- 1.
- 2.
Doncieux, S.; Bredeche, N.; Mouret, J.B.; et al. Evolutionary robotics: what, why, and where to. Frontiers in Robotics and AI 2015, 2(4), 1–18.
- 3.
Harvey, I. Evolutionary Robotics and SAGA: The Case for Hill Crawling and Tournament Selection. Langton, C. ed., Artificial Life III, Santa Fe Institute Studies in the Sciences of Complexity, Proc. Vol. XVI: Addison-Wesley: Reading, MA, 1993, pp. 299–326.
- 4.
Gupta, S.; Singla, E. Evolutionary robotics in two decades: A review. Sadhana 2015, 40, 1169–1184.
- 5.
Dai, J.S.; Rees Jones, J. Mobility in metamorphic mechanisms of foldable/erectable kinds. Journal of Mechanical Design 1999, 121(3), 375–382.
- 6.
Aimedee, F.; Gogu, G.; Dai, J.S.; et al. Systematization of morphing in reconfigurable mechanisms. Mechanism and Machine Theory 2016, 96, 215–224.
- 7.
Dai, J.S.; Wang, D.; Cui, L. Orientation and workspace analysis of the multifingered metamorphic hand—Metahand. IEEE Transactions on Robotics 2009, 25(4), 942–947.
- 8.
Lee, D.Y.; Kim, S.R.; Kim, J.S.; et al. Origami wheel transformer: A variable-diameter wheel drive robot using an origami structure. Soft Robotics 2017, 4(2), 163–180.
- 9.
Felton, S.; Tolley, M.; Demaine, E.; et al. A method for building self-folding machines. Science 2014, 345(6197), 644–646.
- 10.
Miyashita, S.; Guitron, S.; Ludersdorfer, M.; et al. An untethered miniature origami robot that self-folds, walks, swims, and degrades. 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE: Washington, USA, 2015, pp. 1490–1496.
- 11.
Belke, C.H.; Paik, J. Mori: a modular origami robot. IEEE/ASME Transactions on Mechatronics, 2017, 22(5), 2153–2164.
- 12.
Jeong, D.; Lee, K. Design and analysis of an origami-based three-finger manipulator. Robotica 2018, 36(2), 261–274.
- 13.
Tang, Z.; Qi, P.; Dai, J.S. Mechanism design of a biomimetic quadruped robot. Industrial Robot: An International Journal 2017, 44(4), 512–520.
- 14.
Tang, Z.; Wang, K.; Spyrakos-Papastavridis, E.; et al. Origaker: a novel multi-mimicry quadruped robot based on a metamorphic mechanism. Journal of Mechanisms and Robotics, Transactions of the ASME 2022, 14(6), 060907.
- 15.
Ghafoor, A.; Dai, J.S.; Duffy, J. Stiffness modeling of the soft-finger contact in robotic Grasping. Journal of Mechanical Design 2004, 126(4), 646–656.
- 16.
Zhao, J.S.; Wang, J.Y.; Chu, F.; et al. Structure synthesis and statics analysis of a foldable stair. Mechanism and Machine Theory 2011, 46(7), 998–1015.
- 17.
Chocron, O.; Bidaud, P. Genetic design of 3d modular manipulators. Proceedings of 1997 IEEE International Conference on Robotics and Automation. IEEE: Albuquerque, NM, USA, 1997, vol. 1, pp. 223–228.
- 18.
Chung, W.K.; Han, J.; Youm, Y.; et al. Task based design of modular robot manipulator using efficient genetic algorithm. Proceedings of 1997 IEEE International Conference on Robotics and Automation. IEEE: Albuquerque, NM, USA, 1997, vol. 1, pp. 507–512.
- 19.
Jia, G.; Huang, H.; Li, B.; et al. Synthesis of a novel type of metamorphic mechanism module for large scale deployable grasping manipulators. Mechanism and Machine Theory 2018, 128, 544–559.
- 20.
Jia, G.; Huang, H.; Wang, S.; et al. Type synthesis of plane-symmetric deployable grasping parallel mechanisms using constraint force parallelogram law. Mechanism and Machine Theory 2021, 161, 104330.
- 21.
Jia, G.; Li, B.; Huang, H.; et al. Type synthesis of metamorphic mechanisms with scissor-like linkage based on different kinds of connecting pairs. Mechanism and Machine Theory 2020, 151, 103848.
- 22.
Zhuang, Z.; Guan, Y.; Xu, S.; et al. Reconfigurability in automobiles—structure, manufacturing and algorithm for automobiles. International Journal of Automotive Manufacturing and Materials 2022, 1(1), 1.
- 23.
Funes, P.; Pollack, J. Evolutionary body building: Adaptive physical designs for robots. Artificial Life 1998, 4(4), 337–357.
- 24.
Funes, P.; Pollack, J. Computer evolution of buildable objects. Evolutionary Design by Computers 1999, 1, 387–403.
- 25.
Hornby, G.S.; Pollack, J.B. The advantages of generative grammatical encodings for physical design. Proceedings of the 2001 Congress on Evolutionary Computation. IEEE: Seoul, Korea, 2001, vol. 1, pp. 600–607.
- 26.
Hornby, G.S.; Lipson, H.; Pollack, J.B. Generative representations for the automated design of modular physical robots. IEEE Transactions on Robotics and Automation 2003, 19(4), 703–719.
- 27.
Dai, J.S.; Wang, D. Differential geometry based analysis and synthesis of a multifingered robotic hand with a metamorphic palm. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Philadelphia, Pennsylvania, USA, 10–13 September, 2006, vol. 42568, pp. 1005–1016.
- 28.
Dai, J.S.; Wang, D. Co-Axial Plane Synthesis of a Metamorphic Stage of a Novel Robot Hand with A Metamorphic Spherical Palm. 15th International Conference on Mechanisms and Machine Science, Yinchuan, China, 2006, pp. 14–18.
- 29.
Dai, J.S.; Wang, D. Geometric analysis and synthesis of the metamorphic robotic hand. Journal of Mechanical Design 2007, 129(11), 1191–1197.
- 30.
Wang, D.; Cui, L.; Dai, J.S. Analysis of the metamorphic multifingered dexterous hand. Journal of Mechanical Engineering 2008, 44(8), 1–6.
- 31.
Cui, L.; Wang, D.; Dai, J.S. Dimensional synthesis of palm of multifingered metamorphic dexterous hand. Journal of Dalian University of Technology 2009, 49(3), 380–386.
- 32.
Cui, L.; Dai, J.S. Posture, workspace, and manipulability of the metamorphic multifingered hand with an articulated palm. Journal of Mechanisms and Robotics, Transactions of the ASME 2011, 3(2), 021001.
- 33.
Cui, L.; Dai, J.S. Reciprocity-based singular value decomposition for inverse kinematic analysis of the metamorphic multifingered hand. Journal of Mechanisms and Robotics, Transactions of the ASME 2012, 4(3), 034502.
