- 1.
Souppez, J.B.R.; Pavar, G. Recycled Carbon Fibre Composites in Automotive Manufacturing. International Journal of Automotive Manufacturing and Materials 2023, 2(1).
- 2.
Reddy, M.M.; Vivekanandhan, S.; Misra, M.; et al. Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science 2013, 38(10–11), 1653–1689.
- 3.
Ramchuran, S.O.; O'Brien, F.; Dube, N.; et al. An overview of green processes and technologies, biobased chemicals and products for industrial applications. Current Opinion in Green and Sustainable Chemistry 2023, 41, 100832.
- 4.
Bennich, T.; Belyazid, S. The route to sustainability—prospects and challenges of the bio-based economy. Sustainability 2017, 9(6), 887.
- 5.
Prasanth, S.M.; Kumar, P.S.; Harish, S.; et al. Application of biomass derived products in mid-size automotive industries: A review. Chemosphere 2021, 280, 130723.
- 6.
Wagner, I. Automotive industry worldwide-statistics & facts. Statista. 2021.
- 7.
Hemavathy, R.V.; Kumar, P.S.; Kanmani, K.; et al. Adsorptive separation of Cu (II) ions from aqueous medium using thermally/chemically treated Cassia fistula based biochar. Journal of Cleaner Production 2020, 249, 119390.
- 8.
Prasannamedha, G.; Kumar, P.S.; Mehala, R.; et al. Enhanced adsorptive removal of sulfamethoxazole from water using biochar derived from hydrothermal carbonization of sugarcane bagasse. Journal of Hazardous Materials 2021, 407, 124825.
- 9.
Mak, T.M.; Xiong, X.; Tsang, D.C.; et al. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresource Technology 2020, 297, 122497.
- 10.
Devi, A.; Bajar, S.; Kour, H.; et al. Lignocellulosic biomass valorization for bioethanol production: a circular bioeconomy approach. Bioenergy Research 2022, 15(4), 1820–1841.
- 11.
Wang, W.; Lee, D.J. Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review. Bioresource Technology 2021, 339, 125587.
- 12.
Ciesielski, P.N.; Pecha, M.B.; Lattanzi, A.M.; et al. Advances in multiscale modeling of lignocellulosic biomass. ACS Sustainable Chemistry & Engineering 2020, 8(9), 3512–3531.
- 13.
Peças, P.; Carvalho, H.; Salman, H.; et al. Natural fibre composites and their applications: a review. Journal of Composites Science 2018, 2(4), 66.
- 14.
Khoo, K.S.; Chia, W.Y.; Tang, D.Y.Y.; et al. Nanomaterials utilization in biomass for biofuel and bioenergy production. Energies 2020, 13(4), 892.
- 15.
- 16.
Cuevas, M.; Sánchez, S.; García, J.F.; et al. Enhanced ethanol production by simultaneous saccharification and fermentation of pretreated olive stones. Renewable Energy 2015, 74, 839–847.
- 17.
Usmani, Z.; Sharma, M.; Awasthi, A.K.; et al. Lignocellulosic biorefineries: The current state of challenges and strategies for efficient commercialization. Renewable and Sustainable Energy Reviews 2021, 148, 111258.
- 18.
Lu, H.; Yadav, V.; Bilal, M.; et al. Bioprospecting microbial hosts to valorize lignocellulose biomass–Environmental perspectives and value-added bioproducts. Chemosphere 2022, 288, 132574.
- 19.
Fredi, G.; Dorigato, A. Recycling of bioplastic waste: A review. Advanced Industrial and Engineering Polymer Research 2021, 4(3), 159–177.
- 20.
Miller, W.S.; Zhuang, L.; Bottema, J.; et al. Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A 2000, 280(1), 37–49.
- 21.
Ashter, S.A. Introduction to Bioplastics Engineering. William Andrew: Amsterdam, the Netherlands, 2016, pp. 1–17.
- 22.
