2504000087
  • Open Access
  • Review
Future High-Efficiency and Zero-Emission Argon Power Cycle Engines: A Review
  • Chenxu Wang,   
  • Shaoye Jin,   
  • Jun Deng,   
  • Weiqi Ding,   
  • Yongjian Tang,   
  • Liguang Li *

Received: 27 Feb 2023 | Accepted: 23 May 2023 | Published: 13 Jun 2023

Abstract

This paper reviews the theoretical and experimental researches on Argon Power Cycle (APC) engines. Hydrogen-fueled APC is an innovative power system for a high efficiency and zero emissions, which employs argon rather than nitrogen as a diluent. Due to the large specific heat ratio of argon, the thermodynamic efficiency of APC engines is significantly higher compared to conventional internal combustion engines. However, APC engines face the challenge of knock inhibition, especially when using hydrogen as a fuel. Therefore, this paper summarizes the strategies and technologies to suppress the knock of hydrogen-fueled APC engines, including using alternative fuels with greater anti-knock capacity, lean combustion, and water injection. Furthermore, some guidance opinions are also provided for reference about the development and industrialization of APC engines, such as ultra-lean combustion, which uses pistons with thermal insulation coatings, employing low-friction lubricants, and developing efficient multi-component membrane separation system for argon separation.

