2504000081
  • Open Access
  • Review
Recent Progress on Combustion Characteristics of Ammonia-Based Fuel Blends and Their Potential in Internal Combustion Engines
  • Denghao Zhu,   
  • Bo Shu *

Received: 21 Nov 2022 | Accepted: 22 Dec 2022 | Published: 18 Jan 2023

Abstract

Ammonia has recently attracted numerous attentions from researchers and policy makers as promising energy and hydrogen carrier for mitigating the carbon footprints in the energy sector. The mature infrastructure for the production, storage, and transportation of ammonia allows a quick role of ammonia in energy systems. By applying green hydrogen and renewable energies, green ammonia can be produced, which makes ammonia even more attractive. Prior to the commercial use of ammonia for large-scale energy systems, e.g., internal combustion engines and stationary gas turbines, a fundamental understanding of the ignition and combustion behaviors of ammonia is essential. In the past decades, a lot of studies on ammonia combustion have been published. Those studies covered broad topics including experimental and numerical investigations which were either fundamental or practical oriented. To continuously follow state-of-the-art and to provide a brief overview of the most recent research on ammonia combustion so that others can easily identify the most relevant work, this review summarizes the recent progress on combustion characteristics of ammonia and ammonia fuel blends as well as their potential use in internal combustion engines. Combining the advantages and drawbacks identified in both fundamental and practical studies, a clearer road map for ammonia application is given.

References 

  • 1.
    Kohse-HöinghausK.; OsswaldP.; CoolT.A.; et al. Biofuel combustion chemistry: from ethanol to biodiesel. Angewandte Chemie International Edition, 2010, 49(21): 3572–3597.
  • 2.
    ZhangC.; HuiX.; LinY.Z.; et al. Recent development in studies of alternative jet fuel combustion: progress, challenges, and opportunities. Renewable and Sustainable Energy Reviews, 2016, 54: 120–138.
  • 3.
    IshaqH.; Crawford, C. CO2‑based alternative fuel production to support development of CO2 capture, utilization and storage. Fuel, 2023, 331, Part 2: 125684.
  • 4.
    RasmussenP.B.; KazutaM.; ChorkendorffI. Synthesis of methanol from a mixture of H2 and CO2 on Cu(100). Surface Science, 1994, 318(3): 267–280.
  • 5.
    GongJ.L.; YueH.R.; ZhaoY.J.; et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. Journal of the American Chemical Society, 2012, 134(34): 13922–13925.
  • 6.
    BaranowskiC.J.; BahmanpourA.M.; KröcherO. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): a review. Applied Catalysis B: Environmental, 2017, 217: 407–420.
  • 7.
    Lubitz, W.; Tumas, W. Hydrogen: an overview. Chemical Reviews, 2007, 107(10): 3900–3903.
  • 8.
    Dutta, review on productionS. A, storage of hydrogen and its utilization as an energy resource. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1148–1156.
  • 9.
    Valera-MedinaA.; Amer-HatemF.; AzadA.K.; et al. Review on ammonia as a potential fuel: from synthesis to economics. Energy & Fuels, 2021, 35(9): 6964–7029.
  • 10.
    TakeyamaT.; MiyamaH. A shock-tube study of the ammonia-oxygen reaction. Symposium (International) on Combustion, 1967, 11(1): 845–852.
  • 11.
    Shu, B.; He, X.; Ramos, C.F;et al. Experimental and modeling study on the auto-ignition properties of ammonia/methane mixtures at elevated pressures. Proceedings of the Combustion Institute, 2021, 38(1): 261–268.
  • 12.
    PochetM.; DiasV.; MoreauB.; et al. Experimental and numerical study, under LTC conditions, of ammonia ignition delay with and without hydrogen addition. Proceedings of the Combustion Institute, 2019, 37(1): 621–629.
  • 13.
    ShuB.; VallabhuniS.K.; HeX.; et al. A shock tube and modeling study on the autoignition properties of ammonia at intermediate temperatures. Proceedings of the Combustion Institute, 2019, 37(1): 205–211.
  • 14.
    MathieuO.; PetersenE.L. Experimental and modeling study on the high-temperature oxidation of ammonia and related NOx chemistry. Combustion and Flame, 2015, 162(3): 554–570.
  • 15.
