2504000072
  • Open Access
  • Review
A Review of Renewable Energy and Storage Technologies for Automotive Applications
  • Xiangnan Yu 1,   
  • Yuhai Jin 1,   
  • Heli Liu 1,   
  • Arnav Rai 1,   
  • Michelle Kostin 1,   
  • Dimitrios Chantzis 1,   
  • Denis J. Politis 2,   
  • Liliang Wang 1, *

Received: 29 Sep 2022 | Accepted: 09 Nov 2022 | Published: 25 Dec 2022

Abstract

Transportation, as the backbone of the modern economy, continues to be a significant contributing factor to environmental pollution and poor air quality. Whilst numerous efforts have been made to address energy consumption and emissions through the manufacturing and end use stages, the use of fossil fuels continues to grow at an exponential rate. A key target area to assist with fuel consumption reduction targets is the implementation of renewable energy combined with energy storage technologies. The aim of this review is to investigate various means of production for renewable energy and energy storage technologies with the specific focus on the automotive industry.

References 

  • 1.
    Ritchie, H. Cars, planes, trains: where do CO2 emissions from transport come from? Available online: https://ourworldindata.org/co2-emissions-from-transport (Accessed on 12 September 2022).
  • 2.
    REN21. Renewables 2020 global status report. Available online: https://ren21.net/gsr-2020/ (Accessed on 29 September 2022).
  • 3.
    REN21. Renewables 2021 global status report. Available online: https://www.ren21.net/gsr-2021/ (Accessed on 29 September 2022).
  • 4.
    BraffW.A.; MuellerJ.M.; TrancikJ.E. Value of storage technologies for wind and solar energy. Nature Climate Change, 2016, 6(10): 964-969.
  • 5.
    RoperW. High demand for lithium-ion batteries. Available online: https://www.statista.com/chart/23808/lithium-ion-battery-demand/ (Accessed on 16 September 2022).
  • 6.
    IEA. Hydroelectricity. Available online: https://www.iea.org/reports/hydroelectricity (Accessed on 23 September 2022).
  • 7.
    Ember. Data explorer. Available online: https://ember-climate.org/data/data-explorer/ (Accessed on 15 September 2022).
  • 8.
    Ember. Global electricity review 2022. Available online: https://ember-climate.org/insights/research/global-electricity-review-2022/ (Accessed on 15 September 2022).
  • 9.
    KamranM.; FazalM.R. Renewable energy conversion systems. Pittsburgh: Academic Press, 2021.
  • 10.
    OMEXOM. Hydro. Available online: https://www.omexom.com/expertises/power/hydro/ (Accessed on 15 September 2022).
  • 11.
    International Hydropower Association. Facts about hydropower. Available online: https://www.hydropower.org/iha/discover-facts-about-hydropower (Accessed on 15 September 2022).
  • 12.
    SaarinenL.; NorrlundP.; LundinU. Field measurements and system identification of three frequency controlling hydropower plants. IEEE Transactions on Energy Conversion, 2015, 30(3): 1061-1068.
  • 13.
    Chaudhury, B. Hydropower. London: Imperial College London, 2022.
  • 14.
    BartleA. Hydropower potential and development activities. Energy Policy, 2002, 30(14): 1231-1239.
  • 15.
    MussaM.; TekaH.; AyichoH. Environmental impacts of hydropower and alternative mitigation measures. Current Investigations in Agriculture and Current Research, 2018, 2(2): 184-186.
  • 16.
    OSTI.GOV. Hydropower value study: current status and future opportunities. Available online: https://www.osti.gov/servlets/purl/1764624 (Accessed on 15 September 2022).
  • 17.
    IRENA. Majority of new renewables undercut cheapest fossil fuel on cost. Available online: https://www.irena.org/news/pressreleases/2021/Jun/Majority-of-New-Renewables-Undercut-Cheapest-Fossil-Fuel-on-Cost (Accessed on 15 September 2022).
  • 18.
    GWEC. Global wind report 2021. Brussels, Belgium: Global Wind Energy Council, 2021.
