2504000078
  • Open Access
  • Review
A Comprehensive Review of the Free Piston Engine Generator and Its Control
  • Patrick Brosnan 1,   
  • Guohong Tian 1, *,   
  • Umberto Montanaro 1,   
  • Sam Cockerill 2

Received: 02 Feb 2023 | Accepted: 10 Mar 2023 | Published: 23 Mar 2023

Abstract

The Free Piston Engine (FPE) is a unique machine with a higher thermal efficiency than its counterpart, the Conventional Reciprocating Piston Engine (CPE). The unique piston motion of the FPE is not constrained kinematically like the CPE with its connecting crankshaft and rotational inertial masses. Moreover, when directly coupled to the Linear Electric Machine (LEM) to harness electric energy production, the Free Piston Engine Generator’s (FPEG) characteristic motion, now being dynamically constrained, permits an extensive range of piston trajectory profiles to be exploited during operation. In addition, exploring varied piston trajectories during the development stages may be vital in reducing in-cylinder combustion emissions through strategies such as Low-Temperature Combustion (LTC) and Homogeneous Charge Compression Ignition (HCCI). This review paper will focus on the key motivations and drivers for continued FPEG development. It will also highlight and review its distinct advantages and challenges in being a viable solution as a future zero-carbon engine technology. Finally, FPE fundamentals, alongside its rich history, will be introduced, clearly presenting how academia and industry have described and controlled its intrinsic non-linear dynamics.

References 

  • 1.
    London, A.L. Free-piston and turbine compound engine-status of the development. SAE Transactions 1954, 62, 426–436.
  • 2.
    Coutant, J.G. Four-stage free-piston compressor. The Military Engineer, 1960, 52(348), 302–304.
  • 3.
    Scott, P.L. Construction of Junkers engine. SAE Transactions 1917, 12, 404–424.
  • 4.
    APC . The roadmap report-towards 2040: a guide to automotive propulsion technologies. Technical report, Automotive Council UK, Coventry, 2020. Available Online: http://www.apcuk.co.uk/roadmaps/ (Accessed on 17 March 2023)
  • 5.
    Kigezi, Stability T.N. , control, and state estimation of free-piston engine generators . Brighton: University of Sussex, Brighton, UK, 2019.
  • 6.
    Guo C.D. ; Zuo Z.X. ; Feng H.H. ; et al . Review of recent advances of free-piston internal combustion engine linear generator. Applied Energy, 2020, 269, 115084.
  • 7.
    Aichlmayr, H.T. Design considerations, modeling, and analysis of micro-homogeneous charge compression ignition combustion free-piston engines. Thesis Ph.D. , University of Minnesota, Minneapolis, MN, USA , 2002.
  • 8.
    Achten, P.A.J. A review of free piston engine concepts. SAE Transactions 1994, 103, 1836–1847.
  • 9.
    Feng H.H. ; Guo Y.Y. ; Song Y. ; et al . Study of the injection control strategies of a compression ignition free piston engine linear generator in a one-stroke starting process. Energies, 2016, 9(6), 453.
  • 10.
    Huang, L. An opposed-piston free-piston linear generator development for HEV. SAE Technical Paper 2012, 2012-01-10 21. doi: https://doi.org/10.4271/2012-01-1021
  • 11.
    Leick M.T. ; Moses R.W. Experimental evaluation of the free piston engine-linear alternator (FPLA). Livermore: Sandia National Laboratories, 2015.
  • 12.
    Regner G. ; Herold R. ; Wahl M. ; et al . The Achates power opposed-piston two-stroke engine: performance and emissions results in a medium-duty application. SAE International Journal of Engines, 2011, 4(3), 2726–2735.
  • 13.
    Jia B.R. ; Mikalsen R. ; Smallbone A. ; et al . Piston motion control of a free-piston engine generator: a new approach using cascade control. Applied Energy, 2016, 179, 1166–1175.
  • 14.
    Pescara, R.P. Motor compressor apparatus: US 1657641A. 1928-01-31.
  • 15.
    Mikalsen R. ; Roskilly A.P. A review of free-piston engine history and applications. Applied Thermal Engineering, 2007, 27(14/15), 2339–2352.
  • 16.
    Ostenberg, P. Electric generator: US 2362151A.
  • 17.
    Simone, D.J. Modeling a linear generator for energy harvesting applications. thesis PhD , Naval Postgraduate School, Monterey, CA, USA , 2014.
