2504000097
  • Open Access
  • Article
Joint Calibration of MIMO Radar Arrays under Multiple Signal Sources
  • Bin Wang 1,   
  • XiaoYu Xie 1,   
  • Shufei Yin 1, 2, *

Received: 07 Oct 2023 | Accepted: 02 Nov 2023 | Published: 06 Dec 2023

Abstract

The 4D vehicle-mounted millimeter-wave radar can simultaneously measure the horizontal and vertical angles, which depends on the arrangement of the multiple-input multiple-output (MIMO) array antenna. In practical engineering applications, to ensure the calculation accuracy of horizontal angle and vertical angle, it is necessary to calibrate the array phase error and array antenna spacing error. In this paper, aiming at the simultaneous occurrence of array amplitude-phase errors and array antenna spacing errors, a mathematical model of MIMO antenna array errors is established. At the same time, the impact of array errors is analyzed by simulation. An array joint calibration method under multi-source is proposed, and the proposed calibration method is simulated and analyzed. The results show that the array phase error and the array spacing error can be calibrated at the same time through this calibration method, which can meet the calibration requirements in the mass production process of vehicle radar. The calibration method mentioned in this paper has the advantages of simplicity and high efficiency for the calibration of vehicle radar at this stage.

References 

  • 1.
    Cheng, Y.; Su, J.; Chen, H.; et al. A new automotive radar 4D point clouds detector by using deep learning. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE: Piscataway, NJ, USA, 2021; pp. 8398–8402. doi: 10.1109/ICASSP39728.2021.9413682.
  • 2.
    Waldschmidt, C.; Hasch, J.; Menzel, W. Automotive radar—From first efforts to future systems. IEEE Journal of Microwaves 2021, 1(1), 135–148. doi: 10.1109/JMW.2020.3033616.
  • 3.
    Li, G.; Sit, Y.L.; Manchala, S.; et al. Pioneer study on near-range sensing with 4D MIMO-FMCW automotive radars. In 2019 20th International Radar Symposium (IRS). IEEE: Piscataway, NJ, USA, 2019; pp. 1–10. doi: 10.23919/IRS.2019.8768170.
  • 4.
    Peng, W.; Jinghu, S.; Di, Z.; et al. Ultra-high Angular Resolution 4D Millimeter Wave Radar Antenna Array Design. In 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE: Piscataway, NJ, USA, 2022; pp. 1–3. doi: 10.1109/IMWS-AMP54652.2022.10107163.
  • 5.
    Jiang, M.; Xu, G.; Pei, H.; et al. High-resolution automotive radar point cloud imaging and processing. In 2022 Photonics & Electromagnetics Research Symposium (PIERS). IEEE: Piscataway, NJ, USA, 2022; pp. 624–632.
  • 6.
    Jiang, M.; Xu, G.; Pei, H.; et al. 4D High-resolution imagery of point clouds for automotive mmWave radar. IEEE Transactions on Intelligent Transportation Systems 2023. doi: 10.1109/TITS.2023.3258688.
  • 7.
    Sichani, N.K.; Ahmadi, M.; Raei, E.; et al. Waveform Selection for FMCW and PMCW 4D-Imaging Automotive Radar Sensors. In 2023 IEEE Radar Conference (RadarConf23). IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. doi: 10.1109/RadarConf2351548.2023.10149733.
  • 8.
    Raei, E.; Alaee-Kerahroodi, M.; Shankar, B.M. Waveform design for beampattern shaping in 4D-imaging MIMO radar systems. In 2021 21st International Radar Symposium (IRS). IEEE: Piscataway, NJ, USA, 2021; pp. 1–10. doi: 10.23919/IRS51887.2021.9466196.
  • 9.
    Shijo, T.; Obayashi, S.; Morooka, T. Design and development of 77-GHz pair-slot array antenna with single-mode post-wall waveguide for automotive radar. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI). IEEE: Piscataway, NJ, USA, 2011; pp. 476–479. doi: 10.1109/APS.2011.5996748.
  • 10.