  • 19.
    RitchieH.; RoserM.; RosadoP. Energy. Available online: https://ourworldindata.org/energy (Accessed on 20 February 2022).
  • 20.
    KomusanacI.; BrindleyG.; FraileD.; et al. Wind energy in Europe: 2020 statistics and the outlook for 2021-2025. Brussels, Belgium: WindEurope, 2021.
  • 21.
    Center for Sustainable Systems, University of Michigan. Wind Energy Factsheet: CSS07-09. Ann Arbor: University of Michigan, 2021.
  • 22.
    EducationEnergy. Betz limit. Available online: https://energyeducation.ca/encyclopedia/Betz_limit (Accessed on 13 September 2022).
  • 23.
    RodrÍguezP.; TimbusA.; TeodorescuR.; et al. Reactive power control for improving wind turbine system behavior under grid faults. IEEE Transactions on Power Electronics, 2009, 24(7): 1798-1801.
  • 24.
    MolinaM.G.; MercadoP.E. Modelling and control design of pitch-controlled variable speed wind turbines. Al-Bahadly, I. Wind Turbines. Rijeka: IntechOpen, 2011: 373-402.
  • 25.
    BuljanA. 162 offshore wind farms up and running worldwide, 26 more under construction. Available online: https://www.offshorewind.biz/2021/02/09/162-offshore-wind-farms-up-and-running-worldwide-26-more-under-construction/ (Accessed on 22 February 2022).
  • 26.
    TylerS.; PhilippB.; PatrickD. 2019 cost of wind energy review: NREL/TP-5000-78471. Golden, CO: National Renewable Energy Laboratory, 2020.
  • 27.
    IEA. Offshore wind outlook 2019. Paris: IEA, 2019.
  • 28.
    WiserR.; RandJ.; SeelJ.; et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nature Energy, 2021, 6(5): 555-565.
  • 29.
    PossnerA.; CaldeiraK. Geophysical potential for wind energy over the open oceans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(43): 11338-11343.
  • 30.
    GWEC. Floating offshore wind-A global opportunity. Available online: https://gwec.net/floating-offshore-wind-a-global-opportunity/ (Accessed on 29 September 2022).
  • 31.
    Harrabin, R. Boris Johnson: Wind farms could power every home by 2030. British Broadcasting Corporation. 2020. Available online: https://www.bbc.co.uk/news/uk-politics-54421489 (Accessed on 12 November 2021).
  • 32.
    Orsted. Hornsea projects. Available online: https://hornseaprojects.co.uk/ (Accessed on 23 November 2021).
  • 33.
    Scott, ChapterK. 1: Introduction to electrolysis, electrolysers and hydrogen production. Scott, K. Electrochemical methods for hydrogen production. Cambridge, UK: Royal Society of Chemistry, 2020: 1-27.
  • 34.
    ChapmanA.; ItaokaK.; HiroseK.; et al. A review of four case studies assessing the potential for hydrogen penetration of the future energy system. International Journal of Hydrogen Energy, 2019, 44(13): 6371-6382.
  • 35.
    SukhatmeS.P.; NayakJ.K. Solar energy. 4th ed. New York: Mc Graw Hill Education, 2017.
  • 36.
    EIA. Solar explained: photovoltaics and electricity. Available online: https://www.eia.gov/energyexplained/solar/photovoltaics-and-electricity.php (Accessed on 20 September 2022).
  • 37.
    SansomR. Challenges of decarbonising space and water heating for a low carbon future. London: Imperial College London, 2022.
  • 38.
    GreeningB.; AzapagicA. Domestic solar thermal water heating: a sustainable option for the UK?. Renewable Energy, 2014, 63: 23-36.
  • 39.
    IRENA. Future of solar photovoltaic: deployment, investment, technology, grid integration and socio-economic aspects. Abu Dhabi: International Renewable Energy Agency, 2019.
  • 40.
    IRENA. Renewable power generation costs in 2020. Available online: https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 (Accessed on 18 September 2022).
  • 41.