- 34.
Cui, L.; Cupcic, U.; Dai, J.S. An optimization approach to teleoperation of the thumb of a humanoid robot hand: Kinematic mapping and calibration. Journal of Mechanical Design 2014, 136(9), 091005.
- 35.
Gao, Z.; Wei, G.; Dai, J.S. Inverse kinematics and workspace analysis of the metamorphic hand. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2015, 229(5), 965–975.
- 36.
Emmanouil, E.; Wei, G.; Dai, J.S. Spherical trigonometry constrained kinematics for a dexterous robotic hand with an articulated palm. Robotica 2016, 34(12), 2788–2805.
- 37.
Cui, L.; Sun, J.; Dai, J.S. In-hand forward and inverse kinematics with rolling contact. Robotica 2017, 35(12), 2381–2399.
- 38.
An, W.; Wei, J.; Lu, X.; et al. Geometric design-based dimensional synthesis of a novel metamorphic multi-fingered hand with maximal workspace. Chinese Journal of Mechanical Engineering 2021, 34(1), 41.
- 39.
Bai, R.; Kang, R.; Shang, K.; et al. A humanoid robotic hand capable of internal assembly and measurement in spacesuit gloves. Industrial Robot: The international journal of robotics research and application 2022, 49(4), 603–615.
- 40.
Lin, Y.H.; Wang, T.; Spyrakos-Papastavridis, E.; et al. Minimum Friction Coefficient-Based Precision Manipulation Workspace Analysis of the Three-Fingered Metamorphic Hand. Journal of Mechanisms and Robotics, Transactions of the ASME 2023, 15(5), 051018.
- 41.
Zykov, V.; Mytilinaios, E.; Desnoyer, M.; et al. Evolved and designed self-reproducing modular robotics. IEEE Transactions on Robotics 2007, 23(2), 308–319.
- 42.
Zhang, L.; Wang, D.; Dai, J.S. Biological Modeling and Evolution Based Synthesis, Journal of Mechanical Design 2008, 130(7), 072303.
- 43.
Rout, B.; Mittal, R. Optimal design of manipulator parameter using evolutionary optimization techniques. Robotica 2010, 28(3), 381–395.
- 44.
Bongard, J. Morphological change in machines accelerates the evolution of robust behavior. Proceedings of the National Academy of Science 2011, 108(4), 1234–1239.
- 45.
Rubrecht, S.; Singla, E.; Padois, V.; et al. Evolutionary design of a robotic manipulator for a highly constrained environment. New Horizons in Evolutionary Robotics: Extended Contributions from the 2009 EvoDeRob Workshop. Springer: Berlin Heidelberg, Germany, 2011, pp. 109–121.
- 46.
Tolley, M.T.; Hiller, J.D.; Lipson, H. Evolutionary design and assembly planning for stochastic modular robots. New Horizons in Evolutionary Robotics: Extended Contributions from the 2009 EvoDeRob Workshop. Springer: Berlin Heidelberg, Germany, 2011, pp. 211–225.
- 47.
Zhang, C.; Dai, J.S. Continuous static gait with twisting trunk of a metamorphic quadruped robot. Mechanical Sciences 2018, 9(1), 1–14.
- 48.
Zhang, C.; Dai, J.S. Trot gait with twisting trunk of a metamorphic quadruped robot. Journal of Bionic Engineering 2018, 15, 971–981.
- 49.
Zhang, C.; Chai, X.; Dai, J.S. Preventing Tumbling with a Twisting Trunk for the Quadruped Robot: Origaker I. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASME: Quebec City, QC, Canada, 2018, vol. 51814, p. V05BT07A010.
- 50.
Li, T.; Zhang, C.; Wang, S.; et al. Jumping with expandable trunk of a metamorphic quadruped robot—the origaker II. Applied Sciences 2019, 9(9), 1778.
- 51.
Zhang, C.; Zhang, C.; Dai, J.S.; et al. Stability margin of a metamorphic quadruped robot with a twisting trunk. Journal of Mechanisms and Robotics, Transactions of the ASME 2019, 11(6), 064501.
- 52.
Wang, S.; Wang, K.; Zhang, C.; et al. Kinetostatic backflip strategy for self-recovery of quadruped robots with the selected rotation axis. Robotica 2022, 40(6), 1713–1731.
- 53.
Guan, Y.; Zhuang, Z.; Zhang, C.; et al. Design and Motion Planning of a Metamorphic Flipping Robot. Actuators 2022, 11(12), 344.
- 54.
Liu, H.H.; Dai, J.S. An approach to carton-folding trajectory planning using dual robotic fingers. Robotics and Autonomous Systems 2003, 42(1), 47–63.
- 55.
Dai, J.S.; Caldwell, D.G. Origami-based robotic paper-and-board packaging for food industry. Trends in Food Science & Technology 2010, 21(3), 153–157.
- 56.
Jia, G.; Huang, H.; Guo, H.; et al. Design of transformable hinged ori-block dissected from cylinders and cones. Journal of Mechanisms and Robotics, Transactions of the ASME 2021, 143(9), 094501.
- 57.
Chen, C.H.; Yao, T.K.; Kuo, C.M.; et al. Evolutionary design of constructive multilayer feedforward neural network. Journal of Vibration and Control 2013, 19(16), 2413–2420.
- 58.
Howard, D.; Eiben, A.E.; Kennedy, D.F.; et al. Evolving embodied intelligence from materials to machines. Nature Machine Intelligence 2019, 1(1), 12–19.
- 59.
Lipson, H.; Pollack, J.B. Automatic design and manufacture of robotic lifeforms. Nature 2000, 406(6799), 974–978.
- 60.
Rieffel, J.; Sayles, D. Evofab: A fully embodied evolutionary fabricator. International Conference on Evolvable Systems. Springer: Berlin, Heidelberg, Germany, 2010, pp. 372–380.
- 61.
Kuehn, T.J. Evolutionary fabrication: a system of autonomous invention. Proceedings of the 14th annual conference companion on Genetic and evolutionary computation. ACM: Jilin, China, 2012, pp. 579–584.
- 62.
Wei, G.; Dai, J.S.; Wang, S.; et al. Kinematic analysis and prototype of a metamorphic anthropomorphic hand with a reconfigurable palm. International Journal of Humanoid Robotics 2011, 8(3), 459–479.
- 63.
Eiben, A.; Kernbach, S.; Aasdijk, E. Embodied artificial evolution. Evolutionary Intelligence 2012, 5(4), 261–272.
- 64.
Wang, L.; Zheng, D.; Harker, P.; et al. Evolutionary design of magnetic soft continuum robots. Proceedings of the National Academy of Sciences 2021, 118(21), e2021922118.
- 65.
Wang, G.; Phan, T.V.; Li, S.; et al. Robots as models of evolving systems. Proceedings of the National Academy of Sciences 2022, 119(12), e2120019119.
- 66.