  • 18.
    Walker, Stirling engines G. . Oxford University Press: New York, NY, USA, 1980.
  • 19.
    Berchowitz, D. A personal history in the development of the modern Stirling engine. Athens: Global Cooling Inc., Athens, OH, USA, 2018.
  • 20.
    Achten P.A.J. ; van den Oever J.P.J. ; Potma J. ; et al . Horsepower with brains: the design of the CHIRON free piston engine. SAE International: New York, NY, USA, 2000.
  • 21.
    Du Y.H. ; Tian G.H. ; Pekris M. A comprehensive review of micro-scale expanders for carbon dioxide related power and refrigeration cycles. Applied Thermal Engineering, 2022, 201, 117722.
  • 22.
    Heyl P. ; Quack H. Free piston expander-compressor for CO2: design, applications and results. In Proceedings of the 20th International Congress of Refrigeration: Refrigeration into the Third Millennium, Sydney, Australia, 19–24 September 1999, 2612–2619.
  • 23.
    Weiss, L.W. Study of a MEMS-based free piston expander for energy sustainability. Journal of Mechanical Design, 2010, 132(9), 091002.
  • 24.
    Li J. ; Zhang H.G. ; Tian Y.M. ; et al . Performance analysis of a single-piston free piston expander-linear generator with intake timing control strategy based on piston displacement. Applied Thermal Engineering, 2019, 152, 751–761.
  • 25.
    Goldsborough S.S. ; van Blarigan P. A numerical study of a free piston IC engine operating on homogeneous charge compression ignition combustion. SAE International: New York, NY, USA, 1999.
  • 26.
    Mikalsen R. ; Jones E. ; Roskilly A.P. Predictive piston motion control in a free-piston internal combustion engine. Applied Energy, 2010, 87(5), 1722–1728.
  • 27.
    Goto S. ; Moriya K. ; Kosaka H. ; et al . Development of free piston engine linear generator system part 1-Investigation of control system for generator. SAE International: New York, NY, USA, 2014.
  • 28.
    Feng H.H. ; Zhang Z.Y. ; Jia B.R. ; et al . Investigation of the optimum operating condition of a dual piston type free piston engine generator during engine cold start-up process. Applied Thermal Engineering, 2021, 182, 116124.
  • 29.
    Li Q.F. ; Xiao J. ; Huang Z. Simulation of a two-stroke free-piston engine for electrical power generation. Energy and Fuels, 2008, 22(5), 3443–3449.
  • 30.
    Chiang C.J. ; Yang J.L. ; Lan S.Y. ; et al . Dynamic modeling of a SI/HCCI free-piston engine generator with electric mechanical valves. Applied Energy, 2013, 102, 336–346.
  • 31.
    Jia B.R. ; Zuo Z.X. ; Tian G.H. ; et al . Development and validation of a free-piston engine generator numerical model. Energy Conversion and Management, 2015, 91, 333–341.
  • 32.
    Kigezi T.N. ; Dunne J.F. A model-based control design approach for linear free-piston engines. Journal of Dynamic Systems, Measurement, and Control, 2017, 139(11), 111010.
  • 33.
    Mao J.L. ; Zuo Z.X. ; Li W. ; et al . Multi-dimensional scavenging analysis of a free-piston linear alternator based on numerical simulation. Applied Energy, 2011, 88(4), 1140–1152.
  • 34.
    Mikalsen R. ; Roskilly A.P. A computational study of free-piston diesel engine combustion. Applied Energy, 2009, 86(7/8), 1136–1143.
  • 35.
    Moriya K. ; Goto S. ; Akita T. ; et al . Development of free piston engine linear generator system part 3-novel control method of linear generator for to improve efficiency and stability. SAE International: New York, NY, USA, 2016.
  • 36.
    Goto S. ; Moriya K. ; Kosaka H. ; et al . Development of free piston engine linear generator system part 2-Investigation of control system for generator. SAE International: New York, NY, USA, 2014.
  • 37.
    Mikalsen R. ; Roskilly A.P. The design and simulation of a two-stroke free-piston compression ignition engine for electrical power generation. Applied Thermal Engineering, 2008, 28(5/6), 589–600.
  • 38.
    Mikalsen R. ; Roskilly A.P. The control of a free-piston engine generator. Part 1: fundamental analyses. Applied Energy, 2010, 87(4), 1273–1280.
  • 39.
