39.
IRENA. Future of solar photovoltaic: deployment, investment, technology, grid integration and socio-economic aspects. Abu Dhabi: International Renewable Energy Agency, 2019.
- 40.
- 41.
IEA. Renewables 2021. Paris: IEA, 2021.
- 42.
- 43.
BrunK.; AllisonT.; DennisR. Thermal, mechanical, and hybrid chemical energy storage systems. London, United Kingdom: Academic Press, 2021.
- 44.
- 45.
RennerM.; ParajuliB.; FerroukhiR.; et al. Measuring the socio-economic footprint of the energy transition: the role of supply chains: Analysis built on renewable energy benefits: measuring the economics (IRENA, 2016). Available online:
https://doi.org/10.13140/RG.2.2.12085.70887 (Accessed on 29 September 2022).
- 46.
- 47.
Bullock, Lead/acid batteriesK.R.. Journal of Power Sources, 1994, 51(1/2): 1-17.
- 48.
WeinertJ.X.; BurkeA.F.; WeiX.Z. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement. Journal of Power Sources, 2007, 172(2): 938-945.
- 49.
XiaW.; MahmoodA.; ZouR.Q.; et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy & Environmental Science, 2015, 8(7): 1837-1866.
- 50.
JungJ.; ZhangL.; ZhangJ.J. Lead-acid battery technologies. Boca Raton: CRC Press, 2015.
- 51.
HugginsR. Energy storage: fundamentals, materials and applications. 2nd ed. Cham: Springer International Publishing, 2016.
- 52.
LiuY.F.; PanH.G.; GaoM.X.; et al. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. Journal of Materials Chemistry, 2011, 21(13): 4743-4755.
- 53.
CanoZ.P.; BanhamD.; YeS.Y.; et al. Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 2018, 3(4): 279-289.
- 54.
FetcenkoM.A.; OvshinskyS.R.; ReichmanB.; et al. Recent advances in NiMH battery technology. Journal of Power Sources, 2007, 165(2): 544-551.
- 55.
OuyangL.Z.; HuangJ.L.; WangH.; et al. Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: a review. Materials Chemistry and Physics, 2017, 200: 164-178.
- 56.
ZhanF.; JiangL.J.; WuB.R.; et al. Characteristics of Ni/MH power batteries and its application to electric vehicles. Journal of Alloys and Compounds, 1999, 293/295: 804-808.
- 57.
ArmandM.; TarasconJ.M. Building better batteries. Nature, 2008, 451(7179): 652-657.
- 58.
LarcherD.; TarasconJ.M. Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry, 2015, 7(1): 19-29.
- 59.
ChenZ.H.; LeeD.J.; SunY.K.; et al. Advanced cathode materials for lithium-ion batteries. MRS Bulletin, 2011, 36(7): 498-505.
- 60.
WhittinghamM.S. Lithium batteries and cathode materials. Chemical Reviews, 2004, 104(10): 4271-4301.
- 61.
AndrewsA.; SinghA.; SenguptaS. Structural battery. TechScape: The Science, Technology and Education Journal of IIT Jodhpur. 2022.
- 62.
PejmanR.; KumburE.C.; NajafiA.R. Multi-physics design optimization of structural battery. Multifunctional Materials, 2021, 4(2): 024001.
- 63.
SchmuchR.; WagnerR.; HörpelG.; alet, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature Energy, 2018, 3(4): 267-278.
- 64.
SawL.H.; YeY.H.; TayA.A.O. Integration issues of lithium-ion battery into electric vehicles battery pack. Journal of Cleaner Production, 2015, 113: 1032-1045.
- 65.
KwadeA.; HaselriederW.; LeithoffR.; et al. Current status and challenges for automotive battery production technologies. Nature Energy, 2018, 3(4): 290-300.
- 66.
SaktiA.; MichalekJ.J.; FuchsE.R.H.; et al. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. Journal of Power Sources, 2015, 273: 966-980.
- 67.
MaiserE. Battery packaging-technology review. AIP Conference Proceedings, 2014, 1597(1): 204.
- 68.
XuW.; WangJ.L.; DingF.; et al. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 513-537.
- 69.
LiW.; DahnJ.R.; WainwrightD.S. Rechargeable lithium batteries with aqueous electrolytes. Science, 1994, 264(5162): 1115-1118.
- 70.
TarasconJ.M.; ArmandM. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359-367.
- 71.
LiJ.C.; MaC.; ChiM.F.; et al. Solid electrolyte: the key for high-voltage lithium batteries. Advanced Energy Materials, 2015, 5(4): 1401408.
- 72.
GoodenoughJ.B.; HongH.Y.P.; Kafalas J.A.; et al. Fast Na+-ion transport in skeleton structures. Materials Research Bulletin, 1976, 11(2): 203-220.
- 73.
JackmanS.D.; CutlerR.A. Stability of NaSICON-type Li1.3Al0.3Ti1.7P3O12 in aqueous solutions. Journal of Power Sources, 2013, 230: 251-260.
- 74.
LiY.T.; HanJ.T.; WangC.A.; et al. Optimizing Li+ conductivity in a garnet framework. Journal of Materials Chemistry, 2012, 22(30): 15357-15361.
- 75.
ZhuJ.X.; LiX.L.; WuC.W.; et al. A multilayer ceramic electrolyte for all-solid-state Li batteries. Angewandte Chemie International Edition, 2021, 60(7): 3781-3790.
- 76.