    FengY.; ZhuJ.Z.; MaoY.B.; et al. Low-temperature auto-ignition characteristics of NH3/diesel binary fuel: ignition delay time measurement and kinetic analysis. Fuel, 2020, 281: 118761.
  • 16.
    IssayevG.; GiriB.R.; ElbazA.M.; et al. Combustion behavior of ammonia blended with diethyl ether. Proceedings of the Combustion Institute, 2021, 38(1): 499–506.
  • 17.
    DaiL.M.; GersenS.; GlarborgP.; et al. Autoignition studies of NH3/CH4 mixtures at high pressure. Combustion and Flame, 2020, 218: 19–26.
  • 18.
    MeiB.W.; MaS.Y.; ZhangY.; et al. Exploration on laminar flame propagation of ammonia and syngas mixtures up to 10 atm. Combustion and Flame, 2020, 220: 368–377.
  • 19.
    HanX.L.; WangZ.H.; CostaM.; et al. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames. Combustion and Flame, 2019, 206: 214–226.
  • 20.
    Kalghatgi, G. Is it the end of combustion and engine combustion research? Should it be? Transportation Engineering, 2022, 10: 100142.
  • 21.
    IssayevG.; GiriB.R.; ElbazA.M.; et al. Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: a promising low carbon fuel blend. Renewable Energy, 2022, 181: 1353–1370.
  • 22.
    WangZ.H.; HanX.L.; HeY.; et al. Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames. Combustion and Flame, 2021, 229: 111392.
  • 23.
    XiaoH.H.; LiH.Z. Experimental and kinetic modeling study of the laminar burning velocity of NH3/DME/air premixed flames. Combustion and Flame, 2022, 245: 112372.
  • 24.
    ShresthaK.P.; GiriB.R.; ElbazA.M.; et al. A detailed chemical insights into the kinetics of diethyl ether enhancing ammonia combustion and the importance of NOx recycling mechanism. Fuel Communications, 2022, 10: 100051.
  • 25.
    LiM.D.; HeX.Y.; HashemiH.; et al. An experimental and modeling study on auto-ignition kinetics of ammonia/methanol mixtures at intermediate temperature and high pressure. Combustion and Flame, 2022, 242: 112160.
  • 26.
    LiM.D.; ZhuD.H.; HeX.Y.; et al. Experimental and kinetic modeling study on auto-ignition properties of ammonia/ethanol blends at intermediate temperatures and high pressures. Proceedings of the Combustion Institute, 2022, in press.
  • 27.
    ZhangX.Y.; MoosakuttyS.P.; RajanR.P.; et al. Combustion chemistry of ammonia/hydrogen mixtures: jet-stirred reactor measurements and comprehensive kinetic modeling. Combustion and Flame, 2021, 234: 111653.
  • 28.
    ShresthaK.P.; LhuillierC.; BarbosaA.A.; et al. An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature. Proceedings of the Combustion Institute, 2021, 38(2): 2163–2174.
  • 29.
    VinodK.N.; FangT.G. Experimental characterization of spark ignited ammonia combustion under elevated oxygen concentrations. Proceedings of the Combustion Institute, 2022, in press.
  • 30.
    WangD.; WangZ.; ZhangT.Y.; et al. A comparative study on the laminar C1–C4 n-alkane/NH3 premixed flame. Fuel, 2022, 324, Part C: 124732.
  • 31.
    ChenC.L.; WangZ.H.; YuZ.C.; et al. Experimental and kinetic modeling study of laminar burning velocity enhancement by ozone additive in NH3+O2+N2 and NH3+CH4/C2H6/C3H8+air flames. Proceedings of the Combustion Institute, 2022, in press.
  • 32.
    LavaderaM.L.; HanX.L.; KonnovA.A. Comparative effect of ammonia addition on the laminar burning velocities of methane, n-heptane, and iso-octane. Energy & Fuels, 2020, 35(9): 7156–7168.
  • 33.
    CinarC.; CanÖ.; SahinF.; et al. Effects of premixed diethyl ether (DEE) on combustion and exhaust emissions in a HCCI-DI diesel engine. Applied Thermal Engineering, 2010, 30(4): 360–365.
  • 34.
    BaeC.; KimJ. Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute, 2017, 36(3): 3389–3413.
  • 35.
    Agarwal, A.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 2007, 33(3): 233–271.
  • 36.