    Jia B.R. ; Zuo Z.X. ; Feng H.H. ; et al . Development approach of a spark-ignited free-piston engine generator. SAE International: New York, NY, USA, 2014.
  • 40.
    Jia B.R. ; Smallbone A. ; Zuo Z.X. ; et al . Design and simulation of a two- or four-stroke free-piston engine generator for range extender applications. Energy Conversion and Management, 2016, 111, 289–298.
  • 41.
    van Blarigan P. ; Paradiso N. ; Goldsborough S. Homogeneous charge compression ignition with a free piston: a new approach to ideal otto cycle performance. SAE International: New York, NY, USA, 1998.
  • 42.
    Li K. ; Sadighi A. ; Sun Z.X. Active motion control of a hydraulic free piston engine. IEEE/ASME Transactions on Mechatronics, 2014, 19(4), 1148–1159.
  • 43.
    Zhang C. ; Li K. ; Sun Z.X. Modeling of piston trajectory-based HCCI combustion enabled by a free piston engine. Applied Energy, 2015, 139, 313–326.
  • 44.
    Zhang C. ; Sun Z.X. Optimization of trajectory-based HCCI combustion. In Proceedings of the ASME 2016 Dynamic Systems and Control Conference, Minneapolis, Minnesota, USA, 12–14 October 2016, V002T20A005.
  • 45.
    Zhang C. ; Sun Z.X. Trajectory-based combustion control for renewable fuels in free piston engines. Applied Energy, 2017, 187, 72–83.
  • 46.
    Hibi A. ; Ito T. Fundamental test results of a hydraulic free piston internal combustion engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218(10), 1149–1157.
  • 47.
    Xu S.Q. ; Wang Y. ; Zhu T. ; et al . Numerical analysis of two-stroke free piston engine operating on HCCI combustion. Applied Energy, 2011, 88(11), 3712–3725.
  • 48.
    Lin J.M. ; Xu Z.P. ; Chang S.Q. ; et al . Thermodynamic simulation and prototype testing of a four-stroke free-piston engine. Journal of Engineering for Gas Turbines and Power, 2014, 136(5), 051505.
  • 49.
    Lu J.K. ; Xu Z.P. ; Liu D. ; et al . A starting control strategy of single-cylinder two-stroke free-piston engine generator. Journal of Engineering for Gas Turbines and Power, 2020, 142(3), 031020.
  • 50.
    Li K. ; Zhang C. ; Sun Z.X. Precise piston trajectory control for a free piston engine. Control Engineering Practice, 2015, 34, 30–38.
  • 51.
    Zhang C. ; Sun Z.X. Using variable piston trajectory to reduce engine-out emissions. Applied Energy, 2016, 170, 403–414.
  • 52.
    Zhang C. ; Sun Z.X. A control-oriented model for trajectory-based HCCI combustion control. Journal of Dynamic Systems Measurement and Control, 2018, 140(9), 091013.
  • 53.
    Zhang C. ; Sun Z.X. Realizing trajectory-based combustion control in a hydraulic free piston engine via a fast-response digital valve. In Proceedings of the ASME 2018 Dynamic Systems and Control Conference, Atlanta, Georgia, USA, 30 September-3 October 2018, V002T27A004.
  • 54.
    Chen L.M. ; Xu Z.P. ; Liu L. Combustion control of an opposed-piston free-piston engine during the cold start process. SAE International: New York, NY, USA, 2022: pp. 1–10.
  • 55.
    Goldsborough S.S. ; van Blarigan P. Optimizing the scavenging system for a two-stroke cycle, free piston engine for high efficiency and low emissions: a computational approach. SAE International: New York, NY, USA, 2003.
  • 56.
    Nandkumar, Two-stroke linear engine S. . PhD thesis, West Virginia University, Morgantown, WV, USA, 1998.
  • 57.
    Atkinson C.M. ; Petreanu S. ; Clark N.N. ; et al . Numerical simulation of a two-stroke linear engine-alternator combination. SAE International: New York, NY, USA, 1999.
  • 58.
    Shoukry E. ; Taylor S. ; Clark N. ; et al . Numerical simulation for parametric study of a two-stroke direct injection linear engine. SAE International: New York, NY, USA, 2002.
  • 59.
    Robinson M.C. ; Clark N. Fundamental analysis of spring-varied, free piston, otto engine device. SAE International Journal of Engines, 2014, 7(1), 195–220.
  • 60.
