- 1.
Takahashi, D.; Nakata, K.; Yoshihara, Y.; et al. Combustion Development to Achieve Engine Thermal Efficiency of 40% for Hybrid Vehicles. SAE Technical Paper 2015, No. 2015-01–1254.
- 2.
Galloni, E.; Fontana, G.; and Palmaccio, R. Effects of Exhaust Gas Recycle in a Downsized Gasoline Engine. Applied Energy 2013, 105, 99–107.
- 3.
Liu, Z. Alternative Fuels in Automotive Vehicles. International Journal of Automotive Manufacturing and Materials 2023, 2(1), 7.
- 4.
Yu, X.; Sandhu, N.S.; Yang, Z. Suitability of Energy Sources for Automotive Application—A Review. Applied Energy 2020, 271, 115169.
- 5.
O'Connor, J.; Borz, M.; Ruth, D.; et al. Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program. SAE International Journal of Engines 2017, 10(3), 1217–1227.
- 6.
Dec, J.E. Advanced compression-ignition engines—understanding the in-cylinder processes. Proceedings of the Combustion Institute 2009, 32(2), 2727–2742.
- 7.
Schumann, F.; Sarikoc, F.; Buri, S.; et al. Potential of spray-guided gasoline direct injection for reduction of fuel consumption and simultaneous compliance with stricter emissions regulations. International Journal of Engine Research 2013, 14(1), 80–91.
- 8.
Huang, C.C.; Shy, S.S.; Liu, C.C.; et al. A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes. Proceedings of the Combustion Institute 2007, 31(1), 1401–1409.
- 9.
Ju, Y.; Sun, W. Plasma assisted combustion: Dynamics and chemistry. Progress in Energy and Combustion Science 2015, 48, 21–83.
- 10.
Starikovskaia, S.M. Plasma assisted ignition and combustion. Journal of Physics D: Applied Physics 2006, 39(16), R265.
- 11.
Wolk, B.; Ekoto, I. Calorimetry and atomic oxygen laser-induced fluorescence of pulsed nanosecond discharges at above-atmospheric pressures. In Ignition Systems for Gasoline Engines: 3rd International Conference, November 3–4, 2016, Berlin, Germany 3 (pp. 169–189). Springer International Publishing: Berlin, Germany.
- 12.
Hicks, A.; Norberg, S.; Shawcross, P.; et al. Singlet oxygen generation in a high pressure non-self-sustained electric discharge. Journal of Physics D: Applied Physics 2005, 38(20), 3812.
- 13.
Bentaleb, S.; Blin-Simiand, N.; Jeanney, P.; et al. Ignition of lean air/hydrocarbon mixtures at low temperature by a single corona discharge nanosecond pulse. Aerospace Lab 2015, (10).
- 14.
Wu, L.; Lane, J.; Cernansky, N.P.; et al. Plasma-assisted ignition below self-ignition threshold in methane, ethane, propane and butane-air mixtures. Proceedings of the Combustion Institute 2011, 33(2), 3219–3224.
- 15.
Takashima, K.; Zuzeek, Y.; Lempert, W.R.; et al. Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses. Plasma Sources Science and Technology 2011, 20(5), 055009.
- 16.
Yu, X.; Wang, L.; Yu, S.; et al. Flame kernel development with radiofrequency oscillating plasma ignition. Plasma Sources Science and Technology 2022, 31(5), 055004.
- 17.
Wang, L. Characterization of Corona Discharge for Ignition Improvement. Ph.D. degree, University of Windsor, Windsor, N9B 3P4 Ontario, Canada, 2019.
- 18.
Yu, S.; Zheng, M. Future gasoline engine ignition: A review on advanced concepts. International Journal of Engine Research 2021, 22(6), 1743–1775.
- 19.
Yu, X.; Tan, Q.; Wang, L.; et al. Chapter 8 - Predictive Modeling of Oscillating Plasma Energy Release for Clean Combustion Engines. In: Predictive Modelling for Energy Management and Power Systems Engineering, Deo, R., Samui, P., Roy, S.S., eds.; Elsevier: Amsterdam, the Netherlands, 2021, pp. 233–247.
- 20.
Fansler, T.D.; Reuss, D.L.; Sick, V.; et al. Invited Review: Combustion instability in spray-guided stratified-charge engines: A review. International Journal of Engine Research 2015, 16(3), 260–305.
- 21.
Schenk, M.; Schauer, F.X.; Sauer, C.; et al. Challenges to the Ignition System of Future Gasoline Engines – An Application Oriented Systems Comparison. In: Ignition Systems for Gasoline Engines. Günther, M., Sens, M., eds.; Springer International Publishing: Cham, Switzerland, 2017, pp. 3–25.
- 22.
Wang, L.; Yu, X.; Zheng, M. Ignition Energy Discharge of Oscillating Plasma Waveforms Under Atmospheric Conditions. IEEE Transactions on Plasma Science 2020, 49(1), 326–334.
- 23.
Wang, L.; Tan, Q.; Yu, S.; et al. A Framework for the Active Control of Corona Ignition Systems. SAE Technical Paper 2019, No. 2019-01–2157.
- 24.
Burrows, J.; Lykowski, J.; Mixell, K. Corona ignition system for highly efficient gasoline engines. MTZ Worldwide 2013, 74(6), 38–41.
- 25.
Bohne, S.; Rixecker, G.; Brichzin, V.; et al. High-frequency ignition system based on corona discharge. MTZ Worldwide 2014, 75(1), 30–35.
- 26.
Idicheria, C.A.; and Najt, P.M. Potential of Advanced Corona Ignition System (ACIS) for Future Engine Applications. In: Ignition Systems for Gasoline Engines. Günther, M., Sens, M., eds.; Springer International Publishing, Cham, Switzerland, 2017, pp. 315–331.
- 27.
Singleton, D.; Pendleton, S.J.; Gundersen, M.A. The role of non-thermal transient plasma for enhanced flame ignition in C2H4–air. Journal of Physics D: Applied Physics 2010, 44(2), 022001.
- 28.
Auzas, F.; Tardiveau, P.; Puech, V.; et al. Heating effects of a non-equilibrium RF corona discharge in atmospheric air. Journal of Physics D: Applied Physics 2010, 43(49), 495204.
- 29.
Suess, M.; Guenthner, M.; Schenk, M.; et al. Investigation of the potential of corona ignition to control gasoline homogeneous charge compression ignition combustion. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2012, 226(2), 275–286.
- 30.
Braithwaite, N.S.J. Introduction to gas discharges. Plasma Sources Science and Technology 2000, 9(4), 517.
- 31.
Schnyder, R.; Howling, A.A.; Bommottet, D.; et al. Direct current breakdown in gases for complex geometries from high vacuum to atmospheric pressure. Journal of Physics D: Applied Physics 2013, 46(28), 285205.
- 32.
Yan, P.; Zheng, C.; Zhu, W.; et al. An experimental study on the effects of temperature and pressure on negative corona discharge in high-temperature ESPs. Applied Energy 2016, 164, 28–35.