- 1.
- 2.
Yu, X.; LeBlanc, S.; Sandhu, N.; Wang, L.; Wang, M.; Zheng, M. Decarbonization potential of future sustainable propulsion—A review of road, transportation. Energy Science & Engineering 2023, 237.
https://doi.org/10.1002/ese3.1434.
- 3.
Ribeiro, C.B.; Rodella, F.H.C.; Hoinaski, L. Regulating light-duty vehicle emissions: an overview of US, EU, China and Brazil programs and its effect on air quality. Clean Techn Environ Policy 2022, 24(3), 851–862.
https://doi.org/10.1007/s10098-021-02238-1 - 4.
- 5.
- 6.
- 7.
- 8.
ISBN 978-92-76-58723-1; Euro 7 Standards: New Rules for Vehicle Emissions. Publications Office of the European Union: Luxembourg, 2022.
- 9.
US EPA. EPA-HQ-OAR-2022-0829; Multi-Pollutant Emissions Standards for Model Years 2027 and Later LightDuty and Medium-Duty Vehicles. US Environmental Protection Agency: Washington, DC, USA, 2023.
- 10.
Williams, M.; Minjares, R. A Technical Summary of Euro 6/VI Vehicle Emission Standards; The international Council on Clean Transportation: Washington, DC, USA, 2016.
- 11.
- 12.
- 13.
Selleri, T.; Melas A.D.; Joshi A.; Manara D.; Perujo A.; Suarez-Bertoa, R. An Overview of Lean Exhaust deNOx Aftertreatment Technologies and NOx Emission Regulations in the European Union. Catalysts 2021, 11(3), 404.
https://doi.org/10.3390/catal11030404.
- 14.
Granger, P.; Parvulescu, V.I. Catalytic NOx Abatement Systems for Mobile Sources: From Three-Way to Lean Burn after-Treatment Technologies. Chem. Rev. 2011, 111(5), 3155–3207.
https://doi.org/10.1021/cr100168g.
- 15.
European Marine Safety Agency. Facts and Figures: The EMTER Report; European Environment Agency: Lisboa, Portugal, 2021.
- 16.
Mohd Noor, C.W.; Noor, M.M.; Mamat, R. Biodiesel as alternative fuel for marine diesel engine applications: A review. Renewable and Sustainable Energy Reviews 2018, 94, 127–142.
https://doi.org/10.1016/j.rser.2018.05.031.
- 17.
- 18.
- 19.
Zannis, T.C.; Katsanis, J.S.; Christopoulos, G.P.; Yfantis, E.A.; Papagiannakis, R.G.; Pariotis, E.G.; Rakopoulos, D.C.; Rakopoulos, C.D.; Vallis, A.G. Marine Exhaust Gas Treatment Systems for Compliance with the IMO 2020 Global Sulfur Cap and Tier III NOx Limits: A Review. Energies 2022, 15(10), 3638.
https://doi.org/10.3390/en15103638.
- 20.
Yanai, T.; Han, X.; Zheng, M. Extension of Diesel Engine Load Range with Simultaneous Reduction of NOx and Soot by using Ethanol Port Injection, High Intake Boost and EGR. Transactions of Society of Automotive Engineers of Japan 2013, 44(5), 1169–1174.
https://doi.org/10.11351/jsaeronbun.44.1169.
- 21.
- 22.
Zhao, Y.; Wang, Y.; Li, D.; Lei, X.; Liu, S. Combustion and emission characteristics of a DME (dimethyl ether)-diesel dual fuel premixed charge compression ignition engine with EGR (exhaust gas recirculation). Energy 2014, 72, 608–617.
https://doi.org/10.1016/j.energy.2014.05.086.
- 23.
- 24.
- 25.
Germane, G.J.; Wood, C.G.; Hess, C.C. Lean Combustion in Spark-Ignited Internal Combustion Engines—A Review; SAE Technical Paper 831694; SAE International: Warrendale, PA, USA, 1983.
https://doi.org/10.4271/831694.
- 26.
- 27.
