2504000080
  • Open Access
  • Review
A Review of Development of Natural Gas Engines
  • Lidong Liu 1,   
  • Mengli Zhang 1,   
  • Zhengbai Liu 2, *

Received: 04 Jan 2023 | Accepted: 22 Feb 2023 | Published: 09 Mar 2023

Abstract

Natural gas has been successfully applied to the operation of internal combustion engines (ICEs) in various applications including automotive vehicles and generator sets, and is becoming a promising alternative fuel in ICEs due to its advantages such as the excellent knock resistance, stable combustion process, and low pollutant emissions. The operation cost of vehicles using natural gas engines (NGEs) is remarkably reduced, as the price of natural gas is over 50% lower than that of gasoline or diesel fuel. This review describes three stages of the NGEs development followed by discussions of natural gas resources, mechanisms underlying structural design and combustion process of NGEs, as well as different technologies applied in NGEs. The scientific guidance for research and development of NGEs is also provided in this review.

References 

  • 1.
    Li F.B. ; Wang Z. ; Wang Y.F. ; et al . High-efficiency and clean combustion natural gas engines for vehicles. Automotive Innovation, 2019, 2( 10): 284- 304.
  • 2.
    Gas Engine Market to Grow at 7% CAGR Worldwide 2014 - 2019. M2 Presswire, 2015. Available Online: https://www.proquest.com/wire-feeds/gas-engine-market-grow-at-7-cagr-worldwide-2014/docview/1713967394/se-2 (Accessed on 5 March 2023).
  • 3.
    Gazprom gas-engine fuel to open 16 CNG filling stations in leningrad region by end of 2020-governor. Interfax: Russia & CIS energy newswire, 2019. Available Online: https://interfax.com/newsroom/top-stories/19648/ (Accessed on 5 March 2023).
  • 4.
    Kuang Y.M. ; Lin B.Q. Natural gas resource utilization, environmental policy and green economic development: Empirical evidence from China. Resources Policy, 2022, 79: 102992.
  • 5.
    U . S. Energy Information Administration. Crude oil and natural gas resource development. Washington, DC: U. S. Energy Information Administration, 2023. Available Online: https://www.eia.gov/totalenergy/data/monthly/pdf/sec5_n.pdf (Accessed on 2 March 2023).
  • 6.
    Johnson R.L. , Jr.; Hopkins C.W. ; Zuber M.D. Technical challenges in the development of unconventional gas resources in Australia. The APPEA Journal, 2000, 40( 1): 450- 468.
  • 7.
    Wiesbaden, S.F. “Current gas engine developments WILL set the pattern for the next 30 years”. MTZ industrial, 2014, 4( 2): 20- 23.
  • 8.
    Pan K. ; Wallace J. Soot and combustion models for direct-injection natural gas engines. International Journal of Engine Research, 2022, 23( 1): 150- 166.
  • 9.
    Muhssen H.S. ; Masuri S.U. ; Sahari B.B. ; et al . Design improvement of compressed natural gas (CNG)-air mixer for diesel dual-fuel engines using computational fluid dynamics. Energy, 2021, 216: 118957.
  • 10.
    Kim S. ; Park C. ; Jang H. ; et al . Effect of boosting on a performance and emissions in a port fuel injection natural gas engine with variable intake and exhaust valve timing. Energy Reports, 2021, 7: 4941- 4950.
  • 11.
    Li M.H. ; Liu G.F. ; Liu X.R. ; et al . Performance of a direct-injection natural gas engine with multiple injection strategies. Energy, 2019, 189: 116363.
  • 12.
    Li M.H. ; Zheng X.L. ; Zhang Q. ; et al . The effects of partially premixed combustion mode on the performance and emissions of a direct injection natural gas engine. Fuel, 2019, 250: 218- 234.
  • 13.
    Li M.H. ; Wu H.M. ; Liu X.R. ; et al . Numerical investigations on pilot ignited high pressure direct injection natural gas engines: a review. Renewable and Sustainable Energy Reviews, 2021, 150: 111390.
  • 14.