Eiben, A.E.; Hart, E.; Timmis, J.; et al. Towards autonomous robot evolution. Software Engineering for Robotics. Springer: Berlin, Heidelberg, Germany, 2021, pp. 29–51.
- 67.
Eiben, A.E.; Ellers, J.; Meynen, G.; et al. Robot Evolution: Ethical Concerns. Frontiers in Robotics and AI 2021, 8, 344.
- 68.
Eiben, A.E. Real-world robot evolution: Why would it (not) work? Frontiers in Robotics and AI 2021, 8, 696452.
- 69.
Husbands, P.; Shim, Y.; Garvie, M.; et al. Recent advances in evolutionary and bio-inspired adaptive robotics: Exploiting embodied dynamics. Applied Intelligence 2021, 51(9), 6467–6496.
- 70.
Sims, K. Evolving 3D morphology and behavior by competition. Artificial Life 1994, 1(4), 353–372.
- 71.
Sims, K. Evolving virtual creatures. Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques-SIGGRAPH'94. ACM: Orlando, Florida, USA, 1994, pp. 15–22.
- 72.
Lee, W.P.; Hallam, J.; Lund, H.H. A hybrid GP/GA approach for co-evolving controllers and robot bodies to achieve fitness-specified tasks. Proceedings of IEEE International Conference on Evolutionary Computation. IEEE: Nagoya, Japan, 1996, pp. 384–389.
- 73.
Lund, H.H.; Hallam, J.; Lee, W.P. Evolving robot morphology. IEEE International Conference on Evolutionary Computation. IEEE: Indianapolis, IN, USA, 1997, pp. 197–202.
- 74.
Chocron, O.; Bidaud, P. Evolutionary algorithm for global design of locomotion systems. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No. 99CH36289). IEEE: Kyongju, Korea, 1999, vol. 3, pp. 1573–1578.
- 75.
Chocron, O.; Bidaud, P. Evolving walking robots for global task based design. Proceedings of the 1999 Congress on Evolutionary Computation-CEC 99 (Cat. No. 99TH8406). IEEE: Washington, DC, USA, 1999, vol. 1, pp. 405–412.
- 76.
Pollack, J.B.; Lipson, H. The golem project: Evolving hardware bodies and brains. Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware. IEEE: Palo Alto, California, USA, 2000, pp. 37–42.
- 77.
Pollack, J.B.; Lipson, H.; Ficici, S.; et al. Evolutionary techniques in physical robotics. In Evolvable Systems: From Biology to Hardware. ICES 2000. Lecture Notes in Computer Science, Miller, J., Thompson, A., Thomson, P., Fogarty, T.C., Eds.; Springer: Berlin, Heidelberg, Germany, 2000, vol. 1801, pp. 175–186.
- 78.
Paul, C.; Bongard, J.C. The road less travelled: Morphology in the optimization of biped robot locomotion. Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE: Maui, HI, USA, 2001, vol. 1, pp. 226–232.
- 79.
Hornby, G.S.; Lipson, H.; Pollack, J.B. Evolution of generative design systems for modular physical robots. Proceedings of the 2001 IEEE International Conference on Robotics and Automation. IEEE: Seoul, Korea, 2001, vol. 4, pp. 4146–4151.
- 80.
Hornby, G.S.; Pollack, J.B. Body-brain co-evolution using l-systems as a generative encoding. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001). Morgan Kaufmann: San Francisco, California, USA, 2001, pp. 868–875.
- 81.
Pollack, J.B.; Lipson, H.; Hornby, G.; et al. Three generations of automatically designed robots. Artificial Life 2001, 7(3), 215–223.
- 82.
Stanley, K.O.; Miikkulainen, R. Evolving neural networks through augmenting topologies. Evolutionary Computation 2002, 10(2), 99–127.
- 83.
Chocron, O.; Brener, N.; Bidaud, P.; et al. Evolutionary synthesis of structure and control for locomotion systems. Climbing and Walking Robots: Proceedings of the 7th International Conference CLAWAR 2004. Springer: Berlin Heidelberg, Germany, 2005, pp. 879–888.
- 84.
Aminzadeh, V.; Walker, R.; Cupcic, U.; et al. Friction Compensation and Control Strategy for the Dexterous Robotic Hands. Advances in Reconfigurable Mechanisms and Robots I. Springer: London, UK, 2012, pp. 697–705.
- 85.
Lipson, H. Evolutionary robotics and open-ended design automation. Biomimetics 2005, 17(9), 129–155.
- 86.
Bongard, J.C. Evolutionary robotics. Communications of the ACM 2013, 56(8), 74–83.
- 87.
Nolfi, S.; Bongard, J.C.; Husbands, P.; et al. Evolutionary robotics. In Springer Handbook of Robotics, Siciliano, B., Khatib, O. Eds.; Springer: Cham, Switzerland, 2016, pp. 2035–2068.
- 88.
Shah, D.; Yang, B.; Kriegman, S.; et al. Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization. Advanced Materials 2021, 33, 2002882.
- 89.
Sun, J.; Lerner, E.; Tighe, B.; et al. Embedded shape morphing for morphologically adaptive robots. Nature Communications 2023, 14, 6023.
- 90.
Baines, R.; Patiballa, S.K.; Booth, J.; et al. Multi-environment robotic transitions through adaptive morphogenesis. Nature 2022, 610, 283–289.
- 91.
Kim, H.; Ahn, S.K.; Mackie, D.M.; et al. Shape morphing smart 3D actuator materials for micro soft robot. Materials Today 2020, 41, 243–269.
- 92.
Li, M.; Pal, A.; Aghakhani, A.; et al. Soft actuators for real-world applications. Nature Reviews Materials 2022, 7, 235–249.
- 93.
Dawood, M.; El-Tahan, M.W.; Zheng, B. Bond behavior of superelastic shape memory alloys to carbon fiber reinforced polymer composites. Composites Part B: Engineering 2015, 77, 238–247.
- 94.
Wu, J.T.; Yuan, C.; Ding, Z.; et al. Multi-shape active composites by 3D printing of digital shape memory polymers. Scientific Reports 2016, 6, 24224.
- 95.
Leng, X.; Hu, X.; Zhao, W.; et al. Recent Advances in Twisted-Fiber Artificial Muscles. Advanced Intelligent Systems 2021, 3, 2000185.
- 96.
Lima, M.D.; Li, N.; de Andrade, M.J.; et al. Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles. Science 2012, 338, 928–932.
- 97.
Chortos, A.; Hajiesmaili, E.; Morales, J.; et al. 3D Printing of Interdigitated Dielectric Elastomer Actuators. Advanced Functional Materials 2020, 30, 1907375.
- 98.
Pelrine, R.; Kornbluh, R.; Pei, Q.; et al. High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%. Science 2000, 287, 836–839.
- 99.
Duduta, M.; Hajiesmaili, E.; Zhao, H.; et al. Realizing the potential of dielectric elastomer artificial muscles. Proceedings of the National Academy of Sciences 2019, 116, 2476–2481.
