- 1.
Yu, H. ; Jiang, R. ; He, Z. ; et al . Automated vehicleinvolved traffic flow studies: A survey of assumptions, models, speculations, and perspectives . Transportation Research Part C: Emerging Technologies 2021 , 127 , 103101 .
- 2.
He, Y. Developing and evaluating the driving and powertrain systems of automated and electrified vehicles (AEVs) for sustainable transport . thesis, Ph.D. ,University of Birmingham,Birmingham,UK , 2021 .
- 3.
He, Y. ; Zhou, Q. ; Makridis, M. ; et al . Multiobjective co-optimization of cooperative adaptive cruise control and energy management strategy for PHEVs . IEEE Transactions on Transportation Electrification 2020 , 6 ( 1 ), 346 – 355 .
- 4.
He, Y. ; Makridis, M. ; Mattas, K. ; et al . Introducing electrified vehicle dynamics in traffic simulation . Transportation Research Record 2020 , 2674 ( 9 ), 776 – 791 .
- 5.
Commission, European ,Joint Research Centre . The Future of Road Transport – Implications of Automated, Connected, Low-Carbon and Shared Mobility , Publications Office , 2019 . Available Online:
https://data.europa.eu/doi/10.2760/668964 (Accessed on 12 June 2023) .
- 6.
Ni, D. Multiscale modeling of traffic flow . Mathematica Aeterna 2011 , 1 ( 1 ), 27 – 54 .
- 7.
He, Y. ; Mattas, K. ; Dona, R. ; et al . Introducing the effects of road geometry into microscopic traffic models for automated vehicles . IEEE Transactions on Intelligent Transportation Systems 2021 , 23 ( 8 ), 13604 – 13613 .
- 8.
Punzo, V. ; Montanino, M. ; Ciuffo, B. Do we really need to calibrate all the parameters? Variance-based sensitivity analysis to simplify microscopic traffic flow models . IEEE Transactions on Intelligent Transportation Systems 2014 , 16 ( 1 ), 184 – 193 .
- 9.
Chen, X. ; Li, L. ; Shi, Q. Stochastic evolutions of dynamic traffic flow . In Modeling and Applications . Springer : New York, NY, USA , 2015 .
- 10.
Elefteriadou, L. An Introduction to Traffic Flow Theory, Vol . 84 ; Springer: New York, NY, USA, 2014 .
- 11.
Ciuffo, B. ; Punzo, V. ; Montanino, M. Thirty years of Gipps’ car-following model: Applications, developments, and new features . Transportation Research Record 2012 , 2315 ( 1 ), 89 – 99 .
- 12.
Punzo, V. ; Zheng, Z. ; Montanino, M. About calibration of car-following dynamics of automated and human-driven vehicles: Methodology, guidelines and codes . Transportation Research Part C: Emerging Technologies 2021 , 128 , 103165 .
- 13.
Donà, R. ; Mattas, K. ; He, Y. ; et al . Multianticipation for string stable Adaptive Cruise Control and increased motorway capacity without vehicle-to-vehicle communication . Transportation Research Part C: Emerging Technologies 2022 , 140 , 103687 .
- 14.
Lee, S. ; Ngoduy, D. ; Keyvan-Ekbatani, M. Integrated deep learning and stochastic car-following model for traffic dynamics on multi-lane freeways . Transportation Research Part C: Emerging Technologies 2019 , 106 , 360 - 377 .
- 15.
Jiao, S. ; Zhang, S. ; Zhou, B. ; et al . Dynamic performance and safety analysis of car-following models considering collision sensitivity . Physica A: Statistical Mechanics and Its Applications 2021 , 564 , 125504 .
- 16.
He, Y. ; Montanino, M. ; Mattas, K. ; et al . Physics-augmented models to simulate commercial adaptive cruise control (ACC) systems . Transportation Research Part C: Emerging Technologies 2022 , 139 , 103692 .
- 17.
Treiber, M. ; Hennecke, A. ; Helbing, D. Congested traffic states in empirical observations and microscopic simulations . Physical Review E 2000 , 62 ( 2 ), 1805 .
- 18.
Makridis, M. ; Fontaras, G. ; Ciuffo, B. ; et al . MFC free-flow model: Introducing vehicle dynamics in microsimulation . Transportation Research Record 2019 , 2673 ( 4 ), 762 – 777 .
- 19.