    Robinson M.C. ; Clark N.N. Effect of combustion timing and heat loss on spring-assisted linear engine translator motion. SAE International Journal of Engines, 2016, 9(1), 546–564.
  • 61.
    Robinson M.C. ; Clark N.N. ; Famouri P. Resonance of a spring opposed free piston engine device. SAE International Journal of Engines, 2016, 9(1), 576–587.
  • 62.
    Carter D. ; Wechner E. The free piston power pack: sustainable power for hybrid electric vehicles. SAE International: New York, NY, USA, 2003.
  • 63.
    Fredriksson J. ; Denbratt I. Simulation of a two-stroke free piston engine. SAE International: New York, NY, USA, 2004.
  • 64.
    Fredriksson J. ; Bergman M. ; Golovitchev V.I. ; et al . Modeling the effect of injection schedule change on free piston engine operation. SAE International: New York, NY, USA, 2006.
  • 65.
    Bergman M. ; Fredriksson J. ; Golovitchev V.I. CFD-based optimization of a diesel-fueled free piston engine prototype for conventional and HCCI combustion. SAE International Journal of Engines, 2009, 1(1), 1118–1143.
  • 66.
    Wang J.B. ; Howe D. A linear permanent magnet generator for a free-piston energy converter. In Proceedings of the IEEE International Conference on Electric Machines and Drives, 2005. AntonioSan, TX, USA, 15 May 2005, 1521–1528.
  • 67.
    Hansson, J. Analysis and control of a hybrid vehicle powered by a free-piston energy converter. KTH Royal Institute of Technology: Stockholm, Sweden, 2006.
  • 68.
    Zulkifli S.A. ; Karsiti M.N. ; Aziz A.R.A. Starting of a free-piston linear engine-generator by mechanical resonance and rectangular current commutation. In Proceedings of the 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008, 1–7.
  • 69.
    Bai J. ; Wang Q. ; He Z.X. ; et al . Study on methane HCCI combustion process of micro free-piston power device. Applied Thermal Engineering, 2014, 73(1), 1066–1075.
  • 70.
    Wu W. ; Hu J.B. ; Yuan S.H. Semi-analytical modelling of a hydraulic free-piston engine. Applied Energy, 2014, 120, 75–84.
  • 71.
    Jia B.R. ; Tian G.H. ; Feng H.H. ; et al . An experimental investigation into the starting process of free-piston engine generator. Applied Energy, 2015, 157, 798–804.
  • 72.
    Jia B.R. ; Zuo Z.X. ; Feng H.H. ; et al . Investigation of the starting process of free-piston engine generator by mechanical resonance. Energy Procedia, 2014, 61, 572–577.
  • 73.
    Jia B.R. ; Smallbone A. ; Feng H.H. ; et al . A fast response free-piston engine generator numerical model for control applications. Applied Energy, 2016, 162, 321–329.
  • 74.
    Yuan C.H. ; Feng H.H. ; He Y.T. ; et al . Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging. Energy, 2016, 102, 637–649.
  • 75.
    Jia, B.R. Analysis and control of a spark ignition free-piston engine generator. thesis PhD , Newcastle University, Newcastle, UK , 2016.
  • 76.
    Jia B.R. ; Zuo Z.X. ; Feng H.H. ; et al . Effect of closed-loop controlled resonance based mechanism to start free piston engine generator: simulation and test results. Applied Energy, 2016, 164, 532–539.
  • 77.
    Guo C.D. ; Feng H.H. ; Jia B.R. ; et al . Research on the operation characteristics of a free-piston linear generator: numerical model and experimental results. Energy Conversion and Management, 2017, 131, 32–43.
  • 78.
    Zhang Z.W. ; Guo C.D. ; Song Y. ; et al . Research on the engine combustion characteristics of a free-piston diesel engine linear generator. Energy Conversion and Management, 2018, 168, 629–638.
  • 79.
    Zhang S.L. ; Zhao C.L. ; Zhao Z.F. Stability analysis of hydraulic free piston engine. Applied Energy, 2015, 157, 805–813.
  • 80.
    Miao Y.X. ; Zuo Z.X. ; Feng H.H. ; et al . Research on the combustion characteristics of a free-piston gasoline engine linear generator during the stable generating process. Energies, 2016, 9(8), 655.
  • 81.
    Feng H.H. ; Guo C.D. ; Jia B.R. ; et al . Research on the intermediate process of a free-piston linear generator from cold start-up to stable operation: numerical model and experimental results. Energy Conversion and Management, 2016, 122, 153–164.