- 100.
Davidson, Z.S.; Shahsavan, H.; Aghakhani, A.; et al. Monolithic shape-programmable dielectric liquid crystal elastomer actuators. Science Advances 2019, 5, eaay0855.
- 101.
Ford, M.J.; Ambulo, C.P.; Kent, T.A.; et al. A multifunctional shape-morphing elastomer with liquid metal inclusions. Proceedings of the National Academy of Sciences 2019, 116, 21438–21444.
- 102.
Aksoy, B.; Shea, H. Reconfigurable and Latchable Shape-Morphing Dielectric Elastomers Based on Local Stiffness Modulation. Advanced Functional Materials 2020, 30, 2001597.
- 103.
Liu, K.; Hacker, F.; Daraio, C. Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation. Science Robotics 2021, 6, eabf5116.
- 104.
Kramer, D.; Viswanath, R.N.; Weissmüller, J. Surface-Stress Induced Macroscopic Bending of Nanoporous Gold Cantilevers. Nano Letters 2004, 4, 793–796.
- 105.
Acerce, M.; Akdogan, E.K.; Chhowalla, M. Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature 2017, 549, 370–373.
- 106.
Chu, H.T.; Hu, X.H.; Wang, Z.; et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 2021, 371, 494–498.
- 107.
Gorissen, B.; Melancon, D.; Vasios, N.; et al. Inflatable soft jumper inspired by shell snapping. Science Robotics 2020, 5, eabb1967.
- 108.
Cacucciolo, V.; Shintake, J.; Kuwajima, Y.; et al. Stretchable pumps for soft machines. Nature 2019, 572, 516–519.
- 109.
Jiang, C.; Rist, F.; Wang, H.; et al. Shape-morphing mechanical metamaterials. Computer-Aided Design 2022, 143, 103146.
- 110.
Dudek, K.K.; Martínez, J.A.I.; Ulliac, G.; et al. Micro-Scale Auxetic Hierarchical Mechanical Metamaterials for Shape Morphing. Advanced Materials 2022, 34, 2110115.
- 111.
Wenz, F.; Schmidt, I.; Leichner, A.; et al. Designing Shape Morphing Behavior through Local Programming of Mechanical Metamaterials. Advanced Materials 2021, 33, 2008617.
- 112.
Hwang, D.; Barron, E.J.; Haque, A.B.M.T.; et al. Shape morphing mechanical metamaterials through reversible plasticity. Science Robotics 2022, 7, eabg2171.
- 113.
Ge, Q.; Sakhaei, A.H.; Lee, H.; et al. Multimaterial 4D printing with tailorable shape memory polymers. Scientific Reports 2016, 6(1), 31110.
- 114.
Zhang, B.; Li, H.; Cheng, J.; et al. Mechanically Robust and UV‐Curable Shape‐Memory Polymers for Digital Light Processing Based 4D Printing. Advanced Materials 2021, 33(27), 202101298.
- 115.
Wang, D.; Zhao, B.; Li, X.; et al. Dexterous electrical-driven soft robots with reconfigurable chiral-lattice foot design. Nature Communications 2023, 14(1), 5067.
- 116.
Montarnal, D.; Capelot, M.; Tournilhac, F.; et al. Silica-like malleable materials from permanent organic networks. Science 2011, 334(6058), 965–968.
- 117.
Zhao, Q.; Zou, W.; Luo, Y.; et al. Shape memory polymer network with thermally distinct elasticity and plasticity. Science Advances 2016, 2(1), e150129.
- 118.
Jin, B.; Song, H.; Jiang, R.; et al. Programming a crystalline shape memory polymer network with thermo-and photo-reversible bonds toward a single-component soft robot. Science Advances 2018, 4(1), eaao3865.
- 119.
Cui, C.; An, L.; Zhang, Z.; et al. Reconfigurable 4D Printing of Reprocessable and Mechanically Strong Polythiourethane Covalent Adaptable Networks. Advanced Functional Materials 2022, 32(29), 2203720.
- 120.
Cheng, N.G.; Gopinath, A.; Wang, L.; et al. Thermally tunable, self‐healing composites for soft robotic applications. Macromolecular Materials and Engineering 2014, 299(11), 1279–1284.
- 121.
Van Meerbeek, I.M.; Mac Murray, B.C.; Kim, J.W.; et al. Morphing metal and elastomer bicontinuous foams for reversible stiffness, shape memory, and self‐healing soft machines. Advanced Materials 2016, 28(14), 2801–2806.
- 122.
Majidi, C.; Wood, R.J. Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field. Applied Physics Letters 2010, 97(16), 164104.
- 123.
Wang, D.; Li, L.; Zhang, B.; et al. Effect of temperature on the programmable helical deformation of a reconfigurable anisotropic soft actuator. International Journal of Solids and Structures 2020, 199, 169–180.
- 124.
Zhang, Y.F.; Zhang, N.; Hingorani, H.; et al. Fast‐response, stiffness‐tunable soft actuator by hybrid multimaterial 3D printing. Advanced Functional Materials 2019, 29(15), 1806698.
- 125.
Wei, X.; Li, H.; He, X.; et al. Shape memory polymer-based stiffness variable soft actuator via digital light processing-based 3D printing. 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE: Shanghai, China, 2021, pp. 612–616.
- 126.
Hwang, D. A Kirigami Approach for Controlling Properties of Adhesives and Composites. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2022.
- 127.
Zhang, K.; Dai, J.S. A kirigami-inspired 8R linkage and its evolved overconstrained 6R linkages with the rotational symmetry of order two. Journal of Mechanisms and Robotics, Transactions of the ASME 2014, 6(2), 021008.
- 128.
Zhang, K.; Qiu, C.; Dai, J.S. Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators. Journal of Mechanisms and Robotics, Transactions of the ASME 2015, 7(2), 021014.
- 129.
Alora, J.I.; Pabon, L.A.; Köhler, J.; et al. Robust nonlinear reduced-order model predictive control. arXiv preprint 2023, arXiv:2309.05746.
- 130.
Alora, J.I.; Cenedese, M.; Schmerling, E.; et al. Data-driven spectral submanifold reduction for nonlinear optimal control of high-dimensional robots. 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE: London, UK, 2023, pp. 2627–2633.
- 131.
Tao, F.; Zhang, H.; Liu, A.; et al. Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics 2018, 15(4), 2405–2415.
- 132.
Qin, L.; Peng, H.; Huang, X.; et al. Modeling and simulation of dynamics in soft robotics: a review of numerical approaches. Current Robotics Reports 2023, 1–13.
- 133.
Shabana, A. Continuum-based geometry/analysis approach for flexible and soft robotic systems. Soft Robotics 2018, 5(5), 613–621.
- 134.