Javaid, S.; Gupta, S. Developing sustainable composites for automotive applications. Advanced Materials & Processes 2022, 180(4), 14–19.
- 23.
OECD. Future prospects for industrial biotechnology. OECD Publishing: Paris, France, 2011.
- 24.
Ford. Helping Build a Better World. Ford Motor Company: Dearborn, MI, USA, 2022.
- 25.
Toyota. Environmental Report. Toyota-cho: Toyota City, Japan, 2020.
- 26.
Allred, R.E.; Busselle, L.D. Tertiary recycling of automotive plastics and composites. Journal of Thermoplastic Composite Materials 2000, 13(2), 92–101.
- 27.
Vieyra, H.; Molina-Romero, J.M.; Calderón-Nájera, J.D.D.; et al. Engineering, recyclable, and biodegradable plastics in the automotive industry: a review. Polymers 2022, 14(16), 3412.
- 28.
Mihora, D.J.; Ramamurthy, A.C. Friction induced damage: preliminary numerical analysis of stresses within painted automotive plastics induced by large curvature counterfaces. Wear 1997, 203, 362–374.
- 29.
Holmes, M. Biocomposites take natural step forward: Applications for biocomposites and the use of natural fiber reinforcements are increasing. Reinforced Plastics looks at a number of examples. Reinforced Plastics 2019, 63(4), 194–201.
- 30.
Rujnić-Sokele, M.; Pilipović, A. Challenges and opportunities of biodegradable plastics: A mini review. Waste Management & Research 2017, 35(2), 132–140.
- 31.
Ryntz, R.A. Bring back the steel? The growth of plastics in automotive applications. JCT Research 2006, 3, 3–14.
- 32.
Sullivan, R.A. Automotive carbon fiber: Opportunities and challenges. JOM 2006, 58, 77–79.
- 33.
Hassan, M.M.; Schiermeister, L.; Staiger, M.P. Thermal, chemical and morphological properties of carbon fibres derived from chemically pre-treated wool fibres. RSC Advances 2015, 5(68), 55353–55362.
- 34.
Bledzki, A.K.; Seidlitz, H.; Krenz, J.; et al. Recycling of carbon fiber reinforced composite polymers—Review—Part 2: Recovery and application of recycled carbon fibers. Polymers 2020, 12(12), 3003.
- 35.
Türrahmen aus SMC für Mittelklassewagen, 2017. Available online: www.kunststoffe.de/produkte/uebersicht/beitrag/erster-tuerrahmen-aus-smc-cfk-wird-massentauglich-3416820.html (Accessed on 20 July 2023).
- 36.
- 37.
Altan, M. Thermoplastic foams: Processing, manufacturing, and characterization. Polymerization. London: IntechOpen 2018, 6, 117–137.
- 38.
Oribayo, O.; Feng, X.; Rempel, G.L.; et al. Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chemical Engineering Journal 2017, 323, 191–202.
- 39.
Sonjui, T.; Jiratumnukul, N. Physical properties of bio-based polyurethane foams from bio-based succinate polyols. Cellular Polymers 2015, 34(6), 353–366.
- 40.
Sonjui, T.; Jiratumnukul, N. Preparation and characterization of polyurethane foams from bio-based succinate polyols. Chiang Mai Journal of Science 2017, 44(4), 1512–1524.
- 41.
Sarika, P.R.; Nancarrow, P.; Khansaheb, A.; et al. Progress in Bio-Based Phenolic Foams: Synthesis, Properties, and Applications. ChemBioEng Reviews 2021, 8(6), 612–632.
- 42.
Deng, J.; Li, M.; Wang, Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chemistry 2016, 18(18), 4824–4854.
- 43.
- 44.
Saravanan, A.P.; Mathimani, T.; Deviram, G.; et al. Biofuel policy in India: a review of policy barriers in sustainable marketing of biofuel. Journal of Cleaner Production 2018, 193, 734–747.
- 45.
- 46.
