- 1.
Devasia, S.; Eleftheriou, E.; Moheimani, S.O.R. A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 2007, 15, 802–823.
- 2.
Gu, G.; Zhu, L.; Su, C.; Ding, H.; Fatikow, S. Modeling and control of piezo-actuated nanopositioning stages: A survey. IEEE Trans. Autom. Sci. Eng. 2016, 13, 313–332.
- 3.
Mishra, J.P.; Xu, Q.; Yu, X.; Jalili, M. Precision position tracking for piezoelectric-driven motion system using continuous third-order sliding mode control. IEEE/ASME Trans. Mechatron. 2018, 23, 1521–1531.
- 4.
Shan, L.; Yang, X.; Yao, L.; Ning, L. Research on modelling of piezoelectric micro-positioning stage based on pi hysteresis model. J. Eng. 2019, 2019, 437–441.
- 5.
Gu, G.; Li, C.; Zhu, L.; Su, C. Modeling and identification of piezoelectric-actuated stages cascading hysteresis nonlinearity with linear dynamics. IEEE/ASME Trans. Mechatron. 2016, 21, 1792–1797.
- 6.
Li, Z.; Shan, J.; Gabbert, U. Dynamics modeling and inversion-based synchronized model predictive control for a fabry-perot spectrometer. IEEE/ASME Trans. on Mechatron. 2019, 24, 1818–1828.
- 7.
Liu, X.; Huang, M.; Xiong, R.; Shan, J.; Mao, X. Adaptive inverse control of piezoelectric actuators based on segment similarity. IEEE Trans. Ind. Electron. 2018, 66, 5403–5411.
- 8.
Jian, Y.; Huang, D.; Liu, J.; Min, D. High-precision tracking of piezoelectric actuator using iterative learning control and direct inverse compensation of hysteresis. IEEE Trans. Ind. Electron. 2018, 66, 368–377.
- 9.
Rakotondrabe, M. Bouc-wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans. Autom. Sci. Eng. 2010, 8, 428–431.
- 10.
Lin, C.J.; Lin, P. Tracking control of a biaxial piezo-actuated positioning stage using generalized duhem model. Comput. Math. Appl. 2012, 64, 766–787.
- 11.
Piao, M.; Wang, Y.; Sun, M.; Zhang, X.; Chen, Z.; Yan, Y. Fixed-time-convergent generalized extended state observer based motor control subject to multiple disturbances. IEEE Trans. Ind. Inf. 2021, 17, 8066–8079.
- 12.
Na, J.; Jing, B.; Huang, Y.; Gao, G.; Zhang, C. Unknown system dynamics estimator for motion control of nonlinear robotic systems. IEEE Trans. Ind. Electron. 2020, 67, 3850–3859.
- 13.
Sun, J.L.; He, H.B.; Yi, J.Q.; Pu, Z.Q. Finite-time command-filtered composite adaptive neural control of uncertain nonlinear systems. IEEE Trans. Cybern. 2020, 52, 6809–6821.
https://doi.org/10.1109/TCYB.2020.3032096.
- 14.
de Rozario, R.; Fleming, A.; Oomen, T. Finite-time learning control using frequency response data with application to a nanopositioning stage. IEEE/ASME Trans. Mech. 2019, 5, 2085–2096.
- 15.
Liu, J.B.; Wang, J.R.; Zou, Q.Z. Decomposition-learning-based output tracking to simultaneous hysteresis and dynamics control: High-speed large-range nanopositioning example. IEEE Trans. Control Syst. Technol. 2021, 29, 1775–1782.
- 16.
Kong, L.H.; Li, D.; Zou, J.X.; He, W. Neural networks based learning control for a piezoelectric nanopositioning system. IEEE/ASME Trans. Mech. 2020, 25, 2904–2914.
- 17.
Han, J. From pid to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906.
- 18.
Zhang, Y.L.; Zhu, M.; Li, D.H.; Wang, J. Adrc dynamic stabilization of an unstable heat equation. IEEE Trans. Autom. Control 2020, 65, 4424–4429.
- 19.
Gao, H.; Chen, Z.; Sun, M.; Huang, J.; Wang, Z.; Chen, Z. An efficient fast altitude control for hypersonic vehicle. Control Eng. Pract. 2020, 100, 10442601–10442613.
- 20.
Tao, J.; Sun, Q.; Tan, P.; Chen, Z.; He, Y. Active disturbance rejection control (adrc)-based autonomous homing control of powered parafoils. Nonlinear Dyn. 2016, 86, 1461–1476.
- 21.
Jiang, Y.; Sun, Q.; Zhang, X.; Chen, Z. Pressure regulation for oxygen mask based on active disturbance rejection control. IEEE Trans. Ind. Electron. 2017, 64, 6402–6411.
- 22.
Cheng, Y.; Chen, Z.; Sun, M.; Sun, Q. Cascade active disturbance rejection control of a high-purity distillation column with measurement noise. Ind. Eng. Chem. Res. 2018, 57, 4623–4631.
- 23.
Zarif Mansour, S.; Seethaler, R.J.; Teo, Y.R.; Yong, Y.K.; Fleming, A.J. Piezoelectric bimorph actuator with integrated strain sensing electrodes. IEEE Sens. J. 2018, 18, 5812–5817.
- 24.
Wang, G.; Xu, Q. Sliding mode control with disturbance rejection for piezoelectric nanopositioning control. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 6144–6149.
- 25.
Tan, K.K.; Lee, T.H.; Zhou, H.X. Micro-positioning of linear- piezoelectric motors based on a learning nonlinear pid controller. IEEE/ASME Trans. Mechatron. 2001, 6, 428–436.
- 26.
Madonski, R.; Herman, P. Survey on methods of increasing the efficiency of extended state disturbance observers. ISA Trans. 2015, 56, 18–27.
- 27.
Madonski, R.; Łakomy, K.; Stankovic, M.; Shao, S.; Yang, J.; Li, S. Robust converter-fed motor control based on active rejection of multiple disturbances. Control Eng. Pract. 2021, 107, 104696.
- 28.
Stanković, M.R.; Madonski, R.; Shao, S.; Mikluc, D. On dealing with harmonic uncertainties in the class of active disturbance rejection controllers. Int. J. Control 2021, 94, 2795–2810.
- 29.
Pu, Z.; Yuan, R.; Yi, J.; Tan, X. A class of adaptive extended state observers for nonlinear disturbed systems. IEEE Trans. Ind. Electron. 2015, 62, 5858–5869.
- 30.
Wei, W.; Zhang, Z.; Zuo, M. Phase leading active disturbance rejection control for a nanopositioning stage. ISA Trans. 2021, 116, 218–231.
- 31.
Gao, Z. Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; Volume 6; pp. 4989–4996.
- 32.
Zheng, Q.; Chen, Z.; Gao, Z. A practical approach to disturbance decoupling control. Control Eng. Pract. 2009, 17, 1016–1025.
- 33.
Chen, S.; Xue, W.; Huang, Y. On active disturbance rejection control for nonlinear systems with multiple uncertainties and nonlinear measurement. Int. J. Robust Nonlinear Control 2020, 30, 3411–3435.
- 34.
Clayton, G.; Tien, S.; Leang, K.; Zou, Q.; Devasia, S. A review of feedforward control approaches in nanopositioning for high-speed SPM. J. Dyn. Syst. Meas. Control 2009, 131, 061101–061119.