Gao, A.; Li, J.; Zhou, Y.; et al. Modeling and task-oriented optimization of contact-aided continuum robots. IEEE/ASME Transactions on Mechatronics 2020, 25(3), 1444–1455.
- 135.
Jawed, M.K.; Novelia, A.; O'Reilly, O.M. A Primer on the Kinematics of Discrete Elastic Rods. Springer: Cham, Switzerland, 2018.
- 136.
Han, S.; Bauchau, O.A. Nonlinear three-dimensional beam theory for flexible multibody dynamics. Multibody System Dynamics 2015, 34, 211–242.
- 137.
Tian, Q.; Flores, P.; Lankarani, H.M. A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mechanism and Machine Theory 2018, 122, 1–57.
- 138.
De Klerk, D.; Rixen, D.J.; Voormeeren, S.N. General framework for dynamic substructuring: history, review and classification of techniques. AIAA Journal 2008, 46(5), 1169–1181.
- 139.
Luo, K.; Hu, H.; Liu, C.; et al. Model order reduction for dynamic simulation of a flexible multibody system via absolute nodal coordinate formulation. Computer Methods in Applied Mechanics and Engineering 2017, 324, 573–594.
- 140.
Proctor, J.L.; Brunton, S.L.; Kutz, J.N. Dynamic mode decomposition with control. SIAM Journal on Applied Dynamical Systems 2016, 15(1), 142–161.
- 141.
Bruder, D.; Remy, C.D.; Vasudevan, R. Nonlinear system identification of soft robot dynamics using Koopman operator theory. 2019 International Conference on Robotics and Automation (ICRA). IEEE: Montreal, QC, Canada, 2019, pp. 6244–6250.
- 142.
Cenedese, M.; Axås, J.; Bäuerlein, B.; et al. Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds. Nature Communications 2022, 13(1), 872.
- 143.
Li, M.; Jain, S; Haller, G. Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds, Part I: Periodic response and forced response curve. Nonlinear Dynamics 2022, 110(2), 1005–1043.
- 144.
Thuruthel, T.G.; Falotico, E.; Renda, F.; et al. Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators. IEEE Transactions on Robotics 2018, 35(1), 124–134.
- 145.
Li, G.; Shintake, J.; Hayashibe, M. Deep reinforcement learning framework for underwater locomotion of soft robot. 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE: Xi'an, China, 2021, pp. 12033–12039.
- 146.
George, H.; Jain, S.; Cenedese, M. Dynamics-based machine learning for nonlinearizable phenomena. Data-driven reduced models on spectral submanifolds. SIAM News, 2022, 55(5), 1–4.
- 147.
Gogu, G. Structural synthesis of parallel robots. Springer: Dordrecht, the Netherlands, 2008.
- 148.
Tian, Y.; Yao, Y.A.; Wang, J. A rolling 8-bar linkage mechanism. Journal of Mechanisms and Robotics 2015, 7(4), 041002.
- 149.
Li, S.J.; Wang, H.G.; Dai, J.S. The equivalent resistance gradient model of metamorphic mechanisms and the design method. Chinese Journal of Mechanical Engineering 2014, 50(1),18–23.
- 150.
Li, S.J.; Wang, H.G.; Li, X.P.; et al. Task-orientated Design Method of Practical Constraint Metamorphic Mechanisms. Chinese Journal of Mechanical Engineering 2018, 54(3), 26–35.
- 151.
Dai, J.S.; Kang, X.; Song, Y.Q.; et al. Reconfigurable Mechanisms and Robots (in Chinese). Higher Education Press: Beijing China, 2021.
- 152.
Lo´pez-Custodio, P.; Müller, A.; Kang, X.; et al. Tangential intersection of branches of motion. Mechanism and Machine Theory 2020, 147, 103730.
- 153.
Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521(7553), 467–475.
- 154.
Xi, F.; Zhao, Y.; Wang, J.; et al. Two actuation methods for a complete morphing system composed of a VGTM and a compliant parallel mechanism. Journal of Mechanisms and Robotics 2021, 13(2), 021020.
- 155.
Wang, J.; Xi, F. Robotic fish scales driven by a skin muscle mechanism. Mechanism and Machine Theory 2022, 172, 104797.
- 156.
Hu, W.; Lum, G.Z.; Mastrangeli, M.; et al. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554(7690), 81–85.
- 157.
Pan, J.; Yu, J.; Pei, X. A novel shape memory alloy actuated soft gripper imitated hand behavior. Frontiers of Mechanical Engineering 2022, 17(4), 44.
- 158.
Zhang, S.; Ke, X.; Jiang, Q.; et al. Programmable and reprocessable multifunctional elastomeric sheets for soft origami robots. Science Robotics 2021, 6(53), eabd6107.
- 159.
Zhong, Y.; Tang, W.; Zhang, C.; et al. Programmable thermochromic soft actuators with “two dimensional” bilayer architectures for soft robotics. Nano Energy 2022, 102, 107741.
- 160.
Li, S.; Vogt, D.M.; Rus, D.; et al. Fluid-driven origami-inspired artificial muscles. Proceedings of the National Academy of Sciences 2017, 114(50), 13132–13137.
- 161.
Kunze, L.; Hawes, N.; Duckett, T.; et al. Artificial Intelligence for Long-Term Robot Autonomy: A Survey. IEEE Robotics and Automation Letters 2018, 3(4), 4023–4030.
- 162.
Ruiz-del-Solar, J.; Loncomilla, P.; Soto, N. A survey on deep learning methods for robot vision. arXiv preprint 2018, arXiv:1803.10862.
- 163.
Wan, S.; Goudos, S. Faster R-CNN for multi-class fruit detection using a robotic vision system. Computer Networks 2020, 168, 107036.
- 164.
Zeng, R.; Wen, Y.; Zhao, W.; et al. View planning in robot active vision: A survey of systems, algorithms, and applications. Computational Visual Media 2020, 6, 225–245.
- 165.
- 166.
Zhang, Q.; Xu, Z.; Kang, Y.; et al. Distilled representation using patch-based local-to-global similarity strategy for visual place recognition. Knowledge-Based Systems 2023, 111015.
- 167.
Xie, S.; Girshick, R.; Dollár, P.; et al. Aggregated residual transformations for deep neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017, pp. 1492–1500.
- 168.
Ye, C.; Yang, Y.; Mao, R.; et al. What can i do around here? deep functional scene understanding for cognitive robots. 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 4604–4611.
- 169.
Yao, J.; Fidler, S.; Urtasun, R. Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2012, pp. 702–709.
- 170.
Mottaghi, R.; Chen, X.; Liu, X.; et al. The role of context for object detection and semantic segmentation in the wild. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2014, pp. 891–898.
- 171.
Liu, L.; Ouyang, W.; Wang, X.; et al. Deep learning for generic object detection: A survey. International Journal of Computer Vision 2020, 128, 261–318.
- 172.
Jiang, P.; Ergu, D.; Liu, F.; et al. A Review of Yolo algorithm developments. Procedia Computer Science 2022, 199, 1066–1073.