Penetrante, B.M.; Brusasco, R.M.; Merritt, B.T.; Pitz, W.J.; Vogtlin, G.E.; Kung, M.C.; Kung, H.H.; Wan, C.Z.; Voss, K.E. Plasma-Assisted Catalytic Reduction of NOx. SAE Transactions 1998, 107, 1222–1231,.
- 28.
Zhang, Z.; Shi, C.; Bai, Z.; Li, M.; Chen, B.; Crocker, M. Low-temperature H2-plasma-assisted NOx storage and reduction over a combined Pt/Ba/Al and LaMnFe catalyst. Catal. Sci. Technol. 2017, 7(1), 145–158.
https://doi.org/10.1039/C6CY01900E.
- 29.
Ko, B.H., Hasa, B., Shin, H., Zhao, Y., and Jiao, F., “Electrochemical Reduction of Gaseous Nitrogen Oxides on Transition Metals at Ambient Conditions,” J. Am. Chem. Soc. 144(3):1258–1266, 2022,
https://doi.org/10.1021/jacs.1c10535.
- 30.
Wan, H.; Bagger, A.; Rossmeisl, J. Electrochemical Nitric Oxide Reduction on Metal Surfaces. Angewandte Chemie International Edition 2021, 60(40), 21966–21972.
https://doi.org/10.1002/anie.202108575.
- 31.
- 32.
Taylor, K.C. Automobile Catalytic Converters. In Catalysis: Science and Technology; Anderson, J.R., Boudart, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; Volume 5, pp. 119–170; ISBN 978-3-642-93247-2.
https://doi.org/10.1007/978-3-642-93247-2_2.
- 33.
Rood, S.; Eslava, S.; Manigrasso, A.; Bannister, C. Recent advances in gasoline three-way catalyst formulation: A review. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2020, 234(4), 936–949.
https://doi.org/10.1177/0954407019859822.
- 34.
Sandhu, N.S.; Leblanc, S.; Yu, X.; Reader, G.; Zheng, M. Characterization of an Integrated Three-Way Catalyst/Lean NOx Trap System for Lean Burn SI Engines. In SAE Technical Paper; SAE International: Warrendale, PA, USA, 2023; No. 2023-01–1658.
https://doi.org/10.4271/2023-01-1658.
- 35.
Mera, Z.; Fonseca, N.; Casanova, J.; López, J.-M. Influence of exhaust gas temperature and air-fuel ratio on NOx aftertreatment performance of five large passenger cars. Atmospheric Environment 2021, 244, 117878.
https://doi.org/10.1016/j.atmosenv.2020.117878.
- 36.
- 37.
- 38.
- 39.
- 40.
Engler, B.H.; Lox, E.S.; Ostgathe, K.; Ohata, T.; Tsuchitani, K.; Ichihara, S.; Onoda, H.; Garr, G.T.; Psaras, D. Recent Trends in the Application of Tri-Metal Emission Control Catalysts. In SAE Technical Paper; SAE International: Warrendale, PA, USA, 1994; No. 940928.
https://doi.org/10.4271/940928.
- 41.
Collins, N.R.; Twigg, M.V. Three-way catalyst emissions control technologies for spark-ignition engines—Recent trends and future developments. Top. Catal. 2007, 42(1), 323–332.
https://doi.org/10.1007/s11244-007-0199-6.
- 42.
Yamamoto, M.; Tanaka, H. Influence of Support Materials on Durability of Palladium in Three-Way Catalyst. In SAE Technical Paper; SAE International: Warrendale, PA, USA, 1998; No. 980664.
https://doi.org/10.4271/980664.
- 43.
Bakker, J.M.; Mafuné, F. Zooming in on the initial steps of catalytic NO reduction using metal clusters. Phys. Chem. Chem. Phys. 2022, 24(13), 7595–7610.
https://doi.org/10.1039/D1CP05760J.
- 44.
Haneda, M.; Kaneko, T.; Kamiuchi, N.; Ozawa, M. Improved three-way catalytic activity of bimetallic Ir–Rh catalysts supported on CeO2–ZrO2. Catal. Sci. Technol. 2015, 5(3), 1792–1800.
https://doi.org/10.1039/C4CY01502A.