    Hehenberger, S.P.; Yarovoy, A.; Stelzer, A. A 77-GHz FMCW MIMO radar employing a non-uniform 2D antenna array and substrate integrated waveguides. In 2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM). IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. doi: 10.1109/ICMIM48759.2020.9299059.
  • 11.
    Liu, H.; Su, H.; Shui, P.; et al. Multipath signal resolving and time delay estimation for high range resolution radar. In IEEE International Radar Conference, 2005. IEEE: Piscataway, NJ, USA, 2005; pp. 497–502. doi: 10.1109/RADAR.2005.1435877.
  • 12.
    Kodari, R.Y.; Rösch, M.; Harter, M. Analysis of Amplitude and Phase Errors in Digital-Beamforming Radars for Automotive Applications. In 2020 21st International Radar Symposium (IRS). IEEE: Piscataway, NJ, USA, 2020; pp. 391–395. doi: 10.23919/IRS48640.2020.9253874.
  • 13.
    Stephan, M., Wang, K.; Reissland, T.; et al. Evaluation of antenna calibration and DOA estimation algorithms for FMCW radars. In 2019 49th European Microwave Conference (EuMC). IEEE: Piscataway, NJ, USA, 2019; pp. 944–947. doi: 10.23919/EuMC.2019.8910916.
  • 14.
    Pierre, J.; Kaveh, M. Experimental performance of calibration and direction-finding algorithms. In Acoustics, Speech, and Signal Processing, IEEE International Conference on. IEEE Computer Society: Piscataway, NJ, USA, 1991; pp. 1365–1368. doi: 10.1109/ICASSP.1991.150676.
  • 15.
    Ng, B.C.; See, C.M.S. Sensor-array calibration using a maximum-likelihood approach. IEEE Transactions on Antennas and Propagation 1996, 44(6), 827–835. doi: 10.1109/8.509886.
  • 16.
    See, C.M.; Poh, B.K. Parametric sensor array calibration using measured steering vectors of uncertain locations. IEEE Transactions on Signal Processing 1999, 47(4), 1133–1137. doi: 10.1109/78.752611.
  • 17.
    Wang, B.-H.; Wang, Y.-L.; Chen, H. Array calibration of angularly dependent gain and phase uncertainties with instrumental sensors. In IEEE International Symposium on Phased Array Systems and Technology, 2003. IEEE: Piscataway, NJ, USA, 2003; pp. 182–186.
  • 18.
    Sun, S.; Petropulu, A.P.; Poor, H.V. MIMO radar for advanced driver-assistance systems and autonomous driving: Advantages and challenges. IEEE Signal Processing Magazine 2020, 37(4), 98–117. doi: 10.1109/MSP.2020.2978507.
  • 19.
    Sun, H.; Brigui, F.; Lesturgie, M. Analysis and comparison of MIMO radar waveforms. In 2014 International Radar Conference. IEEE: Piscataway, NJ, USA, 2014; pp. 1–6. doi: 10.1109/RADAR.2014.7060251.
  • 20.
    Patole, S.M.; Torlak, M.; Wang, D.; et al. Automotive radars: A review of signal processing techniques. IEEE Signal Processing Magazine 2017, 34(2), 22–35. doi: 10.1109/MSP.2016.2628914.
  • 21.
    Zhang, X.; Xu, L.; Xu, L.; et al. Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC. IEEE Communications Letters 2010, 14(12), 1161–1163. doi: 10.1109/LCOMM.2010.102610.101581.
  • 22.
    Ng, B.C.; Ser, W. Array shape calibration using sources in known locations. In [Proceedings] Singapore ICCS/ISITA92. IEEE: Piscataway, NJ, USA, 1992; pp. 836–840. doi: 10.1109/ICCS.1992.255145.
  • 23.
    Stavropoulos, K.V.; Manikas, A. Array calibration in the presence of unknown sensor characteristics and mutual coupling. In 2000 10th European Signal Processing Conference. IEEE: Piscataway, NJ, USA, 2000; pp. 1–4.
  • 24.
    Wu, C. Critical configurations for radial distortion self-calibration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE: Piscataway, NJ, USA, 2014; pp. 25–32. doi: 10.1109/CVPR.2014.11.
Share this article:
How to Cite
Wang, B.; Xie, X.; Yin, S. Joint Calibration of MIMO Radar Arrays under Multiple Signal Sources. International Journal of Automotive Manufacturing and Materials 2023, 2 (4), 4. https://doi.org/10.53941/ijamm.2023.100016.
RIS
BibTex
Copyright & License
article copyright Image
by the authors.