Ramesh, C.; Murugesan, A.; Vijayakumar, C. Reducing the Environmental Pollution from Diesel Engine Fuelled with Eco-Friendly Biodiesel Blends. Bull. Sci. Res. 2019, 1, 35–44.
- 47.
Balat, M.; Balat, H.; Öz, C. Progress in bioethanol processing. Prog Energy Combust 2008, 34, 551–573.
- 48.
Renewable Fuels Association. Annual fuel ethanol production. 2020. Available online:
https://ethanolrfa.org/ (Accessed on 20 July 2023).
- 49.
Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; et al. Bioethanol production from agricultural wastes: an overview. Renewable Energy 2012, 37(1), 19–27.
- 50.
Foong, T.M.; Morganti, K.J.; Brear, M.J.; et al. The octane numbers of ethanol blended with gasoline and its surrogates. Fuel 2014, 115, 727–739.
- 51.
Sindhu, R.; Binod, P.; Pandey, A.; et al. Biofuel production from biomass: Toward sustainable development. In Current developments in biotechnology and bioengineering. Elsevier: Amsterdam, the Netherlands, 2019, pp. 79–92.
- 52.
Zhen, X.; Wang, Y.; Liu, D. Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines. Renewable Energy 2020, 147, 2494–2521.
- 53.
Huang, Q.J.; Chung, C.H.; Syu, Y.F.; et al. Research on Applying Butanol-Gasoline Blend Fuel on Scooter Engine. SAE Technical Paper 2016, No. 2016-32-0056.
- 54.
Jung, S.; Kim, H.; Tsang, Y.F.; et al. A new biorefinery platform for producing (C2-5) bioalcohols through the biological/chemical hybridization process. Bioresource Technology 2020, 311, 123568.
- 55.
Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; et al. Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Industrial Crops and Products 2014, 53, 78–84.
- 56.
Mahlia, T.M.I.; Syazmi, Z.A.H.S.; Mofijur, M.; et al. Patent landscape review on biodiesel production: Technology updates. Renewable and Sustainable Energy Reviews 2020, 118, 109526.
- 57.
Uthandi, S.; Kaliyaperumal, A.; Srinivasan, N.; et al. Microbial biodiesel production from lignocellulosic biomass: new insights and future challenges. Critical Reviews in Environmental Science and Technology 2022, 52(12), 2197–2225.
- 58.
Khan, M.U.; Usman, M.; Ashraf, M.A.; et al. A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: Opportunities and Limitations. Chemical Engineering Journal Advances 2022, 10, 100263.
- 59.
Lajunen, A.; Lipman, T. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy 2016, 106, 329–342.
- 60.
Van Mierlo, J.; Maggetto, G.; Lataire, P. Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles. Energy Conversion and Management 2006, 47(17), 2748–2760.
- 61.
Jacobson, M.Z.; Colella, W.G.; Golden, D.M. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 2005, 308(5730), 1901–1905.
- 62.
Zhang, Y.; Zhang, C.; Huang, Z.; et al. Real-time energy management strategy for fuel cell range extender vehicles based on nonlinear control. IEEE Transactions on Transportation Electrification 2019, 5(4), 1294–1305.
- 63.
Apostolou, D.; Xydis, G. A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects. Renewable and Sustainable Energy Reviews 2019, 113, 109292.
- 64.
Zhang, W.; Fang, X.; Sun, C. The alternative path for fossil oil: Electric vehicles or hydrogen fuel cell vehicles? Journal of Environmental Management 2023, 341, 118019.
- 65.
Kumar, G.; Bakonyi, P.; Periyasamy, S.; et al. Lignocellulose biohydrogen: practical challenges and recent progress. Renewable and Sustainable Energy Reviews 2015, 44, 728–737.
- 66.
Pal, D.B.; Singh, A.; Bhatnagar, A. A review on biomass based hydrogen production technologies. International Journal of Hydrogen Energy 2022, 47(3), 1461–1480.
- 67.