Saifuzzaman, M. ; Zheng, , Z. Incorporating human-factors in car-following models: a review of recent developments and research needs . Transportation Research Part C: Emerging Technologies 2014 , 48 , 379 – 403 .
- 20.
Treiber, M. ; Kesting, A. ; Helbing, D. Delays, inaccuracies and anticipation in microscopic traffic models . Physica A: Statistical Mechanics and Its Applications 2006 , 360 ( 1 ), 71 – 88 .
- 21.
Panwai, S. ; Dia, H. Neural agent car-following models . IEEE Transactions on Intelligent Transportation Systems 2007 , 8 ( 1 ), 60 – 70 .
- 22.
Zhu, M. ; Wang, X. ; Wang, Y. Human-like autonomous car-following model with deep reinforcement learning . Transportation Research Part C: Emerging Technologies 2018 , 97 , 348 – 368 .
- 23.
Zhou, M. ; Qu, X. ; Li, X. A recurrent neural network based microscopic car following model to predict traffic oscillation . Transportation Research Part C: Emerging Technologies 2017 , 84 , 245 – 264 .
- 24.
Mo, Z. ; Shi, R. ; Di, X. A physics-informed deep learning paradigm for car-following models . Transportation Research Part C: Emerging Technologies 2021 , 130 , 103240 .
- 25.
Brackstone, M. ; McDonald, M. Car-following: a historical review . Transportation Research Part F: Traffic Psychology and Behaviour 1999 , 2 ( 4 ), 181 – 196 .
- 26.
Chen, X.M. Stochastic evolutions of dynamic traffic flow: Modelling and application . Thesis, Ph.D. ,Department of Civil Engineering,Tsinghua University,Beijing,China , 2012 .
- 27.
Reuschel, A. Fahrzeugbewegungen in der Kolonne . Osterreichisches Ingenieur Archiv 1950 , 4 , 193 – 215 .
- 28.
Pipes, L.A. An operational analysis of traffic dynamics . Journal of Applied Physics 1953 , 24 ( 3 ), 274 – 281 .
- 29.
Zhang, Y. ; Ni, P. ; Li, M. ; et al . A new car-following model considering driving characteristics and preceding vehicle’s acceleration . Journal of Advanced Transportation 2017 , 2017 , 2437539 .
- 30.
Gazis, D.C. ; Herman, R. ; Rothery, R.W. Nonlinear follow-the-leader models of traffic flow . Operations Research 1961 , 9 ( 4 ), 545 – 567 .
- 31.
Siuhi, S. ; Kaseko, M. Parametric study of stimulus-response behavior for car-following models . Paper 10 - 1179 . In The 89th Annual Meeting of the Transportation Research Board Compendium of Papers. 2010 . Available Online:
https://trid.trb.org/view/910163 (Accessed on 12 June 2023).
- 32.
Siuhi, S. Parametric study of stimulus-response behavior incorporating vehicle heterogeneity in car-following models . thesis, Ph.D. ,University of Nevada, Vegas, Las ,NV,USA , 2009 .
- 33.
Newell, G.F. Nonlinear effects in the dynamics of car following . Operations Research 1961 , 9 ( 2 ), 209 – 229 .
- 34.
Saifuzzaman, M. Incorporating risk taking and driver errors in car-following models . thesis, Ph.D. ,Queensland University of Technology,Brisbane,Australia , 2016 .
- 35.
Gipps, P.G. A behavioural car-following model for computer simulation . Transportation Research Part B: Methodological 1981 , 15 ( 2 ), 105 – 111 .
- 36.
Punzo, V. ; Simonelli, F. Analysis and comparison of microscopic traffic flow models with real traffic microscopic data . Transportation Research Record 2005 , 1934 ( 1 ), 53 – 63 .
- 37.
Punzo, V. ; Tripodi, A. Steady-state solutions and multiclass calibration of Gipps microscopic traffic flow model . Transportation Research Record 2007 , 1999 ( 1 ), 104 – 114 .
- 38.
Bando, M. ; Hasebe, K. ; Nakayama, A. ; et al . Dynamical model of traffic congestion and numerical simulation . Physical Review E 1995 , 51 ( 2 ), 1035 .
- 39.
Zhao, H. ; He, R. ; Ma, C. An extended car-following model at signalised intersections . Journal of Advanced Transportation 2018 , 2018 , 5427507 .
- 40.
Helbing, D. ; Tilch, B. Generalized force model of traffic dynamics . Physical review E 1998 , 58 ( 1 ), 133 .
- 41.
