2504000079
  • Open Access
  • Review
Application of Aluminum Alloy Semi-Solid Processing Technology in Automobile: A Review
  • Hongxing Lu 1, *,   
  • Zhengbai Liu 2,   
  • Qiang Zhu 1

Received: 03 Feb 2023 | Accepted: 23 Feb 2023 | Published: 17 Mar 2023

Abstract

Semi-solid processing technology is a new forming technology for aluminum alloy components, which has advantages in producing high-quality components with complex shapes. Several methods of semi-solid metal preparing and forming have been developed in the past 50 years. Some methods have been applied to provide high-quality components or improve castings’ quality in the field of automobile. This paper reviews the development and application of semi-solid processing technology and discusses about its future application prospects.

References 

  • 1.
    Spencer D.B. ; Mehrabian R. ; Flemings M.C. Rheological behavior of Sn-15 pct Pb in the crystallization range. Metallurgical and Materials Transactions B, 1972, 3(7): 1925–1932.
  • 2.
    Flemings M.C. ; Riek R.G. ; Young K.P. Rheocasting. Materials Science and Engineering, 1976, 25: 103–117.
  • 3.
    Flemings, M.C. Behavior of metal alloys in the semisolid state. Metallurgical Transactions B, 1991, 22(3): 269–293.
  • 4.
    Atkinson, H.V. Modelling the semisolid processing of metallic alloys. Progress in Materials Science, 2005, 50(3): 341–412.
  • 5.
    Midson, S.P. Industrial applications for aluminum semi-solid castings. Solid State Phenomena, 2015, 217/218: 487–495.
  • 6.
    Li G. ; Qu W.Y. ; Luo M. ; et al . Semi-solid processing of aluminum and magnesium alloys: status, opportunity, and challenge in China. Transactions of Nonferrous Metals Society of China, 2021, 31(11): 3255–3280.
  • 7.
    Kapranos, P. Current state of semi-solid net-shape die casting. Metals, 2019, 9(12): 1301.
  • 8.
    Campo K.N. ; Proni C.T.W. ; Zoqui E.J. Influence of the processing route on the microstructure of aluminum alloy A356 for thixoforming. Materials Characterization, 2013, 85: 26–37.
  • 9.
    Liu T.Y. ; Atkinson H.V. ; Kapranos P. ; et al . Rapid compression of aluminum alloys and its relationship to thixoformability. Metallurgical and Materials Transactions A, 2003, 34(7): 1545–1554.
  • 10.
    Zhang Y.Z. ; Zhang K. ; Liu G.J. ; et al . The formation of rosette α phase, structural evolution during the reheating and semi-solid casting of AlSi7Mg alloy. Journal of Materials Processing Technology, 2003, 137(1/3): 195–200.
  • 11.
    Manson-Whitton E.D. ; Stone I.C. ; Jones J.R. ; et al . Isothermal grain coarsening of spray formed alloys in the semi-solid state. Acta Materialia, 2002, 20(10): 2517–2535.
  • 12.
    Chiang C.H. ; Tsao C.Y.A. Si coarsening of spray-formed high loading hypereutectic Al–Si alloys in the semisolid state. Materials Science and Engineering: A, 2005, 396(1/2): 263–270.
  • 13.
    Atkinson H.V. ; Liu D. Coarsening rate of microstructure in semi-solid aluminium alloys. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1672–1676.
  • 14.
    Jiang H.T. ; Li M.Q. Microscopic observation of cold-deformed Al–4Cu–Mg alloy samples after semi-solid heat treatments. Materials Characterization, 2005, 54(4/5): 451–457.
  • 15.
    Lu Y.L. ; Li M.Q. ; Huang W.C. ; et al . Deformation behavior and microstructural evolution during the semi-solid compression of Al–4Cu–Mg alloy. Materials Characterization, 2005, 54(4/5): 423–430.
  • 16.