    IEA. Renewables 2021. Paris: IEA, 2021.
  • 42.
    REN21. Renewables 2022 Global Status report. Available online: https://www.unep.org/resources/report/renewables-2022-global-status-report (Accessed on 29 September 2022).
  • 43.
    BrunK.; AllisonT.; DennisR. Thermal, mechanical, and hybrid chemical energy storage systems. London, United Kingdom: Academic Press, 2021.
  • 44.
    IEA. Electric cars fend off supply challenges to more than double global sales. Available online: https://www.iea.org/commentaries/electric-cars-fend-off-supply-challenges-to-more-than-double-global-sales (Accessed on 21 September 2022).
  • 45.
    RennerM.; ParajuliB.; FerroukhiR.; et al. Measuring the socio-economic footprint of the energy transition: the role of supply chains: Analysis built on renewable energy benefits: measuring the economics (IRENA, 2016). Available online: https://doi.org/10.13140/RG.2.2.12085.70887 (Accessed on 29 September 2022).
  • 46.
    IrleR.; EV-Volumes. Global EV sales for 2022 H1. Available online: https://www.ev-volumes.com/ (Accessed on 22 September 2022).
  • 47.
    Bullock, Lead/acid batteriesK.R.. Journal of Power Sources, 1994, 51(1/2): 1-17.
  • 48.
    WeinertJ.X.; BurkeA.F.; WeiX.Z. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement. Journal of Power Sources, 2007, 172(2): 938-945.
  • 49.
    XiaW.; MahmoodA.; ZouR.Q.; et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy & Environmental Science, 2015, 8(7): 1837-1866.
  • 50.
    JungJ.; ZhangL.; ZhangJ.J. Lead-acid battery technologies. Boca Raton: CRC Press, 2015.
  • 51.
    HugginsR. Energy storage: fundamentals, materials and applications. 2nd ed. Cham: Springer International Publishing, 2016.
  • 52.
    LiuY.F.; PanH.G.; GaoM.X.; et al. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. Journal of Materials Chemistry, 2011, 21(13): 4743-4755.
  • 53.
    CanoZ.P.; BanhamD.; YeS.Y.; et al. Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 2018, 3(4): 279-289.
  • 54.
    FetcenkoM.A.; OvshinskyS.R.; ReichmanB.; et al. Recent advances in NiMH battery technology. Journal of Power Sources, 2007, 165(2): 544-551.
  • 55.
    OuyangL.Z.; HuangJ.L.; WangH.; et al. Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: a review. Materials Chemistry and Physics, 2017, 200: 164-178.
  • 56.
    ZhanF.; JiangL.J.; WuB.R.; et al. Characteristics of Ni/MH power batteries and its application to electric vehicles. Journal of Alloys and Compounds, 1999, 293/295: 804-808.
  • 57.
    ArmandM.; TarasconJ.M. Building better batteries. Nature, 2008, 451(7179): 652-657.
  • 58.
    LarcherD.; TarasconJ.M. Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry, 2015, 7(1): 19-29.
  • 59.
    ChenZ.H.; LeeD.J.; SunY.K.; et al. Advanced cathode materials for lithium-ion batteries. MRS Bulletin, 2011, 36(7): 498-505.
  • 60.
    WhittinghamM.S. Lithium batteries and cathode materials. Chemical Reviews, 2004, 104(10): 4271-4301.
  • 61.
    AndrewsA.; SinghA.; SenguptaS. Structural battery. TechScape: The Science, Technology and Education Journal of IIT Jodhpur. 2022.
  • 62.
    PejmanR.; KumburE.C.; NajafiA.R. Multi-physics design optimization of structural battery. Multifunctional Materials, 2021, 4(2): 024001.
  • 63.
    SchmuchR.; WagnerR.; HörpelG.; alet, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature Energy, 2018, 3(4): 267-278.
  • 64.
    SawL.H.; YeY.H.; TayA.A.O. Integration issues of lithium-ion battery into electric vehicles battery pack. Journal of Cleaner Production, 2015, 113: 1032-1045.