- 45.
Vedyagin, A.A.; Gavrilov, M.S.; Volodin, A.M.; Stoyanovskii, V.O.; Slavinskaya, E.M.; Mishakov, I.V.; Shubin, Y.V. Catalytic Purification of Exhaust Gases Over Pd–Rh Alloy Catalysts. Top. Catal. 2013, 56(11), 1008–1014.
https://doi.org/10.1007/s11244-013-0064-8.
- 46.
- 47.
- 48.
Sobukawa, H. Development of ceria-zirconia solid solutions and future trends. R&D Reviews Toyota CRDL 2020, 37, 1–5,.
- 49.
- 50.
Si, R.; Zhang, Y.-W.; Wang, L.-M.; Li, S.-J.; Lin, B.-X.; Chu, W.-S.; Wu, Z.-Y.; Yan, C.-H. Enhanced Thermal Stability and Oxygen Storage Capacity for CexZr1−xO2 (x = 0.4−0.6) Solid Solutions by Hydrothermally Homogenous Doping of Trivalent Rare Earths. J. Phys. Chem. C 2007, 111(2), 787–794.
https://doi.org/10.1021/jp0630875.
- 51.
Li, J.; Liu, X.; Zhan, W.; Guo, Y.; Guo, Y.; Lu, G. Preparation of high oxygen storage capacity and thermally stable ceria–zirconia solid solution. Catal. Sci. Technol. 2016, 6(3), 897–907.
https://doi.org/10.1039/C5CY01571E.
- 52.
Cant, N.W.; Angove, D.E.; Chambers, D.C. Nitrous oxide formation during the reaction of simulated exhaust streams over rhodium, platinum and palladium catalysts. Applied Catalysis B: Environmental 1998, 17(1), 63–73.
https://doi.org/10.1016/S0926-3373(97)00105-7.
- 53.
Kim, S.; D’Aniello, M.J. Analytical electron microscopy study of two vehicle-aged automotive exhaust catalysts having dissimilar activities. Applied Catalysis 1989, 56(1), 23–43.
https://doi.org/10.1016/S0166-9834(00)80156-6.
- 54.
Monte, R.D.; Fornasiero, P.; Kašpar, J.; Graziani, M.; Gatica, J.M.; Bernal, S.; Gómez-Herrero, A. Stabilisation of nanostructured Ce0.2Zr0.8O2 solid solution by impregnation on Al2O3: A suitable method for the production of thermally stable oxygen storage/release promoters for three-way catalysts. Chem. Commun. 2000, 21, 2167–2168.
https://doi.org/10.1039/B006674P.
- 55.
Angelidis, T.N.; Koutlemani, M.M.; Sklavounos, S.A.; Lioutas, Ch.B.; Voulgaropoulos, A.; Papadakis, V.G.; Emons, H. Causes of deactivation and an effort to regenerate a commercial spent three-way catalyst. In Studies in Surface Science and Catalysis; Kruse, N., Frennet, A., Bastin, J.-M., Eds.; Elsevier: Amsterdam, Netherlands, 1998; pp. 155–164.
https://doi.org/10.1016/S0167-2991(98)80873-2.
- 56.
- 57.
Cheekatamarla, P.K.; Lane, A.M. Catalytic autothermal reforming of diesel fuel for hydrogen generation in fuel cells: II. Catalyst poisoning and characterization studies. Journal of Power Sources 2006, 154(1), 223–231.
https://doi.org/10.1016/j.jpowsour.2005.04.011.
- 58.
Cai, H.; Liu, Y.; Gong, J.; E, J.; Geng, Y.; Yu, L. Sulfur poisoning mechanism of three way catalytic converter and its grey relational analysis. J. Cent. South Univ. 2014, 21(11), 4091–4096.
https://doi.org/10.1007/s11771-014-2402-9.
- 59.
Truex, T.J. Interaction of Sulfur with Automotive Catalysts and the Impact on Vehicle Emissions—A Review. SAE Transactions 1999, 108, 1192–1206,.