    RonanP.; PierreB.; ChristineM.R.; et al. Laminar flame speed of ethanol/ammonia blends—an experimental and kinetic study. Fuel Communications, 2022, 10: 100052.
  • 37.
    SinghE.; ShankarV.B.; TripathiR.; et al. 2-Methylfuran: a bio-derived octane booster for spark-ignition engines. Fuel, 2018, 225: 349–357.
  • 38.
    JinS.Y.; ShuB.; HeX.Y.; et al. A study on autoignition characteristics of H2-O2 mixtures with diluents of Ar/N2 in rapid compression machine for argon power cycle engines. Fuel, 2021, 303: 121291.
  • 39.
    BüttgenR.D.; RaffiusT.; GrünefeldG.; et al. High-speed imaging of the ignition of ethanol at engine relevant conditions in a rapid compression machine. Proceedings of the Combustion Institute, 2019, 37(2): 1471–1478.
  • 40.
    ChenJ.D.; JiangX.; QinX.K.; et al. Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure. Fuel, 2021, 287: 119563.
  • 41.
    GlarborgP.; MillerJ.A.; RuscicB.; et al. Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 2018, 67: 31–68.
  • 42.
    OtomoJ.; KoshiM.; MitsumoriT.; et al. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion. International Journal of Hydrogen Energy, 2018, 43(5): 3004–3014.
  • 43.
    HeX.; ShuB.; NascimentoD.; et al. Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures. Combustion and Flame, 2019, 206: 189–200.
  • 44.
    DaiL.M.; GersenS.; GlarborgP.; et al. Experimental and numerical analysis of the autoignition behavior of NH3 and NH3/H2 mixtures at high pressure. Combustion and Flame, 2020, 215: 134–144.
  • 45.
    DongS.J.; WangB.W.; JiangZ.Z.; et al. An experimental and kinetic modeling study of ammonia/n-heptane blends. Combustion and Flame, 2022, 246: 112428.
  • 46.
    YuL.; ZhouW.; FengY.; et al. The effect of ammonia addition on the low-temperature autoignition of n-heptane: an experimental and modeling study. Combustion and Flame, 2020, 217: 4–11.
  • 47.
    TianZ.Y.; LiY.Y.; ZhangL.D.; et al. An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combustion and Flame, 2009, 156(7): 1413–1426.
  • 48.
    OsipovaK.N.; KorobeinichevO.P.; ShmakovA.G. Chemical structure and laminar burning velocity of atmospheric pressure premixed ammonia/hydrogen flames. International Journal of Hydrogen Energy, 2021, 46(80): 39942–39954.
  • 49.
    NakamuraH.; HasegawaS.; TezukaT. Kinetic modeling of ammonia/air weak flames in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2017, 185: 16–27.
  • 50.
    MendiaraT.; GlarborgP. Ammonia chemistry in oxy-fuel combustion of methane. Combustion and Flame, 2009, 156(10): 1937–1949.
  • 51.
    SongY.; HashemiH.; ChristensenJ.M.; et al. Ammonia oxidation at high pressure and intermediate temperatures. Fuel, 2016, 181: 358-–365.
  • 52.
    SunZ.J.; DengY.W.; SongS.B.; et al. Experimental and kinetic modeling study of the homogeneous chemistry of NH3 and NOx with CH4 at the diluted conditions. Combustion and Flame, 2022, 243: 112015.
  • 53.
    OsipovaK.N.; ZhangX.Y.; SarathyS.M.; et al. Ammonia and ammonia/hydrogen blends oxidation in a jet-stirred reactor: experimental and numerical study. Fuel, 2022, 310, Part A: 122202.
  • 54.
    ArunthanayothinS.; StagniA.; SongY.; et al. Ammonia–methane interaction in jet-stirred and flow reactors: an experimental and kinetic modeling study. Proceedings of the Combustion Institute, 2021, 38(1): 345–353.
  • 55.
    MannaM.V.; SabiaP.; SorrentinoG.; et al. New insight into NH3-H2 mutual inhibiting effects and dynamic regimes at low-intermediate temperatures. Combustion and Flame, 2022, 243: 111957.
  • 56.
    TangR.Y.; XuQ.; PanJ.Y.; et al. An experimental and modeling study of ammonia oxidation in a jet stirred reactor. Combustion and Flame, 2022, 240: 112007.
  • 57.