  • 82.
    Jia B.R. ; Smallbone A. ; Mikalsen R. ; et al . Disturbance analysis of a free-piston engine generator using a validated fast-response numerical model. Applied Energy, 2017, 185, 440–451.
  • 83.
    Guo C.D. ; Song Y. ; Feng H.H. ; et al . Effect of fuel injection characteristics on the performance of a free-piston diesel engine linear generator: CFD simulation and experimental results. Energy Conversion and Management, 2018, 160, 302–312.
  • 84.
    Ngwaka U. ; Smallbone A. ; Jia B.R. ; et al . Evaluation of performance characteristics of a novel hydrogen-fuelled free-piston engine generator. International Journal of Hydrogen Energy, 2020, 46(66), 33314–33324.
  • 85.
    Woo Y. ; Lee Y.J. Free piston engine generator: technology review and an experimental evaluation with hydrogen fuel. International Journal of Automotive Technology, 2014, 15(2), 229–235.
  • 86.
    Kock F. ; Haag J. ; Friedrich H.E. The free piston linear generator-development of an innovative, compact, highly efficient range-extender module. SAE International: New York, NY, USA, 2013.
  • 87.
    Zaseck K. ; Brusstar M. ; Kolmanovsky I. Stability, control, and constraint enforcement of piston motion in a hydraulic free-piston engine. IEEE Transactions on Control Systems Technology, 2017, 25(4), 1284–1296.
  • 88.
    Hung N.B. ; Jaewon S. ; Lim O. A study of the scavenging process in a two-stroke free piston linear engine using CFD. Energy Procedia, 2017, 142, 1353–1360.
  • 89.
    Yuan C.H. ; Han C.J. ; Xu J. Numerical evaluation of pilot-ignition technology used for a hydrogen fuelled free piston engine generator. International Journal of Hydrogen Energy, 2017, 42(47), 28599–28611.
  • 90.
    Yuan C.H. ; Jing Y. ; Liu C.Z. ; et al . Effect of variable stroke on fuel combustion and heat release of a free piston linear hydrogen engine. International Journal of Hydrogen Energy, 2019, 44(36), 20416–20425.
  • 91.
    Keller M. ; Abel D. ; Albin T. Time-optimal multi-stage NMPC for in-cycle control of free-piston linear generators. In Proceedings of the 2021 American Control Conference (ACC), OrleansNew, LA, USA, 25–28 May 2021, 4783–4790.
  • 92.
    Qin Z.J. ; Wang X.D. ; Liang Y.F. ; et al . A coupling dynamics and thermodynamics study of diesel pilot-ignition injection effect on hydrogen combustion of a linear engine. International Journal of Hydrogen Energy, 2022, 47(67), 29102–29112.
  • 93.
    Haag J. ; Ferrari C. ; Starcke J.H. ; et al . Numerical and experimental investigation of in-cylinder flow in a loop-scavenged two-stroke free piston engine. SAE International: New York, NY, USA, 2012.
  • 94.
    Haag J. ; Kock F. ; Chiodi M. ; et al . Development approach for the investigation of homogeneous charge compression ignition in a free-piston engine. SAE International: New York, NY, USA, 2013.
  • 95.
    Johansen T.A. ; Egeland O. ; Johannessen E.A. ; et al . Free-piston diesel engine timing and control-toward electronic cam- and crankshaft. IEEE Transactions on Control Systems Technology, 2002, 10(2), 177–190.
  • 96.
    Johansen T.A. ; Egeland O. ; Johannessen E.A. ; et al . Dynamics and control of a free-piston diesel engine. Journal of Dynamic Systems Measurement and Control, 2003, 125(3), 468–474.
  • 97.
    Brusstar M. ; Gray C.L. , Jr. et al . Design development and testing of multi-cylinder hydraulic free-piston engines reprinted from: advanced hybrid vehicle powertrains 2005. SAE International: New York, NY, USA, 2005.
  • 98.
    Sun P. ; Zhang C. ; Chen J.H. ; et al . Decoupling design and verification of a free-piston linear generator. Energies, 2016, 9(12), 1067.
  • 99.
    Sofianopoulos A. ; Zhou Y.C. ; Lawler B. ; et al . Gas exchange processes of a small HCCI free piston engine–a computational study. Applied Thermal Engineering, 2017, 127, 1582–1597.