- 60.
Koltsakis, G.C.; Alexiadou, P.; Avgerinos, C.; Symeonidis, N.; Nagano, S.; Lafossas, F.-A. Reversible Sulfur Poisoning of 3-way Catalyst linked with Oxygen Storage Mechanisms. In SAE Technical Paper; SAE International: Warrendale, PA, USA, 2021; No. 2021-24–0069.
https://doi.org/10.4271/2021-24-0069.
- 61.
Takahashi, N.; Shinjoh, H.; Iijima, T.; Suzuki, T.; Yamazaki, K.; Yokota, K.; Suzuki, H.; Miyoshi, N.; Matsumoto, S.; Tanizawa, T.; et al. The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst. Catalysis Today 1996, 27(1), 63–69.
https://doi.org/10.1016/0920-5861(95)00173-5.
- 62.
- 63.
Václavík, M.; Novák, V.; Březina, J.; Kočí, P.; Gregori, G.; Thompsett, D. Effect of diffusion limitation on the performance of multi-layer oxidation and lean NOx trap catalysts. Catalysis Today 2016, 273, 112–120.
https://doi.org/10.1016/j.cattod.2016.03.013.
- 64.
Roy, S.; Baiker, A. NOx Storage-Reduction Catalysis: From Mechanism and Materials Properties to Storage-Reduction Performance. Chem. Rev. 2009, 109(9), 4054–4091.
https://doi.org/10.1021/cr800496f.
- 65.
Aversa, C.; Yu, S.; Jeftić, M.; Bryden, G.; Zheng, M. Long breathing lean NOx trap regeneration with supplemental n-butanol. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2019, 233(3), 661–670.
https://doi.org/10.1177/0954407017752225.
- 66.
Jeftic, M. Strategies for Enhanced After-Treatment Performance: Post Injection Characterization and Long Breathing with Low NOx Combustion. Electronic Theses and Dissertations 2016.
- 67.
de Ojeda, W.; Zheng, M.; Han, X.; Jeftic, M.; Wang, M. Diesel Engine NOx Reduction. US-20150113961-A1, 2015.
- 68.
Chaugule, S.S.; Yezerets, A.; Currier, N.W.; Ribeiro, F.H.; Delgass, W.N. ‘Fast’ NOx storage on Pt/BaO/γ-Al2O3 Lean NOx Traps with NO2+O2 and NO+O2: Effects of Pt, Ba loading. Catalysis Today 2010, 151(3), 291–303.
https://doi.org/10.1016/j.cattod.2010.02.024.
- 69.
Ji, Y.; Choi, J.-S.; Toops, T.J.; Crocker, M.; Naseri, M. Influence of ceria on the NOx storage/reduction behavior of lean NOx trap catalysts. Catalysis Today 2008, 136(1), 146–155.
https://doi.org/10.1016/j.cattod.2007.11.059.
- 70.
Lv, L.; Wang, X.; Shen, M.; Zhang, Q.; Wang, J. The lean NOx traps behavior of (1–5%) BaO/CeO2 mixed with Pt/Al2O3 at low temperature (100–300 °C): The effect of barium dispersion. Chemical Engineering Journal 2013, 222, 401–410.
https://doi.org/10.1016/j.cej.2013.02.084.
- 71.
Wang, X.; Yu, Y.; He, H. Effects of temperature and reductant type on the process of NOx storage reduction over Pt/Ba/CeO2 catalysts. Applied Catalysis B: Environmental 2011, 104(1), 151–160.
https://doi.org/10.1016/j.apcatb.2011.02.018.
- 72.
- 73.
DiGiulio, C.D.; Pihl, J.A.; Choi, J.-S.; Parks, J.E.; Lance, M.J.; Toops, T.J.; Amiridis, M.D. NH3 formation over a lean NOX trap (LNT) system: Effects of lean/rich cycle timing and temperature. Applied Catalysis B: Environmental 2014, 147, 698–710,
https://doi.org/10.1016/j.apcatb.2013.09.012.
- 74.