References 

  • 1.
    Wang, L.; Hong, C.; Li, X.; et al. Review on blended hydrogen-fuel internal combustion engines: A case study for China. Energy Reports 2022, 8, 6480–6498. doi: 10.1016/j.egyr.2022.04.079.
  • 2.
    Li, L.; Gong, Y.; Deng, J.; et al. CO2 Reduction Request and Future High-Efficiency Zero-Emission Argon Power Cycle Engine. Automotive Innovation 2018, 1(1), 43–53. doi: 10.1007/s42154-018-0007-y.(In Chinese)
  • 3.
    Park S. Y.; Kim J. S.; Lee J. B.; et al. A redetermination of the argon content of air for buoyancy corrections in mass standard comparisons. Metrologia 2004, 41(6), 387–395. doi: 10.1088/0026-1394/41/6/005.
  • 4.
    Dibble, R. The Iron “Fuel Cell” Argon Engine Project. Changchun Auto Mobile Show, China, 2013.
  • 5.
    de Boer, P. C. T.; Hulet J. F. Performance of a Hydrogen-Oxygen-Noble Gas Engine. International Journal of Hydrogen Energy 1980, 5(4), 439–452. doi: 10.1016/0360-3199(80)90024-5.
  • 6.
    Ikegami, M.; Kei, M.; and Masahiro S. A study of hydrogen fuelled compression ignition engines. International Journal of Hydrogen Energy 1982, 7(4), 341–353. doi: 10.1016/0360-3199(82)90127-6.
  • 7.
    Prashanth, K.; Shaik A. Experimental investigation of argon gas induction on diesel engine performance and emission characteristics: A comprehensive study on de-NOx techniques. Process Safety and Environmental Protection 2021, 152, 471–481. doi: 10.1016/j.psep.2021.06.036.
  • 8.
    Taib, N. M.; Mansor, M. R. A.; Mahmood W. M. F. W. Combustion characteristics of hydrogen in a noble gas compression ignition engine. Energy Reports 2021, 7, 200–218. doi: 10.1016/j.egyr.2021.07.133.
  • 9.
    Morovatiyan, M.; Shahsavan, M.; Aguilar, J.; et al. Effect of Argon Concentration on Laminar Burning Velocity and Flame Speed of Hydrogen Mixtures in a Constant Volume Combustion Chamber. Journal of Energy Resources Technology, Transactions of the ASME 2021, 143, 3. doi: 10.1115/1.4048019.
  • 10.
    Taib, N.M.; Mansor, M.R.A.; Mahmood W.M.F.W. Combustion characteristics of direct injection hydrogen in noble gases atmosphere. In IOP Conference Series: Earth and Environmental Science. IOP Publishing: Bristol, UK, 2020, 463, no. 1. doi: 10.1088/1755-1315/463/1/012058.
  • 11.
    Kuroki, R.; Kato, A.; Kamiyama, E.; et al. Study of high efficiency zero-emission argon circulated hydrogen engine. SAE Technical Papers 2010, 2010-01-0581. doi: 10.4271/2010-01-0581.
  • 12.
    Killingsworth, N.J.; Rapp, V.H.; Flowers, D.L.; et al. Increased efficiency in SI engine with air replaced by oxygen in argon mixture. Proceedings of the Combustion Institute 2011, 33(2), 3141–3149. doi: 10.1016/j.proci.2010.07.035.
  • 13.
    Jin, S.; Deng, J.; Gong, X.; et al. Thermodynamic Analysis on Factors Influencing the Thermal Conversion Efficiency of the Argon Power Cycle Engine. Transactions of CSICE 2020, 38(04), 351–358. doi: 10.16236/j.cnki. nrjxb.202004046.
  • 14.
    Killingsworth, N.; Rapp, V.; Flowers, D.; et al. Characteristics of knock in hydrogen-oxygen-argon SI engine (No. LLNL-CONF-424554). Western States Section of the Combustion Institute Spring Technical Meeting 2010, no. December 2015, pp. 772–778, 2010.
  • 15.
    Deng, J.; Gong, X.; Zhan, Y.; et al. Experiment on combustion characteristics of natural gas in cylinder under Ar-O2 atmosphere. Transactions of CSICE 2017, 35(1), 38–43, doi: 10.16236/j.cnki.nrjxb. 201701006.
  • 16.
    Jin, S.; Deng, J.; Li L. Thermodynamic and Chemical Analysis of the Effect of Working Substances on the Argon Power Cycle. SAE Technical Papers 2021, 2021-01-0447.
  • 17.
    Shi, S.; Tomomatsu, Y.; Chaturvedi, B.; et al. Engine efficiency enhancement and operation range extension by argon power cycle using natural gas. Applied Energy 2021, 281, 116109, doi: 10.1016/j.apenergy.2020.116109.
  • 18.
    Drost, S.; Aznar M. S.; Schießl, R.; et al. Reduced reaction mechanism for natural gas combustion in novel power cycles. Combust Flame 2021, 223, 486–494. doi: 10.1016/j.combustflame.2020.09.029.
  • 19.
    Elkhazraji, A.; Mohammed, A.; Jan, S.M.; et al. On Maximizing Argon Engines’ Performance via Subzero Intake Temperatures in HCCI Mode at High Compression Ratios. SAE Technical Papers 2020, 2020-01-1133.
  • 20.
    Jan, S.M.; Mohammed, A.; Elkhazraji, A.; et al. The Road Towards High Efficiency Argon SI Combustion in a CFR Engine: Cooling the Intake to Sub-Zero Temperatures. SAE Technical Papers 2020, 2020-01-0550.
  • 21.
    Jin, S.; Deng, J.; Wang, C.; et al. Knock Inhibition in Hydrogen Fueled Argon Power Cycle Engine with a Higher Compression Ratio by Water Direct Injection at Late Exhaust Stroke. SAE Technical Papers 2023, 2023-01-0227.
  • 22.
    Sierra Aznar, M.; Chorou, F.; Chen, J.Y.; et al. Experimental and numerical investigation of the argon power cycle. Proceedings of the ASME 2018 Internal Combustion Engine Division Fall Technical Conference. Volume 1: Large Bore Engines; Fuels; Advanced Combustion. San Diego, California, USA. November 4 – 7, 2018. V001T01A006. ASME. doi: 10.1115/ICEF2018-9670.
  • 23.
    Chourou, F.; Aznar, M.S.; Chen, J.Y.; et al. A new efficient model for multicomponent membrane separation and application to the Argon Power Cycle. In 2017 Fall Technical Meeting of the Western States Section of the Combustion Institute, WSSCI 2017, no. October, 2017.
  • 24.
