- 1.
Li F.B. ; Wang Z. ; Wang Y.F. ; et al . High-efficiency and clean combustion natural gas engines for vehicles. Automotive Innovation, 2019, 2( 10): 284- 304.
- 2.
- 3.
Gazprom gas-engine fuel to open 16 CNG filling stations in leningrad region by end of 2020-governor. Interfax: Russia & CIS energy newswire, 2019. Available Online:
https://interfax.com/newsroom/top-stories/19648/ (Accessed on 5 March 2023).
- 4.
Kuang Y.M. ; Lin B.Q. Natural gas resource utilization, environmental policy and green economic development: Empirical evidence from China. Resources Policy, 2022, 79: 102992.
- 5.
- 6.
Johnson R.L. , Jr.; Hopkins C.W. ; Zuber M.D. Technical challenges in the development of unconventional gas resources in Australia. The APPEA Journal, 2000, 40( 1): 450- 468.
- 7.
Wiesbaden, S.F. “Current gas engine developments WILL set the pattern for the next 30 years”. MTZ industrial, 2014, 4( 2): 20- 23.
- 8.
Pan K. ; Wallace J. Soot and combustion models for direct-injection natural gas engines. International Journal of Engine Research, 2022, 23( 1): 150- 166.
- 9.
Muhssen H.S. ; Masuri S.U. ; Sahari B.B. ; et al . Design improvement of compressed natural gas (CNG)-air mixer for diesel dual-fuel engines using computational fluid dynamics. Energy, 2021, 216: 118957.
- 10.
Kim S. ; Park C. ; Jang H. ; et al . Effect of boosting on a performance and emissions in a port fuel injection natural gas engine with variable intake and exhaust valve timing. Energy Reports, 2021, 7: 4941- 4950.
- 11.
Li M.H. ; Liu G.F. ; Liu X.R. ; et al . Performance of a direct-injection natural gas engine with multiple injection strategies. Energy, 2019, 189: 116363.
- 12.
Li M.H. ; Zheng X.L. ; Zhang Q. ; et al . The effects of partially premixed combustion mode on the performance and emissions of a direct injection natural gas engine. Fuel, 2019, 250: 218- 234.
- 13.
Li M.H. ; Wu H.M. ; Liu X.R. ; et al . Numerical investigations on pilot ignited high pressure direct injection natural gas engines: a review. Renewable and Sustainable Energy Reviews, 2021, 150: 111390.
- 14.
Cruz C.S. ; Stimpson S. Keeping the lights on: oil and gas development in a low-carbon world. Journal of Energy & Natural Resources Law, 2022, 40( 4): 491- 494.
- 15.
Zhang H. ; Yin D.D. The oil and gas industry and the development of the natural gas automobile industry. IOP Conference Series: Earth and Environmental Science, 2019, 267( 2): 022043.
- 16.
- 17.
Huang S. ; Xiong S.T. ; Zhao Z.G. Discussion about the Cr-Mo steel materials using in CNG cylinders. Materials Science Forum, 2020, 1001: 235- 239.
- 18.
Gao, L.S. Design and manufacture of composite CNG cylinders. Applied Mechanics and Materials, 2014, 670/671: 955- 959.
- 19.
Banaszkiewicz T. ; Chorowski M. ; Gizicki W. ; et al . Liquefied natural gas in mobile applications—opportunities and challenges. Energies, 2020, 13( 21): 5673.
- 20.
Kim C.U. ; Bae C.S. Speciated hydrocarbon emissions from a gas-fuelled spark-ignition engine with various operating parameters. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2000, 214( 7): 795- 808.
- 21.
- 22.
Dong D. ; Wang Y. ; Li X. ; et al . Breakthrough and prospect of shale gas exploration and development in China. Natural Gas Industry B 2016, 3( 1), 12- 26.
- 23.
Zou C. ; Dong D. ; Wang Y. ; et al . Shale gas in China: Characteristics, challenges and prospects (II). Petroleum Exploration and Development 2016, 43( 2), 182- 196.
- 24.
- 25.
Editorial Department of this Journal . The second-round trial collection of natural gas hydrate (combustible ice) in China's sea areas achieves complete success. Geology in China, 2020, 47( 2): 555.
- 26.