    Cruz C.S. ; Stimpson S. Keeping the lights on: oil and gas development in a low-carbon world. Journal of Energy & Natural Resources Law, 2022, 40( 4): 491- 494.
  • 15.
    Zhang H. ; Yin D.D. The oil and gas industry and the development of the natural gas automobile industry. IOP Conference Series: Earth and Environmental Science, 2019, 267( 2): 022043.
  • 16.
    Ogle, S. Natural gas compression empowering energy evolution. Pipeline & Gas Journal, 2022, 249( 9). Available Online: https://pgjonline.com/magazine/2022/september-2022-vol-249-no-9/guest-commentary/natural-gas-compression-empowering-energy-evolution (Accessed on 2 March 2023)
  • 17.
    Huang S. ; Xiong S.T. ; Zhao Z.G. Discussion about the Cr-Mo steel materials using in CNG cylinders. Materials Science Forum, 2020, 1001: 235- 239.
  • 18.
    Gao, L.S. Design and manufacture of composite CNG cylinders. Applied Mechanics and Materials, 2014, 670/671: 955- 959.
  • 19.
    Banaszkiewicz T. ; Chorowski M. ; Gizicki W. ; et al . Liquefied natural gas in mobile applications—opportunities and challenges. Energies, 2020, 13( 21): 5673.
  • 20.
    Kim C.U. ; Bae C.S. Speciated hydrocarbon emissions from a gas-fuelled spark-ignition engine with various operating parameters. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2000, 214( 7): 795- 808.
  • 21.
    Sinopec makes Sichuan Basin shale gas discovery. Oil & Gas Journal 2022, 120(10d). Available Online: https://www.ogj.com/exploration-development/discoveries/article/14284699/sinopec-makes-sichuan-basin-shale-gas-discovery (Accessed on 5 March 2023).
  • 22.
    Dong D. ; Wang Y. ; Li X. ; et al . Breakthrough and prospect of shale gas exploration and development in China. Natural Gas Industry B 2016, 3( 1), 12- 26.
  • 23.
    Zou C. ; Dong D. ; Wang Y. ; et al . Shale gas in China: Characteristics, challenges and prospects (II). Petroleum Exploration and Development 2016, 43( 2), 182- 196.
  • 24.
    Anonymous . Combustible ice reserves in South China Sea's Shenhu block total 19. 4 bln cubic meters. Interfax: China Energy Newswire 2010. Available Online: https://schlr.cnki.net/zn/Detail/index/GARJ0010_6/SPQD00003781806 (Accessed on 5 March 2023).
  • 25.
    Editorial Department of this Journal . The second-round trial collection of natural gas hydrate (combustible ice) in China's sea areas achieves complete success. Geology in China, 2020, 47( 2): 555.
  • 26.
    Arkansas selects diesel-to-natural gas engine. Worldwide Energy, 2014, 26( 6). Available Online: https://www.proquest.com/trade-journals/arkansas-selects-diesel-natural-gas-engine/docview/1535683013/se-2 (Accessed on 5 March 2023).
  • 27.
    Soltani-Sobh A. ; Heaslip K. ; Bosworth R. ; et al . Compressed natural gas vehicles: financially viable option? Transportation Research Record, 2016, 2572( 1): 28- 36.
  • 28.
    Yi P. ; Long W.Q. ; Feng L.Y. ; et al . Investigation of evaporation and auto-ignition of isolated lubricating oil droplets in natural gas engine in-cylinder conditions. Fuel, 2019, 235: 1172- 1183.
  • 29.
    Li L.F. ; Zhang Z.B. Investigation on steam direct injection in a natural gas engine for fuel savings. Energy, 2019, 183: 958- 970.
  • 30.
    Sarabi M. ; Aghdam E.A. Experimental analysis of in-cylinder combustion characteristics and exhaust gas emissions of gasoline–natural gas dual-fuel combinations in a SI engine. Journal of Thermal Analysis and Calorimetry, 2020, 139( 5): 3165- 3178.
  • 31.