Jiang, R. ; Wu, Q. ; Zhu, Z. Full velocity difference model for a car-following theory . Physical Review E 2001 , 64 ( 1 ), 017101 .
- 42.
Bierley, R.L. Investigation of an intervehicle spacing display . Highway Research Record 1963 , ( 25 ). Available Online:
https://trid.trb.org/view/111048 (Accessed on 12 June 2023).
- 43.
Leutzbach, W. ; Wiedemann, R. Development and applications of traffic simulation models at the Karlsruhe Institut fur Verkehrwesen . Traffic Engineering & Control 1986 , 27 ( 5 ), 270 – 278 .
- 44.
Sultan, B. ; Brackstone, M. ; McDonald, M. Drivers' use of deceleration and acceleration information in car-following process . Transportation Research Record 2004 , 1883 ( 1 ), 31 – 39 .
- 45.
Kesting, A. ; Treiber, M. ; Helbing, D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010 , 368 ( 1928 ), 4585 – 4605 .
- 46.
Searle, J. Equations for speed, time and distance for vehicles under maximum acceleration . SAE Technical Paper 1999 , No. 1999-01-00 78 .
- 47.
Rakha, H. ; Lucic, I. ; Demarchi, S.H. ; et al . Vehicle dynamics model for predicting maximum truck acceleration levels . Journal of Transportation Engineering 2001 , 127 ( 5 ), 418 – 425 .
- 48.
Rakha, H. ; Lucic, I. Variable power vehicle dynamics model for estimating truck accelerations . Journal of Transportation Engineering 2002 , 128 ( 5 ), 412 – 419 .
- 49.
Rakha, H. ; Snare, M. ; Dion, F. Vehicle dynamics model for estimating maximum light-duty vehicle acceleration levels . Transportation Research Record 2004 , 1883 ( 1 ), 40 – 49 .
- 50.
Rakha, H. Validation of Van Aerde's simplified steadystate car-following and traffic stream model . Transportation Letters 2009 , 1 ( 3 ), 227 – 244 .
- 51.
Rakha, H.A. ; Ahn, K. ; Faris, W. ; et al . Simple vehicle powertrain model for modeling intelligent vehicle applications . IEEE Transactions on Intelligent Transportation Systems 2012 , 13 ( 2 ), 770 – 780 .
- 52.
Fadhloun, K. ; Rakha, H. ; Loulizi, A. ; et al . Vehicle dynamics model for estimating typical vehicle accelerations . Transportation Research Record 2015 , 2491 ( 1 ), 61 – 71 .
- 53.
Fadhloun, K. ; Rakha, H. A novel vehicle dynamics and human behavior car-following model: Model development and preliminary testing . International Journal of Transportation Science and Technology 2020 , 9 ( 1 ), 14 – 28 .
- 54.
Stanton, N.A. ; Salmon, P.M. Human error taxonomies applied to driving: A generic driver error taxonomy and its implications for intelligent transport systems . Safety Science 2009 , 47 ( 2 ), 227 – 237 .
- 55.
Wiedemann, R. Simulation des StraBenverkehrsflusses . Institut fur Verkehrswesen .University of Karlsruhe,Germany , 1974 .
- 56.
Fritzsche, H.T. ; Ag, D.B. A model for traffic simulation . Traffic Engineering Control 1994 , 35 ( 5 ), 317 – 321 .
- 57.
Andersen, G.J. ; Sauer, C.W. Optical information for car following: The driving by visual angle (DVA) model . Human Factors 2007 , 49 ( 5 ), 878 – 896 .
- 58.
Jin, S. ; Wang, D.H. ; Huang, Z.Y. ; et al . Visual angle model for car-following theory . Physica A: Statistical Mechanics and Its Applications 2011 , 390 ( 11 ), 1931 – 1940 .
- 59.
Hamdar, S.H. ; Treiber, M. ; Mahmassani, H.S. ; et al . Modeling driver behavior as sequential risk-taking task . Transportation Research Record 2008 , 2088 ( 1 ), 208 – 217 .
- 60.
Van Winsum, W. The human element in car following models . Transportation Research Part F: Traffic Psychology and Behaviour 1999 , 2 ( 4 ), 207 – 211 .
- 61.
Yang, H.H. ; Peng, H. Development of an errorable car-following driver model . Vehicle System Dynamics 2010 , 48 ( 6 ), 751 – 773 .
- 62.