- 173.
Jeong, J.; Park, H.; Kwak, N. Enhancement of SSD by concatenating feature maps for object detection. arXiv preprint 2017, arXiv:1705.09587.
- 174.
Girshick, R. Fast r-cnn. Proceedings of the IEEE International Conference on Computer Vision, IEEE, 2015, pp. 1440–1448.
- 175.
Zou, Z.; Chen, K.; Shi, Z.; et al. Object detection in 20 years: A survey. Proceedings of the IEEE 2023.
- 176.
Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III 18, Springer: Cham, Switzerland, 2015, pp. 234–241.
- 177.
Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 2017, 39(12), 2481–2495.
- 178.
Kirillov, A.; Mintun, E.; Ravi, N.; et al. Segment anything. arXiv preprint 2023, arXiv:2304.02643.
- 179.
Coskun, H.; Tan, D.J.; Conjeti, S.; et al. Human motion analysis with deep metric learning. Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 667–683.
- 180.
Yin, X.; Chen, Q. Deep metric learning autoencoder for nonlinear temporal alignment of human motion. 2016 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2016, pp. 2160–2166.
- 181.
Husain, F.; Dellen, B.; Torras, C. Action recognition based on efficient deep feature learning in the spatio-temporal domain. IEEE Robotics and Automation Letters 2016, 1(2), 984–991.
- 182.
Kong, Y.; Fu, Y. Human action recognition and prediction: A survey. International Journal of Computer Vision 2022, 130(5), 1366–1401.
- 183.
Jain, A.; Singh, A.; Koppula, H.S.; et al. Recurrent neural networks for driver activity anticipation via sensory-fusion architecture. 2016 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2016, pp. 3118–3125.
- 184.
Saeedvand, S.; Jafari, M.; Aghdasi, H.S.; et al. A comprehensive survey on humanoid robot development. The Knowledge Engineering Review 2019, 34, e20.
- 185.
Robinson, N.; Tidd, B.; Campbell, D.; et al. Robotic vision for human-robot interaction and collaboration: A survey and systematic review. ACM Transactions on Human-Robot Interaction 2023, 12(1), 1–66.
- 186.
Matheson, E.; Minto, R.; Zampieri, E.G.G.; et al. Human-robot collaboration in manufacturing applications: A review. Robotics 2019, 8(4), 100.
- 187.
Zhang, H.Y.; Lin, W.M.; Chen, A.X. Path planning for the mobile robot: A review. Symmetry 2018, 10(10), 450.
- 188.
Duguleana, M.; Mogan, G. Neural networks based reinforcement learning for mobile robots obstacle avoidance. Expert Systems with Applications 2016, 62, 104–115.
- 189.
Chen, Y.F.; Liu, M.; Everett, M.; et al. Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 285–292.
- 190.
Pinto, L.; Gupta, A. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours. 2016 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2016, pp. 3406–3413.
- 191.
Agravante, D.J.; Cherubini, A.; Bussy, A.; et al. Collaborative human-humanoid carrying using vision and haptic sensing. 2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2014, pp. 607–612.
- 192.
Zhu, Y.; Mottaghi, R.; Kolve, E.; et al. Target-driven visual navigation in indoor scenes using deep reinforcement learning. 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 3357–3364.
- 193.
Wang, C.; Qiu, Y.; Wang, W.; et al. Unsupervised online learning for robotic interestingness with visual memory. IEEE Transactions on Robotics 2021, 38(4), 2446–2461.
- 194.
Kyrarini, M.; Lygerakis, F.; Rajavenkatanarayanan, A.; et al. A survey of robots in healthcare. Technologies 2021, 9(1), 8.
- 195.
Robinson, H.; MacDonald, B.; Broadbent, E. The role of healthcare robots for older people at home: A review. International Journal of Social Robotics 2014, 6, 575–591.
- 196.
Wang, H.; Huang, J.; Wang, G.; et al. Contactless Patient Care Using Hospital IoT: CCTV Camera Based Physiological Monitoring in ICU. IEEE Internet of Things Journal 2023.
- 197.
Zeng, Y.; Song, X.; Chen, H.; et al. A Multi-modal Clinical Dataset for Critically-Ill and Premature Infant Monitoring: EEG and Videos. 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), IEEE, 2022, pp. 1–5.
- 198.
Slapničar, G.; Wang, W.; Luštrek, M. Feasibility of Remote Blood Pressure Estimation via Narrow-band Multi-wavelength Pulse Transit Time. ACM Transactions on Sensor Networks 2023.
- 199.
Liao, G.; Shan, C.; Wang, W. Comparison of PPG and BCG Features for Camera-based Blood Pressure Estimation by Ice Water Stimulation. 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), IEEE, 2022, pp. 1–4.
- 200.
Wang, W.; Den Brinker, A.C.; Stuijk, S.; et al. Algorithmic principles of remote PPG. IEEE Transactions on Biomedical Engineering 2016, 64(7), 1479–1491.
- 201.
Huang, Y.; Huang, D.; Huang, J.; et al. Camera Wavelength Selection for Multi-wavelength Pulse Transit Time based Blood Pressure Monitoring. 2023 45rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2023. Available online:
https://arinex.com.au/EMBC/pdf/full-paper_580.pdf (8 October 2023).
- 202.
Luo, S.; Meng, Q.; Li, S.; et al. Research of intent recognition in rehabilitation robots: a systematic review. Disability and Rehabilitation: Assistive Technology 2023, 1–12.
- 203.
Debnath, B.; O’brien, M.; Yamaguchi, M.; et al. A review of computer vision-based approaches for physical rehabilitation and assessment. Multimedia Systems 2022, 28(1), 209–239.
- 204.
Xiao, W.; Chen, K.; Fan, J.; et al. AI-driven rehabilitation and assistive robotic system with intelligent PID controller based on RBF neural networks. Neural Computing and Applications 2023, 35(22), 16021–16035.
- 205.
Vladareanu, L.; Yu, H.; Wang, H.; et al. Advanced Intelligent Control in Robots. Sensors 2023, 23(12), 5699.
- 206.
Taati, B.; Wang, R.; Huq, R.; et al. Vision-based posture assessment to detect and categorize compensation during robotic rehabilitation therapy. Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), IEEE, 2012, pp. 1607–1613.
- 207.
Quah, C.K.; Ng, J.; Soon, B. A Portable Vision-Based Head Tracking Exergame Solution for Neck Rehabilitation. Proceedings of the AAAI Symposium Series 2023, 1(1), 23–27.
- 208.
Rincon, J.A.; Costa, A.; Novais, P.; et al. A new emotional robot assistant that facilitates human interaction and persuasion. Knowledge and Information Systems 2019, 60, 363–383.
- 209.
Chuah, S.H.W.; Yu, J. The future of service: The power of emotion in human-robot interaction. Journal of Retailing and Consumer Services 2021, 61, 102551.