  • 100.
    Zhou Y.C. ; Sofianopoulos A. ; Lawler B. ; et al . Advanced combustion free-piston engines: a comprehensive review. International Journal of Engine Research, 2020, 21(7), 1205–1230.
  • 101.
    Li J. ; Yang F.B. ; Zhang H.G. ; et al . Comparative analysis of different valve timing control methods for single-piston free piston expander-linear generator via an orthogonal experimental design. Energy, 2020, 195, 116966.
  • 102.
    Wang J.L. ; Xiao J. ; Cheng Y.D. ; et al . Design and modeling of a free-piston engine generator. Frontiers in Energy, 2022, in press.
  • 103.
    Chuang C. ; Tong C.D. ; Liu B. ; et al . A novel force control method for dead centers tracking of free-piston linear generator. In Proceedings of the 2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Haining, China, 28–31 October 2022, 1–5.
  • 104.
    Chen C. ; Tong C.D. ; Liu B. ; et al . Trajectory-regulation-based segmented control for dead center positions tracking of free-piston linear generator. IEEE Transactions on Industrial Electronics, 2023, 70(4), 3426–3436.
  • 105.
    Chen C. ; Zheng P. ; Tong C.D. ; et al . Rectangular thrust control methods of PMLSM for stroke and dead centers tracking of free-piston linear generator. In Proceedings of the 2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, 29 November–02 December 2022, 1–4.
  • 106.
    Reigstad G.A. ; Roussanaly S. ; Straus J. ; et al . Moving toward the low-carbon hydrogen economy: experiences and key learnings from national case studies. Advances in Applied Energy, 2022, 8, 100108.
  • 107.
    Houdyschell, D. A diesel two-stroke linear engine. thesis PhD , West Virginia University, Morgantown, WV, USA , 2000.
  • 108.
    Mikalsen R. ; Roskilly A.P. The control of a free-piston engine generator. Part 2: engine dynamics and piston motion control. Applied Energy, 2010, 87(4), 1281–1287.
  • 109.
    Yang R.B. ; Gong X. ; Hu Y.F. ; et al . Motion control of free piston engine generator based on LQR. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015, 8091–8096.
  • 110.
    Gong X. ; Zaseck K. ; Kolmanovsky I. ; et al . Dual-loop control of free piston engine generator. IFAC-PapersOnLine, 2015, 48(15), 174–180.
  • 111.
    Gong X. ; Zaseck K. ; Kolmanovsky I. ; et al . Modeling and predictive control of free piston engine generator. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015, 4735–4740.
  • 112.
    Gong X. ; Kolmanovsky I. ; Garone E. ; et al . Constrained control of free piston engine generator based on implicit reference governor. Science China Information Sciences, 2018, 61(7), 70203.
  • 113.
    Chen F.X. ; Zhang C. ; Li L. ; et al . A novel stable control strategy of single cylinder free-piston linear generator. In Proceedings of the 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Ningbo, China, 19–21 November 2017, 587–592.
  • 114.
    Zhang C. ; Chen F.X. ; Li L. ; et al . A free-piston linear generator control strategy for improving output power. Energies, 2018, 11(1), 135.
  • 115.
    Zhao X.Y. ; Zhang C. ; Cui Y.G. ; et al . A stable control method for free piston linear generator based on on-line trajectory planning. In Proceedings of the 2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, 29 November–02 December 2022, 1–6.
  • 116.
    Bade M. ; Clark N. ; Famouri P. ; et al . Feasibility of multiple piston motion control approaches in a free piston engine generator. SAE International Journal of Advances and Current Practices in Mobility, 2020, 2(2), 914–928.
  • 117.
    Wang J.L. ; Xiao J. ; Cheng Y.D. ; et al . Combustion stability control of a single-piston free piston engine generator. Thermal Scienc, 2023, 27, 233–244.
  • 118.
    Zhao X.Y. ; Zhang C. ; Cui Y.G. ; et al . A stable control method for free piston linear generator based on on-line trajectory planning. In Proceedings of the 2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, 29 November–02 December 2022, 1–6.
Share this article:
How to Cite
Brosnan, P.; Tian, G.; Montanaro, U.; Cockerill, S. A Comprehensive Review of the Free Piston Engine Generator and Its Control. International Journal of Automotive Manufacturing and Materials 2023, 2 (1), 6. https://doi.org/10.53941/ijamm0201006.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2023 by the authors.