- 1.
Possession of Civil Vehicle. National Bureau of Statistics of China. Available online:
https://www.stats.gov.cn/ (Accessed on 25 September 2023).
- 2.
Jia, M.; Xie, M. A chemical kinetics model of iso-octane oxidation for HCCI engines. Fuel 2006, 85(17–18), 2593–2604.
- 3.
Niklawy, W.; Shahin, M.; Amin, M. I.; et al. Comprehensive analysis of combustion phasing of multi-injection HCCI diesel engine at different speeds and loads. Fuel 2022, 314, 123083.
- 4.
Kiplimo, R.; Tomita, E.; Kawahara, N.; et al. Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine. Applied Thermal Engineering 2012, 37, 165–175.
- 5.
Agarwal, A.K.; Singh, A.P.; Kumar, V. Particulate characteristics of low-temperature combustion (PCCI and RCCI) strategies in single cylinder research engine for developing sustainable and cleaner transportation solution. Environmental Pollution 2021, 284, 117375.
- 6.
Okcu, M.; Varol, Y.; Altun, Ş.; et al. Effects of isopropanol-butanol-ethanol (IBE) on combustion characteristics of a RCCI engine fueled by biodiesel fuel. Sustainable Energy Technologies and Assessments 2021, 47, 101443.
- 7.
Khaled, F.; Javed, T.; Farooq, A.; et al. Analysis of ignition temperature range and surrogate fuel requirements for GCI engine. Fuel 2022, 312, 122978.
- 8.
Putrasari, Y.; Lim, O. A study on combustion and emission of GCI engines fueled with gasoline-biodiesel blends. Fuel 2017, 189, 141–154.
- 9.
- 10.
Hildingsson, L.; Johansson, B.; Kalghatgi, G.T.; et al. Some effects of fuel autoignition quality and volatility in premixed compression ignition engines. SAE International Journal of Engines 2010, 3(1), 440–460.
- 11.
Ra, Y.; Loeper, P.; Reitz, R.; et al. Study of high speed gasoline direct injection compression ignition (GDICI) engine operation in the LTC regime. SAE International Journal of Engines 2011, 4(1), 1412–1430.
- 12.
Hanson, R.; Splitter, D.; Reitz, R.D. Operating a heavy-duty direct-injection compression-ignition engine with gasoline for low emissions. SAE Technical Paper 2009, No. 2009-01-14 42.
- 13.
Weall, A.; Collings, N. Investigation into partially premixed combustion in a light-duty multi-cylinder diesel engine fuelled with a mixture of gasoline and diesel. SAE Technical Paper 2007, No. 2007-01-40 58.
- 14.
Kolodziej, C.; Kodavasal, J.; Ciatti, S.; et al. Achieving stable engine operation of gasoline compression ignition using 87 AKI gasoline down to idle. SAE Technical Paper 2015, No. 2015-01-08 32.
- 15.
Yang, H.; Shuai, S.; Wang, Z.; et al. Fuel octane effects on gasoline multiple premixed compression ignition (MPCI) mode. Fuel 2013, 103, 373–379.
- 16.
Kodavasal, J.; Kolodziej, C.; Ciatti, S.; et al. CFD simulation of gasoline compression ignition. In Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers. 2014. Vol. 46179, p. V 002 T 06A 008
- 17.
Manente, V.; Zander, C.G.; Johansson, B.; et al. An advanced internal combustion engine concept for low emissions and high efficiency from idle to max load using gasoline partially premixed combustion. SAE Technical Paper 2010, No. 2010-01-21 98.
- 18.
Zhang, F.; Xu, H.; Rezaei, S.Z.; et al. Combustion and emission characteristics of a PPCI engine fuelled with dieseline. SAE Technical Paper 2012, No. 2012-01-11 38.
- 19.
Zhang, F.; Xu, H.; Zhang, J.; et al. Investigation into light duty dieseline fuelled partially-premixed compression ignition engine. SAE International Journal of Engines 2011, 4(1), 2124–2134.