    Hafiz, N.M.; Mansor, M.R.A.; Mahmood, W.M.F.W.; et al. Simulation of the Effect of Initial Temperature and Fuel Injection Pressure on Hydrogen Combustion Characteristics in Argon-Oxygen Compression Ignition Engine. SAE Technical Papers 2016, 2016-01-2227. doi: 10.4271/2016-01-2227.
  • 25.
    Hafiz, N. M.; Mansor, M. R. A.; Mahmood, W. M. F. W.; et al. Numerical study of hydrogen fuel combustion in compression ignition engine under argon-oxygen atmosphere. Jurnal Teknologi 2016, 78(6 – 10), 77 – 83. doi: 10.11113/jt.v78.9192.
  • 26.
    Olsson, J. O.; Tunestål, P.; Ulfvik, J.; et al. The Effect of Cooled EGR on Emissions and Performance of a Turbocharged HCCI Engine. SAE Technical Papers 2003, 2003-01-0743.
  • 27.
    Wang, C.; Jin, S.; Deng, J.; et al. An Innovative Argon/Miller Power Cycle for Internal Combustion Engine:Thermodynamic Analysis of its Efficiency and Power Density. Automotive Innovation 2023, Jan, 1–13. doi: 10.1007/s42154-022-00208-x.
  • 28.
    Cech, M.; Knape, M.; Wilfert, T.; et al. The emission-free hydrogen closed-cycle engine. MTZ worldwide 2021, 82(04), 42–46.
  • 29.
    Jin, S. Deng, J.; Liang, X. et al. Experimental Study on the Efficiency, Load, and Emissions of Methane-Fueled Argon Power Cycle Engine. Proceedings of China SAE Congress. SAECCE, 2021. (In Chinese)
  • 30.
    Tang, X.; Kabat, D. M.; Natkin, R. J.; et al. Ford P2000 Hydrogen Engine Dynamometer Development. SAE Transactions 2002, 2002-01-0242.
  • 31.
    Mohammed, A.; Masurier, J.; Elkhazraji, A.; et al. A path towards high efficiency using argon in an HCCI engine. SAE Technical Papers 2019, 2019-01-0951. doi: 10.4271/2019-01-0951.
  • 32.
    Liu, H.; Ma, J.; Tong, L.; et al. Investigation on the potential of high efficiency for internal combustion engines. Energies (Basel) 2018, 11(3), 513. doi: 10.3390/en11030513.
  • 33.
    Y. Wakisaka et al.. Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of “Temperature Swing” Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines 2016, 9(3), 1449–1459. doi: 10.2307/26284912.
  • 34.
    Musthafa, M. M. Thermal barrier coated diesel engine running on biodiesel: a review. International Journal of Sustainable Engineering 2018, 11(3), 159–166. doi: 10.1080/19397038.2017.1393024.
  • 35.
    Hazar, H.; Ozturk U. The effects of Al2O3-TiO2 coating in a diesel engine on performance and emission of corn oil methyl ester. Renew Energy 2010, 35(10), 2211–2216. doi: 10.1016/j.renene.2010.02.028.
  • 36.
    Arai, K.; Yamada, M.; Asano, S.; et al. Lubricant Technology to Enhance the Durability of Low Friction Performance of Gasoline Engine Oils. SAE Transactions 1995, 104, 1964–1972. Available Online: http://www.jstor.org/stable/44615212
  • 37.
    Vaitkunaite, G.; Espejo, C.; Thiebaut, B.; et al. Low friction tribofilm formation and distribution on an engine cylinder tested with MoDTC-containing low viscosity engine lubricants. Tribology International 2022, 171, 107551.doi: 10.1016/j.triboint.2022.107551.
  • 38.
    Lee, P.; Zhmud B. Low friction powertrains: Current advances in lubricants and coatings. Lubricants 2021, 9(8), 74. doi: 10.3390/lubricants9080074.
  • 39.
    Jin, S.; Huang, X.; Deng, J.; et al. Initiation characteristics of spark-ignited premixed hydrogen-oxygen flames with diluents of argon/nitrogen/carbon dioxide. International Journal of Hydrogen Energy 2021, 46(40), 21212–21221. doi: 10.1016/j.ijhydene.2021.03.234.
  • 40.
    Heywood, J. B. Internal Combustion Engine Fundamentals. McGraw-Hill Education: New York City, NY, USA, 2018. ISBN:978-1-260-11610-6.
  • 41.
    Verhelst, S.; Wallner T. Hydrogen-fueled internal combustion engines. Progress in Energy and Combustion Science 2009, 35(6), 490–527. doi: 10.1016/j.pecs.2009.08.001.
  • 42.
    Sierra-Aznar, M.; Pineda, D. I.; Cage, B. S.; et al. Working fluid replacement in gaseous direct-injection internal combustion engines: A fundamental and applied experimental investigation. In 10th U. S. National Combustion Meeting, Maryland, 2017.
  • 43.
    Aznar, M.S.; Pineda, D.I.; Cage, B.S.; et al. Experimental Investigation of Port and Direct Injection Strategies for Internal Combustion Engines with Argon as the Working Fluid Combustion Research at LLNL View project Low Swirl Burner Down-Scaling View project. Proceedings of the European Combustion Meeting 2017, 1 – 6. doi: 10.17605/OSF.IO/PT67Q.
  • 44.
    Seboldt, D.; Mansbart, M.; Grabner, P.; et al. Hydrogen Engines for Future Passenger Cars and Light Commercial Vehicles. MTZ worldwide 2021, 82(2), 42–47. doi: 10.1007/s38313-020-0603-1.
  • 45.
    Khatri, J.; Sharma, N.; Dahlander, P.; et al. Effect of relative humidity on water injection technique in downsized spark ignition engines. International Journal of Engine Research 2021, 22(7), 2119–2130. doi: 10.1177/1468087420940854.
  • 46.
    Kang, Z.; Feng, S.; Lv, Y.; et al. Effect of direct water injection temperature on combustion process and thermal efficiency within compression ignition internal combustion Rankine engine. Case Studies in Thermal Engineering 2021, 28, 101592. doi: 10.1016/j.csite.2021.101592.
Share this article:
How to Cite
Wang, C.; Jin, S.; Deng, J.; Ding, W.; Tang, Y.; Li, L. Future High-Efficiency and Zero-Emission Argon Power Cycle Engines: A Review. International Journal of Automotive Manufacturing and Materials 2023, 2 (2), 2. https://doi.org/10.53941/ijamm.2023.100002.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2023 by the authors.