    AlturaifiS.A.; MathieuO.; PetersenE.L. An experimental and modeling study of ammonia pyrolysis. Combustion and Flame, 2022, 235: 111694.
  • 58.
    AlturaifiS.A.; MathieuO.; PetersenE.L. Shock-tube laser absorption measurements of N2O time histories during ammonia oxidation. Fuel Communications, 2022, 10: 100050.
  • 59.
    AlturaifiS.A.; MathieuO.; PetersenE.L. A shock-tube study of NH3 and NH3/H2 oxidation using laser absorption of NH3 and H2O. Proceedings of the Combustion Institute, 2022, in press.
  • 60.
    HeD.; ZhengD.; DuY.J.; et al. Laser-absorption-spectroscopy-based temperature and NH3-concentration time-history measurements during the oxidation processes of the shock-heated reacting NH3/H2 mixtures. Combustion and Flame, 2022, 245: 112349.
  • 61.
    ZhengD.; HeD.; DuY.J.; et al. Shock tube study of the interaction between ammonia and nitric oxide at high temperatures using laser absorption spectroscopy. Proceedings of the Combustion Institute, 2022, in press.
  • 62.
    ZhuD.H.; QuZ.C.; LiM.D.; et al. Investigation on the NO formation of ammonia oxidation in a shock tube applying tunable diode laser absorption spectroscopy. Combustion and Flame, 2022, 246: 112389.
  • 63.
    AriemmaG.B.; SorrentinoG.; RagucciR.; et al. Ammonia/methane combustion: stability and NOx emissions. Combustion and Flame, 2022, 241: 112071.
  • 64.
    Kroch, E. Ammonia-a fuel for motor buses. Journal of the Institute of Petroleum, 1945, 31: 213–223.
  • 65.
    Lindell, L. An introduction to the nuclear powered energy depot concept. New York: SAE International, 1965.
  • 66.
    CorneliusW.; HuellmantelL.; MitchellH. Ammonia as an engine fuel. New York: SAE International, 1965.
  • 67.
    Pearsall, T.J. Ammonia Application to Reciprocating Engines. Volume 1. CONTINENTAL AVIATION AND ENGINEERING CORP DETROIT MI. 1967.
  • 68.
    GrayD.S.; DomkeC.J.; MeguerianG.H.; et al. Ammonia application to reciprocating engines. Volume 2. Detroit MI, 1967.
  • 69.
    StarkmanE.S.; NewhallH.; SuttonR.; et al. Ammonia as a spark ignition engine fuel: theory and application. New York: SAE International, 1966.
  • 70.
    StarkmanE.S.; JamesG.E.; NewhallH.K. Ammonia as a diesel engine fuel: theory and application. New York: SAE International, 1967.
  • 71.
    BroK.; PedersenP.S. Alternative diesel engine fuels: an experimental investigation of methanol, ethanol, methane and ammonia in a D.I. diesel engine with pilot injection. New York: SAE International, 1977.
  • 72.
    MørchC. S.; BjerreA.; GøttrupM.P.; et al. Ammonia/hydrogen mixtures in an SI-engine: engine performance and analysis of a proposed fuel system. Fuel, 2011, 90(2): 854–864.
  • 73.
    LhuillierC.; BrequignyP.; ContinoF.; et al. Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions. Fuel, 2020, 269: 117448.
  • 74.
    LhuillierC.; BrequignyP.; ContinoF.; et al. Combustion characteristics of ammonia in a modern spark-ignition engine. New York: SAE International, 2019.
  • 75.
    LhuillierC.; BrequignyP.; ContinoF.; et al. Performance and emissions of an ammonia-fueled SI engine with hydrogen enrichment. New York: SAE International, 2019.
  • 76.
    ZhangR.; ChenL.; WeiH.Q.; et al. Understanding the difference in combustion and flame propagation characteristics between ammonia and methane using an optical SI engine, Fuel, 2022, 324, Part C: 124794.
  • 77.
    ZhangH.Y.Y.; LiG.S.; LongY.X.; et al. Numerical study on combustion and emission characteristics of a spark-ignition ammonia engine added with hydrogen-rich gas from exhaust-fuel reforming. Fuel, 2023, 332, Part 1: 125939.
  • 78.
    OkaforE.C.; NaitoY.; ColsonS.; et al. Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combustion and Flame, 2018, 187: 185–198.