Zhang, X.; Zhang, Q.; Li, Y.; et al. Modeling and optimization of photo-fermentation biohydrogen production from co-substrates basing on response surface methodology and artificial neural network integrated genetic algorithm. Bioresource Technology 2023, 374, 128789.
- 68.
Zhao, L.; Wu, K.K.; Chen, C.; et al. Role of residue cornstalk derived biochar for the enhanced bio-hydrogen production via simultaneous saccharification and fermentation of cornstalk. Bioresource Technology 2021, 330, 125006.
- 69.
Wang, Z.H.; Li, L.Q.; Zhao, L.; et al. Comparative life cycle assessment of biochar-based lignocellulosic biohydrogen production: Sustainability analysis and strategy optimization. Bioresource Technology 2022, 344, 126261.
- 70.
Wei, X.; Feng, J.; Cao, W.; et al. Enhanced biohydrogen production by an ammonium-tolerant Rhodobacter capsulatus from sugarcane bagasse. Fuel 2021, 300, 121009.
- 71.
Hu, J.; Cao, W.; Guo, L. Directly convert lignocellulosic biomass to H2 without pretreatment and added cellulase by two-stage fermentation in semi-continuous modes. Renewable Energy 2021, 170, 866–874.
- 72.
Wu, X.B.; Huang, G.F.; Bai, L.P.; et al. Enhanced hydrogen production from xylose and bamboo stalk hydrolysate by overexpression of xylulokinase and xylose isomerase in Klebsiella oxytoca HP1. International Journal of Hydrogen Energy 2014, 39(1), 221–230.
- 73.
Chen, Y.; Yin, Y.; Wang, J. Comparison of fermentative hydrogen production from glycerol using immobilized and suspended mixed cultures. International Journal of Hydrogen Energy 2021, 46(13), 8986–8994.
- 74.
Zhang, Q.; Shui, X.; Awasthi, M.K.; et al. 1-Butyl-3-methylimidazolium acetate pretreatment of giant reed triggering yield improvement of biohydrogen production via photo-fermentation. Bioresource Technology 2022, 364, 128068.
- 75.
Liu, T.; Li, Y.; Zhang, H.; et al. Estimating the potential of biohydrogen production and carbon neutralization contribution from crop straw. Bioresource Technology 2023, 373, 128718.
- 76.
Shui, X.; Jiang, D.; Li, Y.; et al. Enhancement of static magnetic field on biological hydrogen production via photo-fermentation of giant reed. Bioresource Technology 2023, 367, 128221.
- 77.
Xiang, G.; Zhang, Q.; Li, Y.; et al. Enhancement on photobiological hydrogen production from corn stalk via reducing hydrogen pressure in bioreactors by way of phased decompression schemes. Bioresource Technology 2023, 385, 129377.
- 78.
Yang, X.; Li, Y.; Zhang, N.; et al. Influence of titanate photocatalyst in biohydrogen yield via photo fermentation from corn stover. Bioresource Technology 2023, 386, 129544.
- 79.
Zhang, Q.; Jin, P.; Li, Y.; et al. Analysis of the characteristics of paulownia lignocellulose and hydrogen production potential via photo fermentation. Bioresource Technology 2022, 344, 126361.
- 80.
Zhang, Z.; Ai, F.; Li, Y.; et al. Co-production process optimization and carbon footprint analysis of biohydrogen and biofertilizer from corncob by photo-fermentation. Bioresource Technology 2023, 375, 128814.
- 81.
Jiao, Y.; Wang, Z.; Liu, L.; et al. Numerical simulation of the interaction and coalescence of inline hydrogen bubbles in biohydrogen production by photofermentation with corncob. International Journal of Hydrogen Energy 2023, 48(52), 19879–19896.
- 82.
Cheng, S.; Logan, B.E. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresource Technology 2011, 102(3), 3571–3574.
- 83.
Wang, L.; Yang, C.; Thangavel, S.; et al. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge. Frontiers of Environmental Science & Engineering 2021, 15, 1–10.