    Hassas-Irani S.B. ; Zarei-Hanzaki A. ; Bazaz B. ; et al . Microstructure evolution and semi-solid deformation behavior of an A356 aluminum alloy processed by strain induced melt activated method. Materials & Design (1980-2015), 2013, 46: 579–587.
  • 17.
    Wang Z.Y. ; Ji Z.S. ; Hu M.L. ; et al . Evolution of the semi-solid microstructure of ADC12 alloy in a modified SIMA process. Materials Characterization, 2011, 62(10): 925–930.
  • 18.
    Vaneetveld G. ; Rassili A. ; Pierret J.C. ; et al . Conception of tooling adapted to thixoforging of high solid fraction hot-crack-sensitive aluminium alloys. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1712–1718.
  • 19.
    Torres L. ; Proni C.T.W. ; Zoqui E.J. Comparison of morphological evolution of Al-7wt%Si-2.5wt%Cu alloy produced by direct chill casting/electromagnetic stirring and ECAP. Solid State Phenomena, 2016, 256: 17–24.
  • 20.
    Lemieux A. ; Langlais J. ; Bouchard D. ; et al . Effect of Si, Cu and Fe on mechanical properties of cast semi-solid 206 alloys. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1555–1560.
  • 21.
    Langlais J. ; Lemieux A. ; Andrade N. ; et al . Impact of semi-solid process parameters on the microstructure, morphology and mechanical properties of A356 alloy. The 45th International Conference of Metallurgists COM 2006, Montréal Québec Canada: National Research Council Canada, 2006: NRCC 48388.
  • 22.
    Tebib M. ; Morin J.B. ; Ajersch F. ; et al . Semi-solid processing of hypereutectic A390 alloys using novel rheoforming process. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1743–1748.
  • 23.
    Bolouri A. ; Zhao Q.F. ; Côté P. ; et al . Microstructure and rheological properties of semi-solid 7075 slurries using SEED rheocasting process. Solid State Phenomena, 2016, 256: 288–293.
  • 24.
    Li G. ; Peng J.K. ; Dong E.J. ; et al . Characterizing the effect of processing parameters on temperature distribution of 7075 aluminum alloy slurry prepared by enthalpy control process. Solid State Phenomena, 2022, 327: 263–271.
  • 25.
    Li G. ; Lu H.X. ; Hu X.G. ; et al . Numerical simulation of slurry making process of 7075 aluminum alloy under electromagnetic field in rheocasting process. Solid State Phenomena, 2019, 285: 373–379.
  • 26.
    Janudom S. ; Wannasin J. ; Basem J. ; et al . Characterization of flow behavior of semi-solid slurries containing low solid fractions in high-pressure die casting. Acta Materialia, 2013, 61(16): 6267–6275.
  • 27.
    Chucheep T. ; Wannasin J. ; Canyook R. ; et al . Characterization of flow behavior of semi-solid slurries with low solid fractions. Metallurgical and Materials Transactions A, 2013, 44(10): 4754–4763.
  • 28.
    Janudom S. ; Rattanochaikul T. ; Burapa R. ; et al . Feasibility of semi-solid die casting of ADC12 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1756–1762.
  • 29.
    Shabestari S.G. ; Honarmand M. ; Saghafian H. Microstructural evolution of A380 aluminum alloy produced by gas-induced semi-solid technique (GISS). Advances in Materials and Processing Technologies, 2015, 1(1/2): 155–163.
  • 30.
    Thanabumrungkul S. ; Janudom S. ; Burapa R. ; et al . Industrial development of gas induced semi-solid process. Transactions of Nonferrous Metals Society of China, 2010, 20, Supplement 3: s1016–s1021.
  • 31.
