- 1.
Sun, L.L.; Cui, H.J.; Ge, Q.S. Will China achieve its 2060 carbon neutral commitment from the provincial perspective? Advances in Climate Change Research 2022, 13(2), 169–178.
- 2.
Dec, J.E. Advanced compression-ignition engines—Understanding the in-cylinder processes. Proceedings of the Combustion Institute 2009, 32(2), 2727–2742.
- 3.
Wu, H.W.; Wang, R.H.; Ou, D.J.; et al. Reduction of smoke and nitrogen oxides of a partial HCCI engine using premixed gasoline and ethanol with air. Applied Energy 2011, 88(11), 3882–3890.
- 4.
Singh, A.P.; Agarwal, A.K. Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique. Applied Energy 2012, 99, 116–125.
- 5.
Saxena, S.; Bedoya, I.D. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits. Progress in Energy and Combustion Science 2013, 39(5), 457–488.
- 6.
Komninos, N.P. Assessing the effect of mass transfer on the formation of HC and CO emissions in HCCI engines, using a multi-zone model. Energy Conversion and Management 2009, 50(5), 1192–1201.
- 7.
Das, P.; Subbarao, P.M.V.; Subrahmanyam, J.P. Effect of main injection timing for controlling the combustion phasing of a homogeneous charge compression ignition engine using a new dual injection strategy. Energy Conversion and Management 2015, 95, 248–258.
- 8.
Reitz, R.D.; Duraisamy, G. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science 2015, 46, 12–71.
- 9.
Thongchai, S.; Lim, O. Investigation of the combustion characteristics of gasoline compression ignition engine fueled with gasoline-biodiesel blends. Journal of Mechanical Science and Technology 2018, 32(2), 959–967.
- 10.
Kokjohn, S.L.; Hanson, R.M.; Splitter, D.A.; et al. Fuel reactivity controlled compression ignition (RCCI): A pathway to controlled high-efficiency clean combustion. International Journal of Engine Research 2011, 12(3), 209–226.
- 11.
Wang, X.; Gao, J.; Chen, H.; et al. Diesel/methanol dual-fuel combustion: An assessment of soot nanostructure and oxidation reactivity. Fuel Processing Technology 2022, 237, 107464.
- 12.
Zheng, Z.; Xia, M.; Liu, H.; et al. Experimental study on combustion and emissions of n-butanol/biodiesel under both blended fuel mode and dual fuel RCCI mode. Fuel 2018, 226, 240–251.
- 13.
Jin, C.; Pang, X.; Zhang, X.; et al. Effects of C3–C5 alcohols on solubility of alcohols/diesel blends. Fuel 2019, 236, 65–74.
- 14.
Jin, C.; Geng, Z.; Liu, X.; et al. Effects of water content on the solubility between Isopropanol-Butanol-Ethanol (IBE) and diesel fuel under various ambient temperatures. Fuel 2021, 286, 119492.
- 15.
Atmanli, A. Effects of a cetane improver on fuel properties and engine characteristics of a diesel engine fueled with the blends of diesel, hazelnut oil and higher carbon alcohol. Fuel 2016, 172, 209–217.
- 16.
Yilmaz, N.; Atmanli, A.; Hall, M. J.; et al. Determination of the Optimum Blend Ratio of Diesel, Waste Oil Derived Biodiesel and 1-Pentanol Using the Response Surface Method. Energies, Multidisciplinary Digital Publishing Institute 2022, 15(14), 5144.
- 17.
Liu, H.; Wang, Z.; Wang, J.; et al. Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/ diesel blends. Energy 2015, 88, 793–800.
- 18.
Wang, Z.; Liu, H.; Ma, X.; et al. Homogeneous charge compression ignition (HCCI) combustion of polyoxymethylene dimethyl ethers (PODE). Fuel 2016, 183, 206–213.
- 19.
Iannuzzi, S.E.; Barro, C.; Boulouchos, K.; et al. POMDME-diesel blends: Evaluation of performance and exhaust emissions in a single cylinder heavy-duty diesel engine. Fuel 2017, 203, 57–67.
- 20.
Duraisamy, G.; Rangasamy, M.; Govindan, N. A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine. Renewable Energy 2020, 145, 542–556.
- 21.
Tong, L.; Wang, H.; Zheng, Z.; et al. Experimental study of RCCI combustion and load extension in a compression ignition engine fueled with gasoline and PODE. Fuel 2016, 181, 878–886.
- 22.