- 20.
Adams, C.A.; Loeper, P.; Krieger, R.; et al. Effects of biodiesel–gasoline blends on gasoline direct-injection compression ignition (GCI) combustion. Fuel 2013, 111, 784–790.
- 21.
Zhong, W.; Yuan, Q.; Liao, J.; et al. Experimental and modeling study of the autoignition characteristics of gasoline/hydrogenated catalytic biodiesel blends over low-to-intermediate temperature. Fuel 2022, 313, 122919.
- 22.
Wang, Z.; Liu, H.; Reitz, R.D. Knocking combustion in spark-ignition engines. Progress in Energy and Combustion Science 2017, 61, 78–112.
- 23.
Han, W.Q.; Yao, C.D. Research on high cetane and high octane number fuels and the mechanism for their common oxidation and auto-ignition. Fuel 2015, 150, 29–40.
- 24.
Kang, D.; Kim, D.; Kalaskar, V.; et al. Experimental characterization of jet fuels under engine relevant conditions–Part 1: Effect of chemical composition on autoignition of conventional and alternative jet fuels. Fuel 2019, 239, 1388–1404.
- 25.
Wu, S.; Kang, D.; Zhang, H.; et al. The oxidation characteristics of furan derivatives and binary TPGME blends under engine relevant conditions. Proceedings of the Combustion Institute 2019, 37(4), 4635–4643.
- 26.
Kang, D.; Kalaskar, V.; Kim, D.; et al. Experimental study of autoignition characteristics of Jet-A surrogates and their validation in a motored engine and a constant-volume combustion chamber. Fuel 2016, 184, 565–580.
- 27.
Kang, D.; Bohac, S.V.; Boehman, A.L.; et al. Autoignition studies of C5 isomers in a motored engine. Proceedings of the Combustion Institute 2017, 36(3), 3597–3604.
- 28.
Glassman, I.; Yetter,Combustion, R.A.. 4th ed .; Academic Press: Boston, MA, USA, 2008.
- 29.
Natelson, R.H.; Kurman, M.S.; Cernansky, N.P.; et al. Low temperature oxidation of n-butylcyclohexane. Combustion and Flame 2011, 158(12), 2325–2337.
- 30.
Zhou, Y.; Gan, Y.; Gou, X. Chemical kinetic modeling study of methyl esters oxidation: Improvement on the prediction of early CO2 formation. Fuel 2020, 279, 118383.
- 31.
Kang, D.; Bohac, S.V.; Boehman, A.L.; et al. Autoignition studies of C5 isomers in a motored engine. Proceedings of the Combustion Institute 2017, 36(3), 3597–3604.
- 32.
Wang, Z.; Popolan-Vaida, D.M.; Chen, B.; et al. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds. Proceedings of the National Academy of Sciences 2017, 114(50), 13102–13107.
- 33.
Curran, H.J.; Gaffuri, P.; Pitz, W.J.; et al. A comprehensive modeling study of n-heptane oxidation. Combustion and Flame 1998, 114(1–2), 149–177.
- 34.
Curran, H.J.; Gaffuri, P.; Pitz, W.J.; et al. A comprehensive modeling study of iso-octane oxidation. Combustion and Flame 2002, 129(3), 253–280.
- 35.
Cox, R.A.; Cole, J.A. Chemical aspects of the autoignition of hydrocarbon air mixtures. Combustion and Flame 1985, 60(2), 109–123.
- 36.
Curran, H.J. Developing detailed chemical kinetic mechanisms for fuel combustion. Proceedings of the Combustion Institute 2019, 37(1), 57–81.
- 37.
Khaled, F.; Javed, T.; Farooq, A.; et al. Analysis of ignition temperature range and surrogate fuel requirements for GCI engine. Fuel 2022, 312, 122978.
- 38.
Zhu, J.; Wang, S.; Raza, M.; et al. Autoignition behavior of methanol/diesel mixtures: Experiments and kinetic modeling. Combustion and Flame 2021, 228, 1–12.