  • 79.
    MercierA.; Mounaïm-RousselleC.; BrequignyP.; et al. Improvement of SI engine combustion with ammonia as fuel: effect of ammonia dissociation prior to combustion. Fuel Communications, 2022, 11: 100058.
  • 80.
    FrigoS.; GentiliR. Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen. International Journal of Hydrogen Energy, 2013, 38(3): 1607–1615.
  • 81.
    FrigoS.; GentiliR.; de AngelisF. Further insight into the possibility to fuel a SI engine with ammonia plus hydrogen. New York: SAE International, 2014.
  • 82.
    RyuK.; Zacharakis-JutzG.E.; KongS.C. Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation. International Journal of Hydrogen Energy, 2014, 39(5): 2390–2398.
  • 83.
    KoikeM.; SuzuokiT. In-line adsorption system for reducing cold-start ammonia emissions from engines fueled with ammonia and hydrogen. International Journal of Hydrogen Energy, 2019, 44(60): 32271–32279.
  • 84.
    KoikeM.; SuzuokiT.; TakeuchiT.; et al. Cold-start performance of an ammonia-fueled spark ignition engine with an on-board fuel reformer. International Journal of Hydrogen Energy, 2021, 46(50): 25689–25698.
  • 85.
    GrannellS.M.; AssanisD.N.; GillespieD.E.; et al. Exhaust emissions from a stoichiometric, ammonia and gasoline dual fueled spark ignition engine. Proceedings of the ASME 2009 Internal Combustion Engine Division Spring Technical Conference, Milwaukee, Wisconsin, USA: ASME, 2009: 135–141.
  • 86.
    RyuK.; Zacharakis-JutzG.E.; KongS.C. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine. Applied Energy, 2014, 116: 206–215.
  • 87.
    Haputhanthri, S.O. Ammonia gasoline fuel blends: feasibility study of commercially available emulsifiers and effects on stability and engine performance. New York: SAE International, 2014.
  • 88.
    HaputhanthriS.O.; MaxwellT.T.; FlemingJ.; et al. Ammonia and gasoline fuel blends for spark ignited internal combustion engines. Journal of Energy Resources Technology, 2015, 137(6): 062201.
  • 89.
    WuX.F.; FengY.M.; XuG.D.; et al. Numerical investigations on charge motion and combustion of natural gas-enhanced ammonia in marine pre-chamber lean-burn engine with dual-fuel combustion system. International Journal of Hydrogen Energy, 2022, in press.
  • 90.
    LiR.; KonnovA.A.; HeG.Q.; et al. Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures. Fuel, 2019, 257: 116059.
  • 91.
    OhS.; ParkC.; KimS.; et al. Natural gas–ammonia dual-fuel combustion in spark-ignited engine with various air–fuel ratios and split ratios of ammonia under part load condition. Fuel, 2021, 290: 120095.
  • 92.
    OhS.; ParkC.; OhJ.; et al. Combustion, emissions, and performance of natural gas–ammonia dual-fuel spark-ignited engine at full-load condition. Energy, 2022, 258: 124837.
  • 93.
    PeléR.; BrequignyP.; BellettreJ.; et al. Performances and pollutant emissions of spark ignition engine using direct injection for blends of ethanol/ammonia and pure ammonia. THIESEL 2022 Conference on Thermo- and Fluid Dynamics of Clean propulsion Powerplants, Valencia, Spain: HAL, 2022: hal-03788532.
  • 94.
    ReiterA.J.; KongS.C. Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions. Energy & Fuels, 2008, 22(5): 2963–2971.
  • 95.
    ReiterA.J.; KongS.C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel, 2011, 90(1): 87–97.
  • 96.
    NikiY.; YooD.H.; HirataK.; et al. Effects of ammonia gas mixed into intake air on combustion and emissions characteristics in diesel engine. Proceedings of the ASME 2016 Internal Combustion Engine Division Fall Technical Conference, Greenville, South Carolina, USA: ASME, 2016: V001T03A004.
  • 97.
    NikiY.; NittaY.; SekiguchiH.; et al. Emission and combustion characteristics of diesel engine fumigated with ammonia. Proceedings of the ASME 2018 Internal Combustion Engine Division Fall Technical Conference, San Diego, California, USA: ASME, 2018: V001T03A016.
  • 98.