Barro, C.; Parravicini, M.; Boulouchos, K.; et al. Neat polyoxymethylene dimethyl ether in a diesel engine; part 2: Exhaust emission analysis. Fuel 2018, 234, 1414–1421.
- 23.
Barro, C.; Parravicini, M.; Boulouchos, K.; et al. Neat polyoxymethylene dimethyl ether in a diesel engine; part 2: Exhaust emission analysis. Fuel 2018, 234, 1414–1421.
- 24.
Ma, Y.; Cui, L.; Ma, X.; et al. Optical study on spray combustion characteristics of PODE/diesel blends in different ambient conditions. Fuel 2020, 272, 117691.
- 25.
Pellegrini, L.; Marchionna, M.; Patrini, R.; et al. Emission Performance of Neat and Blended Polyoxymethylene Dimethyl Ethers in an Old Light-Duty Diesel Car. SAE Technical Paper 2013, No. 2013- 01 –1035.
- 26.
Shi, Y.; Lu, Y.; Cai, Y.; et al. Evolution of particulate matter deposited in the DPF channel during low-temperature regeneration by non-thermal plasma. Fuel 2022, 318, 123552.
- 27.
Shi, Y.; Zhou, Y.; Li, Z.; et al. Effect of temperature control conditions on DPF regeneration by nonthermal plasma. Chemosphere 2022, 302, 134787.
- 28.
Zhao, H.; Ladommatos, N. Optical diagnostics for soot and temperature measurement in diesel engines. Progress in Energy and Combustion Science 1998, 24(3), 221–255.
- 29.
Hottel, H.C.; Broughton, F.P. Determination of True Temperature and Total Radiation from Luminous Gas Flames. Industrial & Engineering Chemistry Analytical Edition 1932, 4(2), 166–175.
- 30.
Liu, H.; Wang, Z.; Wang, J.; et al. Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/ diesel blends. Energy 2015, 88, 793–800.
- 31.
Huilgol, R.R.; You, Z. On the importance of the pressure dependence of viscosity in steady non-isothermal shearing flows of compressible and incompressible fluids and in the isothermal fountain flow. Journal of Non-Newtonian Fluid Mechanics 2006, 136(2), 106–117.
- 32.
Liu, J.; Sun, P.; Huang, H.; et al. Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends. Applied Energy 2017, 202, 527–536.
- 33.
Pastor, J.V.; García, A.; Micó, C.; et al. Simultaneous high-speed spectroscopy and 2-color pyrometry analysis in an optical compression ignition engine fueled with OMEX-diesel blends. Combustion and Flame 2021, 230, 111437.
- 34.
Liu, J.; Liu, Z.; Wang, L.; et al. Effects of PODE/diesel blends on particulate matter emission and particle oxidation characteristics of a common-rail diesel engine. Fuel Processing Technology 2021, 212, 106634.
- 35.
Liu, J.; Feng, L.; Wang, H.; et al. Spray characteristics of gasoline/PODE and diesel/PODE blends in a constant volume chamber. Applied Thermal Engineering 2019, 159, 113850.
- 36.
Ren, S.; Wang, Z.; Li, B.; et al. Development of a reduced polyoxymethylene dimethyl ethers (PODEn) mechanism for engine applications. Fuel 2019, 238, 208–224.
- 37.
Choi, M.; Park, S. Optimization of multiple-stage fuel injection and optical analysis of the combustion process in a heavy-duty diesel engine. Fuel Processing Technology 2022, 228, 107137.
- 38.
Tang, Q.; Liu, H.; Ran, X.; et al. Effects of direct-injection fuel types and proportion on late-injection reactivity controlled compression ignition. Combustion and Flame 2020, 211, 445–455.
- 39.
Li, B.; Xiao, G.; Zhang, H.; et al. Experimental study of independent two-stage in-cylinder heat release using jet controlled compression ignition. Fuel 2021, 289, 119925.
- 40.
Zheng, Z.; Chen, P.; Yao, M.; et al. Experimental study on the partially premixed combustion (PPC) fueled with n-butanol. Fuel 2019, 257, 116000.
- 41.
Liu, Y.; Tian, J.; Li, F.; et al. Spray characteristics of biodiesel-polyoxymethylene dimethyl ethers (PODE) blends in a constant volume chamber. Combustion Science and Technology 2023, 195(16), 4069–4091.
- 42.
Herfatmanesh, M.R.; Lu, P.; Attar, M.A.; et al. Experimental investigation into the effects of two-stage injection on fuel injection quantity, combustion and emissions in a high-speed optical common rail diesel engine. Fuel 2013, 109, 137–147.