Epling, W.S.; Campbell, L.E.; Yezerets, A.; Currier, N.W.; Parks, J.E. Overview of the Fundamental Reactions and Degradation Mechanisms of NOx Storage/Reduction Catalysts. Catalysis Reviews 2004, 46(2), 163–245.
https://doi.org/10.1081/CR-200031932.
- 75.
Pihl, J.A.; Parks, J.E.; Daw, C.S.; Root, T.W. Product Selectivity During Regeneration of Lean NOx Trap Catalysts. SAE Transactions 2006, 115, 947–960.
https://doi.org/10.4271/2006-01-3441.
- 76.
Hackenberg, S.; Ranalli, M. Ammonia on a LNT: Avoid the Formation or Take Advantage of It. In SAE Technical Paper; SAE International: Warrendale, PA, USA, 2007; No. 2007-01–1239.
https://doi.org/10.4271/2007-01-1239.
- 77.
Rohr, F.; Peter, S.D.; Lox, E.; Kögel, M.; Müller, W.; Sassi, A.; Rigaudeau, C.; Juste, L.; Belot, G.; Gélin, P.; et al. The Impact of Sulfur Poisoning on NOx-Storage Catalysts in Gasoline Applications. SAE Transactions 2005, 114, 594–603.
- 78.
- 79.
Engström, P.; Amberntsson, A.; Skoglundh, M.; Fridell, E.; Smedler, G. Sulphur dioxide interaction with NOx storage catalysts. Applied Catalysis B: Environmental 1999, 22(4), L241–L248.
https://doi.org/10.1016/S0926-3373(99)00060-0.
- 80.
Cichanowicz, J.; Muzio, L. Twenty-Five Years of SCR Evolution: Implications For US Application And Operation. In Proceedings of the EPRI-DOE-EPA Combined Power Plant Air Pollutant Control Symposium: The MEGA Symposium, Chicago, IL, USA, 2001; pp. 20–23.
- 81.
- 82.
ACEA. ACEA Statement on the Adoption of SCR Technology to Reduce Emissions Levels of Heavy-Duty Vehicles. ACEA Position Paper, 15 July 2003.
- 83.
Kleemann, M.; Elsener, M.; Koebel, M.; Wokaun, A. Hydrolysis of Isocyanic Acid on SCR Catalysts. Ind. Eng. Chem. Res. 2000, 39(11), 4120–4126.
https://doi.org/10.1021/ie9906161.
- 84.
Birkhold, F.; Meingast, U.; Wassermann, P.; Deutschmann, O. Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNOx-systems. Applied Catalysis B: Environmental 2007, 70(1), 119–127.
https://doi.org/10.1016/j.apcatb.2005.12.035.
- 85.
Zhang, Q.; Zhang, Y.; Shao, S.; Li, M. Numerical analysis on the mixing and urea crystallization characteristics in the SCR system. Chemical Engineering and Processing—Process Intensification 2022, 171, 108715.
https://doi.org/10.1016/j.cep.2021.108715.
- 86.
- 87.
Yim, S.D.; Kim, S.J.; Baik, J.H.; Nam, I.; Mok, Y.S.; Lee, J.-H.; Cho, B.K.; Oh, S.H. Decomposition of Urea into NH3 for the SCR Process. Ind. Eng. Chem. Res. 2004, 43(16), 4856–4863.
https://doi.org/10.1021/ie034052j.
- 88.
Mohan, S.; Dinesha, P.; Kumar, S. NOx reduction behaviour in copper zeolite catalysts for ammonia SCR systems: A review. Chemical Engineering Journal 2020, 384, 123253.
https://doi.org/10.1016/j.cej.2019.123253.
- 89.
- 90.
Ciardelli, C.; Nova, I.; Tronconi, E.; Chatterjee, D.; Bandl-Konrad, B.; Weibel, M.; Krutzsch, B. Reactivity of NO/NO2–NH3 SCR system for diesel exhaust aftertreatment: Identification of the reaction network as a function of temperature and NO2 feed content. Applied Catalysis B: Environmental 2007, 70(1), 80–90,
https://doi.org/10.1016/j.apcatb.2005.10.041.