    Granath O. ; Wessén M. ; Cao H. Determining effect of slurry process parameters on semisolid A356 alloy microstructures produced by RheoMetal process. International Journal of Cast Metals Research, 2008, 21(5): 349–356.
  • 32.
    Jain A. ; Ratke L. ; Sharma A. Non-dendritic structural changes in Al–7Si alloy cast through rapid slurry formation (RSF) process. Transactions of the Indian Institute of Metals, 2012, 65(6): 545–551.
  • 33.
    Jarfors A.E.W. ; Zheng J.C. ; Chen L. ; et al . Recent advances in commercial application of the rheometal process in China and Europe. Solid State Phenomena, 2018, 285: 405–410.
  • 34.
    Guler K.A. ; Kisasoz A. ; Ozer G. ; et al . Cooling slope casting of AA7075 alloy combined with reheating and thixoforging. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2237–2244.
  • 35.
    Birol, Y. Cooling slope casting and thixoforming of hypereutectic A 390 alloy. Journal of Materials Processing Technology, 2008, 207(1/3): 200–203.
  • 36.
    Das P. ; Samanta S.K. ; Bera S. ; et al . Microstructure evolution and rheological behavior of cooling slope processed Al-Si-Cu-Fe alloy slurry. Metallurgical and Materials Transactions A, 2016, 47(5): 2243–2256.
  • 37.
    Qi M.F. ; Kang Y.L. ; Zhu G.M. ; et al . A new Rheo-HPDC process with air-cooled stirring rod device for wireless base station shells of Al-8Si alloy. Solid State Phenomena, 2016, 206: 303–308.
  • 38.
    Qi M.F. ; Kang Y.L. ; Li J.Y. ; et al . Improvement in mechanical, thermal conductivity and corrosion performances of a new high-thermally conductive Al-Si-Fe alloy through a novel R-HPDC process. Journal of Materials Processing Technology, 2020, 279: 116586.
  • 39.
    Qi M.F. ; Kang Y.L. ; Li J.Y. ; et al . Synchronously improving the thermal conductivity and mechanical properties of Al–Si–Fe–Mg–Cu–Zn alloy die castings through ultrasonic-assisted rheoforming. Acta Metallurgica Sinica-English Letters, 2021, 34(10): 1331–1344.
  • 40.
    Chen W. ; Thornley L. ; Coe H.G. ; et al . Direct metal writing: controlling the rheology through microstructure. Applied Physics Letters, 2017, 110(9): 094104.
  • 41.
    Lima, D.D.; Campo, K.N.; Button, S.T; et al . 3D thixo-printing: a novel approach for additive manufacturing of biodegradable Mg-Zn alloys. Materials & Design, 2020, 196: 109161.
  • 42.
    Lu H.X. ; Zhu Q. ; Midson S.P. ; et al . Forming conditions of blisters during solution heat treatment of Al–Si alloy semi-solid die castings. Rare Metals, 2018, in press.
  • 43.
    Li G. ; Luo M. ; Qu W.Y. ; et al . Progress of semi-solid processing of alloys and composites in China. Solid State Phenomena, 2022, 327: 178–188.
  • 44.
    Côté P. ; Vlastimil B. ; Stunová B .B. Case study: engine bracket made by rheocasting using the SEED process. Solid State Phenomena, 2019, 285: 441–445.
  • 45.
    Wannasin J. ; Fuchs M. ; Lee J.Y. ; et al . GISS technology: principle and applications in die casting. Solid State Phenomena, 2019, 285: 470-475.
  • 46.
    Qi M.F. ; Kang Y.L. ; Qiu Q.Q. Industrialized application of Rheo-HPDC process for the production of large thin-walled aluminum alloy parts. Solid State Phenomena, 2019, 285: 453–458.
Share this article:
How to Cite
Lu, H.; Liu, Z.; Zhu, Q. Application of Aluminum Alloy Semi-Solid Processing Technology in Automobile: A Review. International Journal of Automotive Manufacturing and Materials 2023, 2 (1), 5. https://doi.org/10.53941/ijamm0201005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2023 by the authors.