- 27.
Soltani-Sobh A. ; Heaslip K. ; Bosworth R. ; et al . Compressed natural gas vehicles: financially viable option? Transportation Research Record, 2016, 2572( 1): 28- 36.
- 28.
Yi P. ; Long W.Q. ; Feng L.Y. ; et al . Investigation of evaporation and auto-ignition of isolated lubricating oil droplets in natural gas engine in-cylinder conditions. Fuel, 2019, 235: 1172- 1183.
- 29.
Li L.F. ; Zhang Z.B. Investigation on steam direct injection in a natural gas engine for fuel savings. Energy, 2019, 183: 958- 970.
- 30.
Sarabi M. ; Aghdam E.A. Experimental analysis of in-cylinder combustion characteristics and exhaust gas emissions of gasoline–natural gas dual-fuel combinations in a SI engine. Journal of Thermal Analysis and Calorimetry, 2020, 139( 5): 3165- 3178.
- 31.
Chamberlain S. ; Chookah M. ; Modarres M. Development of a probabilistic mechanistic model for reliability assessment of gas cylinders in compressed natural gas vehicles. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2009, 223( 4): 289- 299.
- 32.
Khan M.I. ; Yasmin T. ; Khan N.B. Safety issues associated with the use and operation of natural gas vehicles: learning from accidents in Pakistan. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38( 8): 2481- 2497.
- 33.
Kim Y.S. ; Park K.S. ; Kim T.O. Suggestion for safety improvement of compressed natural gas vehicle. Journal of the Korean Institute of Gas, 2012, 16( 4): 1- 7.
- 34.
Wei Z.N. ; Li M.H. ; Li S. ; et al . Development of natural gas chemical kinetic mechanisms and application in engines: a review. ACS Omega, 2021, 6( 37): 23643- 23653.
- 35.
Pan K. ; Wallace J.S. A low temperature natural gas reaction mechanism for compression ignition engine application. Combustion and Flame, 2019, 202: 334- 346.
- 36.
Matsuoka H. ; Kishishita K. ; Nakashima K. ; et al . Structure and performance of heat insulated natural gas engine. JSAE Review, 1997, 18( 4): 377- 384.
- 37.
Shi J.L. ; Li T. ; Liu Z.C. ; et al . Life cycle environmental impact evaluation of newly manufactured diesel engine and remanufactured LNG engine. Procedia CIRP, 2015, 29: 402- 407.
- 38.
Noble A.D. ; Beaumont A.J. Control system for a low emissions natural gas engine for urban vehicles. New York: SAE International, 1991.
- 39.
Smith H. ; Pipeline T.G. ; Wachowiak R. ; et al . Fuel control system updates older natural gas engines. Pipeline & Gas Journal, 2012, 239( 1): 58- 62.
- 40.
Han Y. ; Young P. Natural gas engine model for speed and air-fuel control. International Journal of Modelling, Identification and Control, 2020, 36( 2): 104- 115.
- 41.
Gubba S.R. ; Tamma B. ; Kazempoor P. ; et al . A novel air management system for a large bore two-stroke naturally aspirated gas engine to reduce emissions. International Journal of Engine Research, 2021, 22( 2): 364- 374.
- 42.
Thipse S.S. ; Dsouza A. ; Sonawane S.B. ; et al . Development of multi cylinder turbocharged natural gas engine for heavy duty application. SAE International Journal of Engines, 2017, 10( 1): 27- 38.
- 43.
Che X.L. ; Zhu C. ; Wang N.D. Testing system for compressed natural gas engine ECU. Applied Mechanics and Materials, 2011, 127: 214- 219.
- 44.
Wang X.L. ; Ping X. Hardware design of nature gas engine ECU based on single chip. Applied Mechanics and Materials, 2014, 575: 576- 579.
- 45.
Zeng, Q. Study on the modification and performance of compressed natural gas engine. Applied Mechanics and Materials, 2014, 568/570: 1690- 1693.
- 46.
Shimizu R. ; Iijima A. ; Yoshida K. ; et al . Analysis of supercharged HCCI combustion using a blended fuel. SAE International Journal of Engines, 2012, 5( 1): 1- 8.
- 47.