- 91.
Chundru, V.R.; Parker, G.G.; Johnson, J.H. The Effect of NO2/NOx Ratio on the Performance of a SCR Downstream of a SCR Catalyst on a DPF. SAE International Journal of Fuels and Lubricants 2019, 12(2), 121–142,.
- 92.
Yu, X.; Yu, S.; Zheng, M. Hydrocarbon impact on NO to NO2 conversion in a compression ignition engine under low-temperature combustion. International Journal of Engine Research 2019, 20(2), 216–225.
https://doi.org/10.1177/1468087417745441.
- 93.
Forzatti, P.; Nova, I.; Tronconi, E. New ‘Enhanced NH3-SCR’ Reaction for NOx Emission Control. Ind. Eng. Chem. Res. 2010, 49(21), 10386–10391.
https://doi.org/10.1021/ie100600v.
- 94.
- 95.
Kröcher, O. Chapter 9 Aspects of catalyst development for mobile urea-SCR systems—From Vanadia-Titania catalysts to metal-exchanged zeolites. In Studies in Surface Science and Catalysis; Granger, P., Pârvulescu, V.I., Eds.; Elsevier: Amsterdam, Netherlands, 2007; pp. 261–289.
https://doi.org/10.1016/S0167-2991(07)80210-2.
- 96.
Wang, A.; Wang, Y.; Walter, E.D.; Washton, N.M.; Guo, Y.; Lu, G.; Peden, C.H.F.; Gao, F. NH3-SCR on Cu, Fe and Cu+Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects. Catalysis Today 2019, 320, 91–99.
https://doi.org/10.1016/j.cattod.2017.09.061.
- 97.
Song, J.; Wang, Y.; Walter, E.D.; Washton, N.M.; Mei, D.; Kovarik, L.; Engelhard, M.H.; Prodinger, S.; Wang, Y.; Peden, C.H.F.; et al. Toward Rational Design of Cu/SSZ-13 Selective Catalytic Reduction Catalysts: Implications from Atomic-Level Understanding of Hydrothermal Stability. ACS Catal. 2017, 7(12), 8214–8227.
https://doi.org/10.1021/acscatal.7b03020.
- 98.
Cui, Y.; Wang, Y.; Mei, D.; Walter, E.D.; Washton, N.M.; Holladay, J.D.; Wang, Y.; Szanyi, J.; Peden, C.H.F.; Gao, F. Revisiting effects of alkali metal and alkaline earth co-cation additives to Cu/SSZ-13 selective catalytic reduction catalysts. Journal of Catalysis 2019, 378, 363–375.
https://doi.org/10.1016/j.jcat.2019.08.028.
- 99.
Xu, R.; Wang, Z.; Liu, N.; Dai, C.; Zhang, J.; Chen, B. Understanding Zn Functions on Hydrothermal Stability in a One-Pot-Synthesized Cu&Zn-SSZ-13 Catalyst for NH3 Selective Catalytic Reduction. ACS Catal. 2020, 10(11), 6197–6212.
https://doi.org/10.1021/acscatal.0c01063.
- 100.
- 101.
Luo, J.-Y.; Oh, H.; Henry, C.; Epling, W. Effect of C3H6 on selective catalytic reduction of NOx by NH3 over a Cu/zeolite catalyst: A mechanistic study. Applied Catalysis B: Environmental 2012, 123–124, 296–305.
https://doi.org/10.1016/j.apcatb.2012.04.038.
- 102.
Lee, K.; Kosaka, H.; Sato, S.; Yokoi, T.; Choi, B. Effect of Cu content and zeolite framework of n-C4H10-SCR catalysts on de-NOx performances. Chemical Engineering Science 2019, 203, 28–42.
https://doi.org/10.1016/j.ces.2019.03.028.
- 103.
- 104.
- 105.
Takahashi, A.; Fujitani, T.; Nakamura, I.; Katsuta, Y.; Haneda, M.; Hamada, H. Excellent Promoting Effect of Ba Addition on the Catalytic Activity of Ir/WO3–SiO2 for the Selective Reduction of NO with CO. Chemistry Letters 2006, 35(4), 420–421.
https://doi.org/10.1246/cl.2006.420.