  • 65.
    KwadeA.; HaselriederW.; LeithoffR.; et al. Current status and challenges for automotive battery production technologies. Nature Energy, 2018, 3(4): 290-300.
  • 66.
    SaktiA.; MichalekJ.J.; FuchsE.R.H.; et al. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. Journal of Power Sources, 2015, 273: 966-980.
  • 67.
    MaiserE. Battery packaging-technology review. AIP Conference Proceedings, 2014, 1597(1): 204.
  • 68.
    XuW.; WangJ.L.; DingF.; et al. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 513-537.
  • 69.
    LiW.; DahnJ.R.; WainwrightD.S. Rechargeable lithium batteries with aqueous electrolytes. Science, 1994, 264(5162): 1115-1118.
  • 70.
    TarasconJ.M.; ArmandM. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359-367.
  • 71.
    LiJ.C.; MaC.; ChiM.F.; et al. Solid electrolyte: the key for high-voltage lithium batteries. Advanced Energy Materials, 2015, 5(4): 1401408.
  • 72.
    GoodenoughJ.B.; HongH.Y.P.; Kafalas J.A.; et al. Fast Na+-ion transport in skeleton structures. Materials Research Bulletin, 1976, 11(2): 203-220.
  • 73.
    JackmanS.D.; CutlerR.A. Stability of NaSICON-type Li1.3Al0.3Ti1.7P3O12 in aqueous solutions. Journal of Power Sources, 2013, 230: 251-260.
  • 74.
    LiY.T.; HanJ.T.; WangC.A.; et al. Optimizing Li+ conductivity in a garnet framework. Journal of Materials Chemistry, 2012, 22(30): 15357-15361.
  • 75.
    ZhuJ.X.; LiX.L.; WuC.W.; et al. A multilayer ceramic electrolyte for all-solid-state Li batteries. Angewandte Chemie International Edition, 2021, 60(7): 3781-3790.
  • 76.
    InagumaY.; ChenL.Q.; Itoh, M; et al. High ionic conductivity in lithium lanthanum titanate. Solid State Communications, 1993, 86(10): 689-693.
  • 77.
    YuR.; DuQ.X.; ZouB.K.; et al. Synthesis and characterization of perovskite-type (Li,Sr)(Zr,Nb)O3 quaternary solid electrolyte for all-solid-state batteries. Journal of Power Sources, 2016, 306: 623-629.
  • 78.
    ShiZ.Q.; GuoW.Y.; ZhouL.Z.; et al. A 3D fiber skeleton reinforced PEO-based polymer electrolyte for high rate and ultra-long cycle all-solid-state batteries. Journal of Materials Chemistry A, 2021, 9(37): 21057-21070.
  • 79.
    ZhangX.; LiuT.; ZhangS.F.; et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. Journal of the American Chemical Society, 2017, 139(39): 13779-13785.
  • 80.
    FangR.Y.; XuB.Y.; GrundishN.S.; et al. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angewandte Chemie International Edition, 2021, 60(32): 17701-17706.
  • 81.
    YangK.; ChenL.K.; MaJ.B.; et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8 Co0.1 Mn0.1 O2/lithium metal batteries. Angewandte Chemie International Edition, 2021, 60(46): 24668-24675.
  • 82.
    IEA. Technology roadmap - hydrogen and fuel cells. Paris: IEA, 2015.
  • 83.
    ZhaoG.L.; NielsenE.R.; TroncosoE.; et al. Life cycle cost analysis: a case study of hydrogen energy application on the Orkney Islands. International Journal of Hydrogen Energy, 2019, 44(19): 9517-9528.
  • 84.
    WeiM.; SmithS.J.; SohnW.D. Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US. Applied Energy, 2017, 191: 346-357.
  • 85.
    MiottiM.; HoferJ.; BauerC. Integrated environmental and economic assessment of current and future fuel cell vehicles. The International Journal of Life Cycle Assessment, 2017, 22(1): 94-110.
  • 86.