InagumaY.; ChenL.Q.; Itoh, M; et al. High ionic conductivity in lithium lanthanum titanate. Solid State Communications, 1993, 86(10): 689-693.
- 77.
YuR.; DuQ.X.; ZouB.K.; et al. Synthesis and characterization of perovskite-type (Li,Sr)(Zr,Nb)O3 quaternary solid electrolyte for all-solid-state batteries. Journal of Power Sources, 2016, 306: 623-629.
- 78.
ShiZ.Q.; GuoW.Y.; ZhouL.Z.; et al. A 3D fiber skeleton reinforced PEO-based polymer electrolyte for high rate and ultra-long cycle all-solid-state batteries. Journal of Materials Chemistry A, 2021, 9(37): 21057-21070.
- 79.
ZhangX.; LiuT.; ZhangS.F.; et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. Journal of the American Chemical Society, 2017, 139(39): 13779-13785.
- 80.
FangR.Y.; XuB.Y.; GrundishN.S.; et al. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angewandte Chemie International Edition, 2021, 60(32): 17701-17706.
- 81.
YangK.; ChenL.K.; MaJ.B.; et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8 Co0.1 Mn0.1 O2/lithium metal batteries. Angewandte Chemie International Edition, 2021, 60(46): 24668-24675.
- 82.
IEA. Technology roadmap - hydrogen and fuel cells. Paris: IEA, 2015.
- 83.
ZhaoG.L.; NielsenE.R.; TroncosoE.; et al. Life cycle cost analysis: a case study of hydrogen energy application on the Orkney Islands. International Journal of Hydrogen Energy, 2019, 44(19): 9517-9528.
- 84.
WeiM.; SmithS.J.; SohnW.D. Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US. Applied Energy, 2017, 191: 346-357.
- 85.
MiottiM.; HoferJ.; BauerC. Integrated environmental and economic assessment of current and future fuel cell vehicles. The International Journal of Life Cycle Assessment, 2017, 22(1): 94-110.
- 86.
AlazemiJ.; AndrewsJ. Automotive hydrogen fuelling stations: an international review. Renewable and Sustainable Energy Reviews, 2015, 48: 483-499.
- 87.
AubinC.A.; GorissenB.; MilanaE.; et al. Towards enduring autonomous robots via embodied energy. Nature, 2022, 602(7897): 393-402.
- 88.
AspL.E.; JohanssonM.; LindberghG.; et al. Structural battery composites: a review. Functional Composites and Structures, 2019, 1(4): 042001.
- 89.
PereiraT.; GuoZ.H.; NiehS.; et al. Embedding thin-film lithium energy cells in structural composites. Composites Science and Technology, 2008, 68(7/8): 1935-1941.
- 90.
RobertsS.C.; AgliettiG.S. Structural performance of a multifunctional spacecraft structure based on plastic lithium-ion batteries. Acta Astronautica, 2010, 67(3/4): 424–439.
- 91.
WangY.; PengC.Y.; ZhangW.H.; et al. Mechanical and electrical behavior of a novel satellite multifunctional structural battery. Journal of Scientific and Industrial Research, 2014, 73(3): 163-167.
- 92.
LadpliP.; NardariR.; KopsaftopoulosF.; et al. Multifunctional energy storage composite structures with embedded lithium-ion batteries. Journal of Power Sources, 2019, 414: 517-529.
- 93.
ZhangY.C.; MaJ.; SinghA.K.; et al. Multifunctional structural lithium-ion battery for electric vehicles. Journal of Intelligent Material Systems and Structures, 2017, 28(12): 1603-1613.
- 94.
AspL.E.; BoutonK.; CarlstedtD.; et al. A structural battery and its multifunctional performance. Advanced Energy and Sustainability Research, 2021, 2(3): 2000093.
- 95.
AspL.E.; GreenhalghE.S. Structural power composites. Composites Science and Technology, 2014, 101: 41-61.
- 96.
LendleinA.; TraskR.S. Multifunctional materials: concepts, function-structure relationships, knowledge-based design, translational materials research. Multifunctional Materials, 2018, 1(1): 010201.
- 97.
LiuP.; ShermanE.; JacobsenA. Design and fabrication of multifunctional structural batteries. Journal of Power Sources, 2009, 189(1): 646-650.
- 98.
WongE.L.; BaechleD.M.; XuK.; et al. Design and processing of structural composite batteries. Proceedings of Society for the Advancement of Materiel and Process Engineering (SAMPE) 2007 Symposium and Exhibition. Baltimore, Maryland: SAMPE, 2007: 1-16.
- 99.
EkstedtS.; WysockiM.; AspL.E. Structural batteries made from fibre reinforced composites. Plastics, Rubber and Composites, 2010, 39(3/5): 148-150.
- 100.
MoyerK.; BoucherbilN.A.; ZohairM.; et al. Polymer reinforced carbon fiber interfaces for high energy density structural lithium-ion batteries. Sustainable Energy & Fuels, 2020, 4(6): 2661-2668.
- 101.
ShirshovaN.; QianH.; HoulléM.; et al. Multifunctional structural energy storage composite supercapacitors. Faraday Discussions, 2014, 172: 81-103.
- 102.
JohannissonW.; ZenkertD.; LindberghG.; et al. Model of a structural battery and its potential for system level mass savings. Multifunctional Materials, 2019, 2(3): 035002.
- 103.
CarlstedtD.; AspL.E. Performance analysis framework for structural battery composites in electric vehicles. Composites Part B: Engineering, 2020, 186: 107822.