    Chamberlain S. ; Chookah M. ; Modarres M. Development of a probabilistic mechanistic model for reliability assessment of gas cylinders in compressed natural gas vehicles. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2009, 223( 4): 289- 299.
  • 32.
    Khan M.I. ; Yasmin T. ; Khan N.B. Safety issues associated with the use and operation of natural gas vehicles: learning from accidents in Pakistan. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38( 8): 2481- 2497.
  • 33.
    Kim Y.S. ; Park K.S. ; Kim T.O. Suggestion for safety improvement of compressed natural gas vehicle. Journal of the Korean Institute of Gas, 2012, 16( 4): 1- 7.
  • 34.
    Wei Z.N. ; Li M.H. ; Li S. ; et al . Development of natural gas chemical kinetic mechanisms and application in engines: a review. ACS Omega, 2021, 6( 37): 23643- 23653.
  • 35.
    Pan K. ; Wallace J.S. A low temperature natural gas reaction mechanism for compression ignition engine application. Combustion and Flame, 2019, 202: 334- 346.
  • 36.
    Matsuoka H. ; Kishishita K. ; Nakashima K. ; et al . Structure and performance of heat insulated natural gas engine. JSAE Review, 1997, 18( 4): 377- 384.
  • 37.
    Shi J.L. ; Li T. ; Liu Z.C. ; et al . Life cycle environmental impact evaluation of newly manufactured diesel engine and remanufactured LNG engine. Procedia CIRP, 2015, 29: 402- 407.
  • 38.
    Noble A.D. ; Beaumont A.J. Control system for a low emissions natural gas engine for urban vehicles. New York: SAE International, 1991.
  • 39.
    Smith H. ; Pipeline T.G. ; Wachowiak R. ; et al . Fuel control system updates older natural gas engines. Pipeline & Gas Journal, 2012, 239( 1): 58- 62.
  • 40.
    Han Y. ; Young P. Natural gas engine model for speed and air-fuel control. International Journal of Modelling, Identification and Control, 2020, 36( 2): 104- 115.
  • 41.
    Gubba S.R. ; Tamma B. ; Kazempoor P. ; et al . A novel air management system for a large bore two-stroke naturally aspirated gas engine to reduce emissions. International Journal of Engine Research, 2021, 22( 2): 364- 374.
  • 42.
    Thipse S.S. ; Dsouza A. ; Sonawane S.B. ; et al . Development of multi cylinder turbocharged natural gas engine for heavy duty application. SAE International Journal of Engines, 2017, 10( 1): 27- 38.
  • 43.
    Che X.L. ; Zhu C. ; Wang N.D. Testing system for compressed natural gas engine ECU. Applied Mechanics and Materials, 2011, 127: 214- 219.
  • 44.
    Wang X.L. ; Ping X. Hardware design of nature gas engine ECU based on single chip. Applied Mechanics and Materials, 2014, 575: 576- 579.
  • 45.
    Zeng, Q. Study on the modification and performance of compressed natural gas engine. Applied Mechanics and Materials, 2014, 568/570: 1690- 1693.
  • 46.
    Shimizu R. ; Iijima A. ; Yoshida K. ; et al . Analysis of supercharged HCCI combustion using a blended fuel. SAE International Journal of Engines, 2012, 5( 1): 1- 8.
  • 47.
    Xu M. ; Cheng W. ; Li Z. ; et al . Pre-injection strategy for pilot diesel compression ignition natural gas engine. Applied Energy, 2016, 179: 1185- 1193.
  • 48.
    Ohta Y. ; Furutani M. ; Kojima M. ; et al . Premixed-compression-ignition natural gas engine. New York: SAE International, 2000.
  • 49.
    Mansor W.N.W. ; Abdullah S. ; Olsen D.B. ; et al . Diesel-natural gas engine emissions and performance. AIP Conference Proceedings, 2018, 2035( 1): 060010.
  • 50.
    Worth D.J. ; Stettler M.E.J. ; Dickinson P. ; et al . Characterization and evaluation of methane oxidation catalysts for dual-fuel diesel and natural gas engines. Emission Control Science and Technology, 2016, 2( 4): 204- 214.
  • 51.