Fellendorf, M. ; Vortisch, P. Microscopic traffic flow simulator VISSIM . Fundamentals of traffic simulation 2010 , 145 , 63 – 93 .
- 63.
Park, B. ; Qi, H. Microscopic simulation model calibration and validation for freeway work zone network-a case study of VISSIM . In 2006 IEEE Intelligent Transportation Systems Conference . IEEE : Piscataway, NJ, USA , 2006 , pp. 1471 – 1476 .
- 64.
Gomes, G. ; May, A. ; Horowitz, R. Calibration of VISSIM for a Congested Freeway . UC Berkeley : California Partners for Advanced Transportation Technology , 2004 . Available Online :
https://escholarship.org/uc/item/7bs9b2v3 (Accessed on 12 June 2023).
- 65.
Michaels, R.M. Perceptual factors in car-following . Proc. of 2nd ISTTF (London) 1963 , 44 – 59 .
- 66.
Gray, R. ; Regan, D. Accuracy of estimating time to collision using binocular and monocular information . Vision Research 1998 , 38 ( 4 ), 499 – 512 .
- 67.
- 68.
Von Neumann, J. ; Morgenstern, O. Theory of games and economic behavior . In Theory of Games and Economic Behavior . Princeton University Press : Princeton, NJ, USA , 2007 .
- 69.
Kahneman, D. ; Tversky, A. Prospect theory: An analysis of decision under risk . Econometrica 1979 , 47 ( 2 ), 363 – 391 .
- 70.
Hamdar, S.H. ; Mahmassani, H.S. ; Treiber, M. From behavioral psychology to acceleration modeling: Calibration, validation, and exploration of drivers’ cognitive and safety parameters in a risk-taking environment . Transportation Research Part B: Methodological 2015 , 78 , 32 – 53 .
- 71.
Reason, Human Error, J. . Cambridge university press: Cambridge , UK , 1990 .
- 72.
Parker, D. ; Reason, J.T. ; Manstead, A.S. ; et al . Driving errors, driving violations and accident involvement . Ergonomics 1995 , 38 ( 5 ), 1036 – 1048 .
- 73.
Di, X. ; Shi, R. A survey on autonomous vehicle control in the era of mixed-autonomy: From physics-based to AI-guided driving policy learning . Transportation Research Part C: Emerging Technologies 2021 , 125 , 103008 .
- 74.
Wei, D. ; Liu, H. Analysis of asymmetric driving behavior using a self-learning approach . Transportation Research Part B: Methodological 2013 , 47 , 1 – 14 .
- 75.
Huang, X. ; Sun, J. ; Sun, J. A car-following model considering asymmetric driving behavior based on long short-term memory neural networks . Transportation Research Part C: Emerging Technologies 2018 , 95 , 346 – 362 .
- 76.
Gu, Z. ; Li, Z. ; Di, X. ; et al . An LSTM-based autonomous driving model using a waymo open dataset . Applied Sciences 2020 , 10 ( 6 ), 2046 .
- 77.
He, Z. ; Zheng, L. ; Guan, W. A simple nonparametric car-following model driven by field data . Transportation Research Part B: Methodological 2015 , 80 , 185 – 201 .
- 78.
Kuefler, A. ; Morton, J. ; Wheeler, T. ; et al . Imitating driver behavior with generative adversarial networks . In 2017 IEEE Intelligent Vehicles Symposium (IV) . IEEE : Piscataway, NJ, USA , 2017 , pp. 204 – 211 .
- 79.
Zhou, Y. ; Fu, R. ; Wang, C. ; et al . Modeling Car-Following Behaviors and Driving Styles with Generative Adversarial Imitation Learning . Sensors 2020 , 20 , 5034 .
- 80.
Yang, D. ; Zhu, L. ; Liu, Y. ; et al . A novel car-following control model combining machine learning and kinematics models for automated vehicles . IEEE Transactions on Intelligent Transportation Systems 2018 , 20 ( 6 ), 1991 – 2000 .
- 81.
Yuan, Y. ; Wang, Q. ; Yang, X.T. Modeling stochastic microscopic traffic behaviors: a physics regularized Gaussian process approach . arXiv Preprint 2020 , arXiv: 2007.10109 .
- 82.
Shou, Z. ; Wang, Z. ; Han, K. ; et al . Long-term prediction of lane change maneuver through a multilayer perceptron . In 2020 IEEE Intelligent Vehicles Symposium (IV) . IEEE : Piscataway, NJ, USA , 2020 , pp. 246 – 252 .