    NikiY.; NittaY.; SekiguchiH.; et al. Diesel fuel multiple injection effects on emission characteristics of diesel engine mixed ammonia gas into intake air. Journal of Engineering for Gas Turbines and Power, 2019, 141(6): 061020.
  • 99.
    Niki, Y. Experimental investigation of effects of split diesel-pilot injection on emissions from ammonia-diesel dual fuel engine. Proceedings of the ASME 2021 Internal Combustion Engine Division Fall Technical Conference, Virtual, Online: ASME, 2021: V001T01A002.
  • 100.
    Niki, Y. Reductions in unburned ammonia and nitrous oxide emissions from an ammonia-assisted diesel engine with early timing diesel pilot injection. Journal of Engineering for Gas Turbines and Power, 2021, 143(9): 091014.
  • 101.
    YousefiA.; GuoH.S.; DevS.; et al. A study on split diesel injection on thermal efficiency and emissions of an ammonia/diesel dual-fuel engine. Fuel, 2022, 316: 123412.
  • 102.
    YousefiA.; GuoH.S.; DevS.; et al. Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine. Fuel, 2022, 314: 122723.
  • 103.
    ZhangZ.X.; LongW.Q.; DongP.; et al. Performance characteristics of a two-stroke low speed engine applying ammonia/diesel dual direct injection strategy. Fuel, 2023, 332, Part 2: 126086.
  • 104.
    LiuL.; WuY.; WangY. Numerical investigation on the combustion and emission characteristics of ammonia in a low-speed two-stroke marine engine. Fuel, 2022, 314: 122727.
  • 105.
    LiuL.; WuY.; WangY.; et al. Exploration of environmentally friendly marine power technology -ammonia/diesel stratified injection. Journal of Cleaner Production, 2022, 380, Part 1: 135014.
  • 106.
    LiT.; ZhouX.Y.; WangN.; et al. A comparison between low- and high-pressure injection dual-fuel modes of diesel-pilot-ignition ammonia combustion engines. Journal of the Energy Institute, 2022, 102: 362–373.
  • 107.
    GillS.S.; ChathaG.S.; TsolakisA.; et al. Assessing the effects of partially decarbonising a diesel engine by co-fuelling with dissociated ammonia. International Journal of Hydrogen Energy, 2012, 37(7): 6074–6083.
  • 108.
    KaneS.P.; NorthropW.F. Thermochemical recuperation to enable efficient ammonia-diesel dual-fuel combustion in a compression ignition engine. Energies, 2021, 14(22): 7540.
  • 109.
    NadimiE.; PrzybyłaG.; EmbersonD.; et al. Effects of using ammonia as a primary fuel on engine performance and emissions in an ammonia/biodiesel dual-fuel CI engine. International Journal of Energy Research, 2022, 46(11): 15347–15361.
  • 110.
    ElumalaiR.; RaviK. Strategy to reduce carbon emissions by adopting ammonia–Algal biodiesel in RCCI engine and optimize the fuel concoction using RSM methodology. International Journal of Hydrogen Energy, 2022, 47(94): 39701–39718.
  • 111.
    GrossC.W.; KongS.C. Performance characteristics of a compression-ignition engine using direct-injection ammonia–DME mixtures. Fuel, 2013, 103: 1069–1079.
  • 112.
    RyuK.; Zacharakis-JutzG.E.; KongS.C. Performance characteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether. Applied Energy, 2014, 113: 488–499.
  • 113.
    PochetM.; TruedssonI.; FoucherF.; et al. Ammonia-hydrogen blends in Homogeneous-Charge Compression-Ignition engine. New York: SAE International, 2017.
  • 114.
    Pochet, M.; Jeanmart, H.; Contino, F. A 22:1 compression ratio ammonia-hydrogen HCCI engine: combustion, load, and emission performances. Frontiers in Mechanical Engineering, 2020, 6: 43.
  • 115.
    WestlyeF.R.; IvarssonA.; SchrammJ. Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine. Fuel, 2013, 111: 239–247.
Share this article:
How to Cite
Zhu, D.; Shu, B. Recent Progress on Combustion Characteristics of Ammonia-Based Fuel Blends and Their Potential in Internal Combustion Engines. International Journal of Automotive Manufacturing and Materials 2023, 2 (1), 1. https://doi.org/10.53941/ijamm0201001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2023 by the authors.