- 210.
Mellouk, W.; Handouzi, W. Facial emotion recognition using deep learning: review and insights. Procedia Computer Science 2020, 175, 689–694.
- 211.
Rasouli, S.; Gupta, G.; Nilsen, E.; et al. Potential applications of social robots in robot-assisted interventions for social anxiety. International Journal of Social Robotics 2022, 14(5), 1–32.
- 212.
Rossi, S.; Larafa, M.; Ruocco, M. Emotional and behavioural distraction by a social robot for children anxiety reduction during vaccination. International Journal of Social Robotics 2020, 12, 765–777.
- 213.
Jecker, N.S. You’ve got a friend in me: sociable robots for older adults in an age of global pandemics. Ethics and Information Technology 2021, 23(Suppl 1), 35–43.
- 214.
Beer, R.D.; Gallagher, J.C. Evolving dynamical neural networks for adaptive behavior. Adaptive Behaviour 1992, 1(1), 91–122.
- 215.
Ram, A.; Boone, G.; Arkin, R.; et al. Using genetic algorithms to learn reactive control parameters for autonomous robotic navigation. Adaptive Behaviour 1994, 2(3), 277–305.
- 216.
Floreano, D.; Mondada, F. Automatic creation of an autonomous agent: Genetic evolution of a neural-network driven robot. From Animals to Animats 1994, 3, 421–430.
- 217.
Grefenstette, J.; Schultz, A. An evolutionary approach to learning in robots. In Machine Learning Workshop on Robot Learning. DTIC: New Brunswick, NJ, USA, 1994, pp. 659–662.
- 218.
Nolfi, S.; Parisi, D. Evolving non-trivial behaviors on real robots: an autonomous robot that picks up objects. In Congress of the Italian Association for Artificial Intelligence. Springer: Berlin, Heidelberg, Germany, 1995, pp. 243–254.
- 219.
Meeden, L.A. An incremental approach to developing intelligent neural network controllers for robots. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 1996, 26(3), 474–485.
- 220.
Baluja, S. Evolution of an artificial neural network based autonomous land vehicle controller. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 1996, 26(3), 450–463.
- 221.
Nordin, P.; Banzhaf, W. An on-line method to evolve behavior and to control a miniature robot in real time with genetic programming. Adaptive Behaviour 1997, 5(2), 107–140.
- 222.
Smith, T. Adding vision to Khepera: An autonomous robot footballer. Master’s thesis, School of Cognitive and Computing Sciences, University of Sussex, 1997.
- 223.
Jeong, I.K.; Lee, J.J. Evolving cooperative mobile robots using a modified genetic algorithm. Robotics and Autonomous Systems 1997, 21(2), 197–205.
- 224.
Pratihar, D.K.; Deb, K.; Ghosh, A. A genetic-fuzzy approach for mobile robot navigation among moving obstacles. International Journal of Approximate Reasoning 1999, 20(2), 145–172.
- 225.
Pratihar, D.K. Evolutionary robotics: a review. Sadhana 2003, 28(6), 999–1009.
- 226.
Kalra, P.; Prakash, N.R. A neuro-genetic algorithm approach for solving the inverse kinematics of robotic manipulators. In SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance. IEEE: Washington, DC, USA, 2003, vol. 2, pp. 1979–1984.
- 227.
Pires, E.S.; Machado, J.T.; de Moura Oliveira, P.B. Robot trajectory planning using multi-objective genetic algorithm optimization. In Genetic and Evolutionary Computation–GECCO 2004: Genetic and Evolutionary Computation Conference, Seattle, WA, USA, June 26-30, 2004. Proceedings, Part I. Springer: Berlin Heidelberg, Germany, 2004, pp. 615–626.
- 228.
Nelson, A.L.; Grant, E.; Galeotti, J.M.; et al. Maze exploration behaviors using an integrated evolutionary robotics environment. Robotics and Autonomous Systems 2004, 46(3), 159–173.
- 229.
Harvey, I.; Di Paolo, E.; Wood, R.; et al. Evolutionary robotics: A new scientific tool for studying cognition. Artificial Life 2005, 11(1–2), 79–98.
- 230.
Koos, S.; Mouret, J.B.; Doncieux, S. Crossing the reality gap in evolutionary robotics by promoting transferable controllers. In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation. ACM: Portland, OR, USA, 2010, pp. 119–126.
- 231.
Koos, S.; Mouret, J.B.; Doncieux, S. The transferability approach: Crossing the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary Computation 2013, 17(1), 122–145.
- 232.
Fukunaga, A.; Hiruma, H.; Komiya, K. Evolving controllers for high-level applications on a service robot: A case study with exhibition visitor flow control. Genetic Programming and Evolvable Machines 2012, 13(2), 239–263.
- 233.
Montes-Gonzalez, F.; Contreras, C.M. The evolution of motivated and modulated robot selection. International Journal of Advanced Robotic Systems 2013, 10(2), 125.
- 234.
Riis, S.; Stanley, K.O. Confronting the challenge of learning a flexible neural controller for a diversity of morphologies. In Proceeding of the 15th Annual Conference on Genetic and Evolutionary Computation Conference. ACM: Amsterdam, the Netherlands, 2013, pp. 255–262.
- 235.
Morse, G.; Risi, S.; Snyder, C.R.; et al. Single-unit pattern generators for quadruped locomotion. In Proceeding of the 15th Annual Conference on Genetic and Evolutionary Computation Conference. ACM: Amsterdam, the Netherlands, 2013, pp. 719–726.
- 236.
Miras, K.; De Carlo, M.; Akhatou, S.; et al. Evolving-controllers versus learning-controllers for morphologically evolvable robots. In Applications of Evolutionary Computation: 23rd European Conference, EvoApplications 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15–17, 2020, Proceedings 23. Springer International Publishing, 2020, pp. 86–99.
- 237.
Chen, X.; Zhang, Q.; Sun, Y. Evolutionary robot calibration and nonlinear compensation methodology based on GA-DNN and an extra compliance error model. Mathematical Problems in Engineering 2020, 2020, 1–15.
- 238.
Thieffry, M.; Kruszewski, A.; Duriez, C.; et al. Control design for soft robots based on reduced-order model. IEEE Robotics and Automation Letters 2018, 4(1), 25–32.
- 239.
Katzschmann, R.K.; Thieffry, M.; Goury, O.; et al. Dynamically closed-loop controlled soft robotic arm using a reduced order finite element model with state observer. In 2019 2nd IEEE international conference on soft robotics (RoboSoft). IEEE: Seoul, Korea, 2019, pp. 717–724.
- 240.
Tonkens, S.; Lorenzetti, J.; Pavone, M. Soft robot optimal control via reduced order finite element models. In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE: Xi’an, China, 2021, pp. 12010–12016
- 241.
Goury, O.; Duriez, C. Fast, generic, and reliable control and simulation of soft robots using model order reduction. IEEE Transactions on Robotics 2018, 34(6), 1565–1576.