    AlazemiJ.; AndrewsJ. Automotive hydrogen fuelling stations: an international review. Renewable and Sustainable Energy Reviews, 2015, 48: 483-499.
  • 87.
    AubinC.A.; GorissenB.; MilanaE.; et al. Towards enduring autonomous robots via embodied energy. Nature, 2022, 602(7897): 393-402.
  • 88.
    AspL.E.; JohanssonM.; LindberghG.; et al. Structural battery composites: a review. Functional Composites and Structures, 2019, 1(4): 042001.
  • 89.
    PereiraT.; GuoZ.H.; NiehS.; et al. Embedding thin-film lithium energy cells in structural composites. Composites Science and Technology, 2008, 68(7/8): 1935-1941.
  • 90.
    RobertsS.C.; AgliettiG.S. Structural performance of a multifunctional spacecraft structure based on plastic lithium-ion batteries. Acta Astronautica, 2010, 67(3/4): 424–439.
  • 91.
    WangY.; PengC.Y.; ZhangW.H.; et al. Mechanical and electrical behavior of a novel satellite multifunctional structural battery. Journal of Scientific and Industrial Research, 2014, 73(3): 163-167.
  • 92.
    LadpliP.; NardariR.; KopsaftopoulosF.; et al. Multifunctional energy storage composite structures with embedded lithium-ion batteries. Journal of Power Sources, 2019, 414: 517-529.
  • 93.
    ZhangY.C.; MaJ.; SinghA.K.; et al. Multifunctional structural lithium-ion battery for electric vehicles. Journal of Intelligent Material Systems and Structures, 2017, 28(12): 1603-1613.
  • 94.
    AspL.E.; BoutonK.; CarlstedtD.; et al. A structural battery and its multifunctional performance. Advanced Energy and Sustainability Research, 2021, 2(3): 2000093.
  • 95.
    AspL.E.; GreenhalghE.S. Structural power composites. Composites Science and Technology, 2014, 101: 41-61.
  • 96.
    LendleinA.; TraskR.S. Multifunctional materials: concepts, function-structure relationships, knowledge-based design, translational materials research. Multifunctional Materials, 2018, 1(1): 010201.
  • 97.
    LiuP.; ShermanE.; JacobsenA. Design and fabrication of multifunctional structural batteries. Journal of Power Sources, 2009, 189(1): 646-650.
  • 98.
    WongE.L.; BaechleD.M.; XuK.; et al. Design and processing of structural composite batteries. Proceedings of Society for the Advancement of Materiel and Process Engineering (SAMPE) 2007 Symposium and Exhibition. Baltimore, Maryland: SAMPE, 2007: 1-16.
  • 99.
    EkstedtS.; WysockiM.; AspL.E. Structural batteries made from fibre reinforced composites. Plastics, Rubber and Composites, 2010, 39(3/5): 148-150.
  • 100.
    MoyerK.; BoucherbilN.A.; ZohairM.; et al. Polymer reinforced carbon fiber interfaces for high energy density structural lithium-ion batteries. Sustainable Energy & Fuels, 2020, 4(6): 2661-2668.
  • 101.
    ShirshovaN.; QianH.; HoulléM.; et al. Multifunctional structural energy storage composite supercapacitors. Faraday Discussions, 2014, 172: 81-103.
  • 102.
    JohannissonW.; ZenkertD.; LindberghG.; et al. Model of a structural battery and its potential for system level mass savings. Multifunctional Materials, 2019, 2(3): 035002.
  • 103.
    CarlstedtD.; AspL.E. Performance analysis framework for structural battery composites in electric vehicles. Composites Part B: Engineering, 2020, 186: 107822.
Share this article:
How to Cite
Yu, X.; Jin, Y.; Liu, H.; Rai, A.; Kostin, M.; Chantzis, D.; J. Politis, D.; Wang, L. A Review of Renewable Energy and Storage Technologies for Automotive Applications. International Journal of Automotive Manufacturing and Materials 2022, 1 (1), 10. https://doi.org/10.53941/ijamm0101010.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2022 by the authors.