Xu M. ; Cheng W. ; Li Z. ; et al . Pre-injection strategy for pilot diesel compression ignition natural gas engine. Applied Energy, 2016, 179: 1185- 1193.
- 48.
Ohta Y. ; Furutani M. ; Kojima M. ; et al . Premixed-compression-ignition natural gas engine. New York: SAE International, 2000.
- 49.
Mansor W.N.W. ; Abdullah S. ; Olsen D.B. ; et al . Diesel-natural gas engine emissions and performance. AIP Conference Proceedings, 2018, 2035( 1): 060010.
- 50.
Worth D.J. ; Stettler M.E.J. ; Dickinson P. ; et al . Characterization and evaluation of methane oxidation catalysts for dual-fuel diesel and natural gas engines. Emission Control Science and Technology, 2016, 2( 4): 204- 214.
- 51.
Johnson D. ; Heltzel R. ; Nix A. Trends in unconventional well development—methane emissions associated with the use of dual fuel and dedicated natural gas engines. Energy Technology, 2014, 2( 12): 988- 995.
- 52.
Semin; Ismail A.R. ; Bakar R.A. Combustion temperature effect of diesel engine convert to compressed natural gas engine. American Journal of Engineering and Applied Sciences, 2009, 2( 1): 212- 216.
- 53.
Song S.S. ; Zhang H.G. Performance study for miller cycle natural gas engine based on GT-power. Journal of Clean Energy Technologies, 2015, 3( 5): 351- 355.
- 54.
Okamoto K. ; Zhang F.R. ; Shimogata S. ; et al . Development of a late intake-valve closing (LIVC) miller cycle for stationary natural gas engines - effect of EGR utilization. New York: SAE International, 1997.
- 55.
Valencia G. ; Duarte J. ; Isaza-Roldan C. Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC. Applied Sciences, 2019, 9( 19): 4017.
- 56.
Rink M. ; Eigenberger G. ; Nieken U. Heat-integrated exhaust purification for natural gas engines. Chemie Ingenieur Technik, 2013, 85( 5): 656- 663.
- 57.
Alanen J. ; Simonen P. ; Saarikoski S. ; et al . Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics. Atmospheric Chemistry and Physics, 2017, 17( 14): 8739- 8755.
- 58.
Pirouzpanah V. ; Sarai R.K. Reduction of emissions in an automotive direct injection diesel engine dual-fuelled with natural gas by using variable exhaust gas recirculation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217( 8): 719- 725.
- 59.
Lehtoranta K. ; Murtonen T. ; Vesala H. ; et al . Natural gas engine emission reduction by catalysts. Emission Control Science and Technology, 2017, 3( 2): 142- 152.
- 60.
Huang C.Y. ; Shan W.P. ; Lian Z.H. ; et al . Recent advances in three-way catalysts of natural gas vehicles. Catalysis Science & Technology, 2020, 10( 19): 6407- 6419.
- 61.
Zheng J. ; Zhou R. ; Zhan R. ; et al . Combustion and emission characteristics of natural gas engine with partial-catalytic oxidation of the fuel. Fuel, 2022, 312: 122796.
- 62.
Hora T.S. ; Shukla P.C. ; Agarwal A.K. Particulate emissions from hydrogen enriched compressed natural gas engine. Fuel, 2016, 166: 574- 580.
- 63.
Ristovski Z.D. ; Morawska L. ; Hitchins J. ; et al . Particle emissions from compressed natural gas engines. Journal of Aerosol Science, 2000, 31( 4): 403- 413.
- 64.
- 65.
Sun, Z.G. Energy efficiency and economic feasibility analysis of cogeneration system driven by gas engine. Energy and Buildings, 2008, 40( 2): 126- 130.
- 66.
Khaliq A. ; Almohammadi B.A. ; Alharthi M.A. ; et al . Investigation of a combined refrigeration and air conditioning system based on two-phase ejector driven by exhaust gases of natural gas fueled homogeneous charge compression ignition engine. Journal of Energy Resources Technology, 2021, 143( 12): 120911.
- 67.
Mcdonough M.J. ; Lafaille S. Natural-gas-engine-driven heat pumps: technological advances lead to higher efficiency and lower emissions. HPAC Engineering, 2012, 84( 8): 36, 38, 40- 41.