- 242.
Bruder, D.; Gillespie, B.; Remy, C.D.; et al. Modeling and control of soft robots using the Koopman operator and model predictive control. arXiv preprint 2019, arXiv:1902.02827.
- 243.
Ray, L.R.; Townsend, J.R.; Ramasubramanian, A. Optimal Filtering and Bayesian Detection for Friction-Based Diagnostics in Machines. ISA Transactions 2001, 40(3), 207–221.
- 244.
Márton, L. On-Line Lubricant Health Monitoring in Robot Actuators. In 2011 Australian Control Conference, IEEE, 2011, pp. 167–172.
- 245.
Márton, L.; van der Linden, F. Temperature Dependent Friction Estimation: Application to Lubricant Health Monitoring. Mechatronics 2012, 22(8), 1078–1084.
- 246.
Márton, L. Energetic Approach to Deal with Faults in Robot Actuators. In 2012 20th Mediterranean Conference on Control & Automation (MED), IEEE, 2012, pp. 85–90.
- 247.
Chen, W.; Ding, S.X.; Khan, A.Q.; et al. Energy Based Fault Detection for Dissipative Systems. In 2010 Conference on Control and Fault-Tolerant Systems (SysTol), IEEE, 2010, pp. 517–521.
- 248.
Bittencourt, A.C.; Axelsson, P.; Jung, Y.; et al. Modeling and Identification of Wear in a Robot Joint under Temperature Uncertainties. IFAC Proceedings Volumes 2011, 10293–10299.
- 249.
Kumar, P.S.S.R.; Mashinini, P.M.; Khan, M.A.; et al. The Influence of Shock Wave Surface Treatment on Vibration Behavior of Semi-Solid State Cast Aluminum—Al2SiO5 Composite. Crystals 2022, 12(11), 1587.
- 250.
Saravana Mohan, M.; Samuel Ratna Kumar, P.S. Influence of CNT-Based Nanocomposites in Dynamic Performance of Redundant Articulated Robot. Robotica 2021, 39(1), 153–164.
- 251.
Itakura, K.; Koike, H.; Kida, K.; et al. Observation of Wear Surface between Pure PEEK and Counterpart Materials; Titanium and 7075 Aluminum Alloy, in Robot Joint. Applied Mechanics and Materials 2013, 307, 347–351.
- 252.
Koike, H.; Kanemasu, K.; Itakura, K.; et al. Wear and Transmission Error between PEEK Bush and 7075 Aluminium Alloy Cam Plate Components in Robot Joints. Applied Mechanics and Materials 2013, 307, 3–8.
- 253.
Koike, H.; Itakura, K.; Okazaki, S.; et al. Measurement of Backlash and Fatigue Wear of PEEK Bush in Robot Joint under Middle Load. Applied Mechanics and Materials 2013, 418, 38–43.
- 254.
Farnham, M.S.; Ortved, K.F.; Horner, J.S.; et al. Lubricant Effects on Articular Cartilage Sliding Biomechanics Under Physiological Fluid Load Support. Tribology Letters 2021, 69(2), 56.
- 255.
Zeng, Z.Q.; Shi, W.; Xu, R.X.; et al. The Tribological Behavior of Ar Ion Implanted Ultra-High Molecular Weight Polyethylene. Lubrication Engineering-Huangpu- 2008, 33(4), 67–69.
- 256.
Bhushan, B.; Wei, G.H.; Haddad, P. Friction and Wear Studies of Human Hair and Skin. Wear 2005, 259(7–12), 1012–1021.
- 257.
Harris, K.L.; Pitenis, A.A.; Sawyer, W.G.; et al. PTFE Tribology and the Role of Mechanochemistry in the Development of Protective Surface Films. Macromolecules 2015, 48(11), 3739–3745.
- 258.
Krick, B.A.; Ewin, J.J.; Blackman, G.S.; et al. Environmental Dependence of Ultra-Low Wear Behavior of Polytetrafluoroethylene (PTFE) and Alumina Composites Suggests Tribochemical Mechanisms. Tribology International 2012, 51, 42–46.
- 259.
Vail, J.R.; Krick, B.A.; Marchman, K.R.; et al. Polytetrafluoroethylene (PTFE) Fiber Reinforced Polyetheretherketone (PEEK) Composites. Wear 2011, 270(11–12), 737–741.
- 260.
Krick, B.A.; Ewin, J.J.; McCumiskey, E.J. Tribofilm Formation and Run-In Behavior in Ultra-Low-Wearing Polytetrafluoroethylene (PTFE) and Alumina Nanocomposites. Tribology Transactions 2014, 57(6), 1058–1065.
- 261.
Alam, K.I.; Garodia, A.; Bragaw, P.; et al. Independently Tuning Surface and Subsurface Reinforcement to Optimize PTFE Wear. Wear 2022, 510–511, 204516.
- 262.
Getuli, V.; Ventura, S.M.; Capone, P.; et al. BIM-based Code Checking for Construction Health and Safety. Procedia Engineering 2017, 196, 454–461.
- 263.
Ghaffarianhoseini, A.; Tookey, J.; Ghaffarianhoseini, A.; et al. Building Information Modelling (BIM) Uptake: Clear Benefits, Understanding Its Implementation, Risks and Challenges. Renewable and Sustainable Energy Review, 2017, 75, 1046–1053.
- 264.
Guo, Y.; Yang, X.; Liu, C.; et al. Flexible Coordinate Measurement System Based on Robot for Industries. In 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, SPIE, 2010, vol. 7656, pp. 1736–1743.
- 265.
Azhar, S. Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry. Leadership and Management in Engineering 2010, 11, 241–252.
- 266.
Bock, T. Construction Robotics. Autonomous Robots 2007, 22, 201–209.
- 267.
Boje, C.; Guerriero, A.; Kubicki, S.; et al. Towards a Semantic Construction Digital Twin: Directions for Future Research. Automation in Construction 2020, 114, 103179
- 268.
Teizer, J.; Blickle, A.; King, T.; et al. BIM for 3D Printing in Construction. In Building Information Modeling, Borrmann, A., König, M., Koch, C., Beetz, J. Eds.; Springer, Cham, Switzerland, 2018, pp. 421–446.
- 269.
Cai, S.; Ma, Z.; Skibniewski, M.J.; et al. Construction Automation and Robotics for High-rise Buildings Over the Past Decades: A Comprehensive Review. Advanced Engineering Informatics 2019, 42, 100989.
- 270.
Kasperzyk, C.; Kim, M.K.; Brilakis, I. Automated Re-prefabrication System for Buildings Using Robotics. Automation in Construction 2017, 83, 184–195.
- 271.
Lee, D.; Lee, S.H.; Masoud, N.; et al. Integrated Digital Twin and Blockchain Framework to Support Accountable Information Sharing in Construction Projects. Automation in Construction 2021, 127, 103688.