    Johnson D. ; Heltzel R. ; Nix A. Trends in unconventional well development—methane emissions associated with the use of dual fuel and dedicated natural gas engines. Energy Technology, 2014, 2( 12): 988- 995.
  • 52.
    Semin; Ismail A.R. ; Bakar R.A. Combustion temperature effect of diesel engine convert to compressed natural gas engine. American Journal of Engineering and Applied Sciences, 2009, 2( 1): 212- 216.
  • 53.
    Song S.S. ; Zhang H.G. Performance study for miller cycle natural gas engine based on GT-power. Journal of Clean Energy Technologies, 2015, 3( 5): 351- 355.
  • 54.
    Okamoto K. ; Zhang F.R. ; Shimogata S. ; et al . Development of a late intake-valve closing (LIVC) miller cycle for stationary natural gas engines - effect of EGR utilization. New York: SAE International, 1997.
  • 55.
    Valencia G. ; Duarte J. ; Isaza-Roldan C. Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC. Applied Sciences, 2019, 9( 19): 4017.
  • 56.
    Rink M. ; Eigenberger G. ; Nieken U. Heat-integrated exhaust purification for natural gas engines. Chemie Ingenieur Technik, 2013, 85( 5): 656- 663.
  • 57.
    Alanen J. ; Simonen P. ; Saarikoski S. ; et al . Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics. Atmospheric Chemistry and Physics, 2017, 17( 14): 8739- 8755.
  • 58.
    Pirouzpanah V. ; Sarai R.K. Reduction of emissions in an automotive direct injection diesel engine dual-fuelled with natural gas by using variable exhaust gas recirculation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217( 8): 719- 725.
  • 59.
    Lehtoranta K. ; Murtonen T. ; Vesala H. ; et al . Natural gas engine emission reduction by catalysts. Emission Control Science and Technology, 2017, 3( 2): 142- 152.
  • 60.
    Huang C.Y. ; Shan W.P. ; Lian Z.H. ; et al . Recent advances in three-way catalysts of natural gas vehicles. Catalysis Science & Technology, 2020, 10( 19): 6407- 6419.
  • 61.
    Zheng J. ; Zhou R. ; Zhan R. ; et al . Combustion and emission characteristics of natural gas engine with partial-catalytic oxidation of the fuel. Fuel, 2022, 312: 122796.
  • 62.
    Hora T.S. ; Shukla P.C. ; Agarwal A.K. Particulate emissions from hydrogen enriched compressed natural gas engine. Fuel, 2016, 166: 574- 580.
  • 63.
    Ristovski Z.D. ; Morawska L. ; Hitchins J. ; et al . Particle emissions from compressed natural gas engines. Journal of Aerosol Science, 2000, 31( 4): 403- 413.
  • 64.
    Gas engine-driven cogeneration system. Air Conditioning Heating & Refrigeration News, 2012, 245( 17). Available Online: https://digital.bnpmedia.com/publication/?m=9388&i=108284&p=8&ver=html5 (Accessed on 5 March 2023)
  • 65.
    Sun, Z.G. Energy efficiency and economic feasibility analysis of cogeneration system driven by gas engine. Energy and Buildings, 2008, 40( 2): 126- 130.
  • 66.
    Khaliq A. ; Almohammadi B.A. ; Alharthi M.A. ; et al . Investigation of a combined refrigeration and air conditioning system based on two-phase ejector driven by exhaust gases of natural gas fueled homogeneous charge compression ignition engine. Journal of Energy Resources Technology, 2021, 143( 12): 120911.
  • 67.
    Mcdonough M.J. ; Lafaille S. Natural-gas-engine-driven heat pumps: technological advances lead to higher efficiency and lower emissions. HPAC Engineering, 2012, 84( 8): 36, 38, 40- 41.
Share this article:
How to Cite
Lidong Liu; Mengli Zhang; Zhengbai Liu. A Review of Development of Natural Gas Engines. International Journal of Automotive Manufacturing and Materials 2023, 2 (1), 4. https://doi.org/10.53941/ijamm0201004.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2023 by the authors.