- 106.
Yue, G.; Qiu, T.; Lei, Y. Experimental demonstration of NOx reduction and ammonia slip for diesel engine SCR system. Environ. Sci. Pollut. Res. 2022, 29(1), 1118–1133.
https://doi.org/10.1007/s11356-021-15592-w.
- 107.
Girard, J.W.; Cavataio, G.; Lambert, C.K. The Influence of Ammonia Slip Catalysts on Ammonia, N₂O and NOx Emissions for Diesel Engines. SAE Transactions 2007, 116, 182–186,.
- 108.
Colombo, M.; Nova, I.; Tronconi, E.; Schmeißer, V.; Bandl-Konrad, B.; Zimmermann, L. Experimental and modeling study of a dual-layer (SCR+PGM) NH3 slip monolith catalyst (ASC) for automotive SCR aftertreatment systems. Part 1. Kinetics for the PGM component and analysis of SCR/PGM interactions. Applied Catalysis B: Environmental 2013, 142–143, 861–876.
https://doi.org/10.1016/j.apcatb.2012.10.031.
- 109.
Lee, D.-W.; Johnson, J.; Lv, J.; Novak, K.; Zietsman, J. Comparisons Between Vehicular Emissions From Real-World In-Use Testing And Epa Moves Estimation; Technical Report SWUTC/12/476660-00021-1, Texas Transportation Institute; The Texas A&M University: College Station, TX, USA, 2012.
- 110.
Reiter, M.S.; Kockelman, K.M. The problem of cold starts: A closer look at mobile source emissions levels. Transportation Research Part D: Transport and Environment 2016, 43, 123–132.
https://doi.org/10.1016/j.trd.2015.12.012.
- 111.
Adelman, B.; Singh, N.; Charintranond, P.; Manis, J. Achieving Ultra-Low NOx Tailpipe Emissions with a High Efficiency Engine. In SAE Technical Paper; SAE International: Warrendale, PA, USA, 2020; No. 2020-01–1403.
https://doi.org/10.4271/2020-01-1403.
- 112.
Castoldi, L. An Overview on the Catalytic Materials Proposed for the Simultaneous Removal of NOx and Soot. Materials 2020, 13(16), 3551.
https://doi.org/10.3390/ma13163551.
- 113.
Auld, A.; Ward, A.; Mustafa, K.; Hansen, B. Assessment of Light Duty Diesel After-Treatment Technology Targeting Beyond Euro 6d Emissions Levels. SAE Int. J. Engines 2017, 10(4), 1795–1807.
https://doi.org/10.4271/2017-01-0978.
- 114.
Vos, K.R.; Shaver, G.M.; Joshi, M.C.; McCarthy, J. Implementing variable valve actuation on a diesel engine at high-speed idle operation for improved aftertreatment warm-up. International Journal of Engine Research 2020, 21(7), 1134–1146.
https://doi.org/10.1177/1468087419880639.
- 115.
Srinivasan, V.; Wolk, B.; Cai, X.; Henrichsen, L.; Lee, J.; Patil, D. Application of Dynamic Skip Fire for NOx and CO2 Emissions Reduction of Diesel Powertrains. SAE Int. J. Adv. & Curr. Prac. Mobility 2021, 4(1), 225–235.
https://doi.org/10.4271/2021-01-0450.
- 116.
Kowatari, T.; Hamada, Y.; Amou, K.; Hamada, I.; Funabashi, H.; Takakura, T.; Nakagome, K. A Study of a New Aftertreatment System (1): A New Dosing Device for Enhancing Low Temperature Performance of Urea-SCR. SAE Transactions 2006, 115, 244–251.
- 117.
Sharp, C.; Webb, C.C.; Neely, G.; Carter, M.; Yoon, S.; Henry, C. Achieving Ultra Low NO X Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System—Thermal Management Strategies. SAE Int. J. Engines 2017, 10(4), 1697–1712.
https://doi.org/10.4271/2017-01-0954.
- 118.