- 1.
Moos, R. A Brief Overview on Automotive Exhaust Gas Sensors Based on Electroceramics. Int. J. Appl. Ceram. Technol. 2005, 2, 401–413.
- 2.
Liu, H.; Li, M.; Voznyy, O.; Hu, L.; Fu, Q.; Zhou, D.; Xia, Z.; Sargent, E.H.; Tang, J. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 2014, 26, 2718–2724.
- 3.
Raghavan, A.; Kiesel, P.; Sommer, L.W.; Schwartz, J.; Lochbaum, A.; Hegyi, A.; Schuh, A.; Arakaki, K.; Saha, B.; Ganguli, A.et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance. J. Power Sources 2017, 341, 466–473.
- 4.
Ganguli, A.; Saha, B.; Raghavan, A.; Kiesel, P.; Arakaki, K.; Schuh, A.; Schwartz, J.; Hegyi, A.; Sommer, L.W.; Lochbaum, A.; et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation. J. Power Sources 2017, 341, 474–482.
- 5.
Bond, D.M.; Wheatley, V.; Goldsworthy, M. Numerical investigation into the performance of alternative Knudsen pump designs. Int. J. Heat Mass Transf. 2016, 93, 1038–1058.
- 6.
Kosyanchuk, V.; Kovalev, V.; Yakunchikov, A. Multiscale modeling of a gas separation device based on effect of thermal transpiration in the membrane. Sep. Purif. Technol. 2017, 180, 58–68.
- 7.
Taguchi, S.; Aoki, K. Rarefied gas flow around a sharp edge induced by a temperature field. J. Fluid Mech. 2012, 694, 191–224.
- 8.
Yakunchikov, A.; Kosyanchuk, V. Numerical investigation of gas separation in the system of filaments with different temperatures. Int. J. Heat Mass Transf. 2019, 138, 144–151.
- 9.
Baier, T.; Hardt, S. Gas separation in a Knudsen pump inspired by a Crookes radiometer. Microfluid. Nanofluidics 2020, 24, 41.
- 10.
Lotfian, A.; Roohi, E. Radiometric flow in periodically patterned channels: Fluid physics and improved configurations. J. Fluid Mech. 2019, 860, 544–576.
- 11.
Baier, T.; Hardt, S.; Shahabi, V.; Roohi, E. Knudsen pump inspired by Crookes radiometer with a specular wall. Phys. Rev. Fluids 2017, 2, 033401.
- 12.
Lotfian, A.; Roohi, E. Binary gas mixtures separation using microscale radiometric pumps. Int. Commun. Heat Mass Transf. 2021, 121, 105061.
- 13.
Aoki, K.; Degond, P.; Mieussens, L.; Takata, S.; Yoshida, H. A Diffusion Model for Rarefied Flows in Curved Channels. Multiscale Model. Simul. 2008, 6, 1281–1316.
- 14.
Bond, D.M.; Wheatley, V.; Goldsworthy, M. Numerical investigation of curved channel Knudsen pump performance. Int. J. Heat Mass Transf. 2014, 76, 1–15.
- 15.
Donkov, A.A.; Tiwari, S.; Liang, T.; Hardt, S.; Klar, A.; Ye, W. Momentum and mass fluxes in a gas confined between periodically structured surfaces at different temperatures. Phys. Rev. E 2011, 84, 16304.
- 16.
Wurger, A. Leidenfrost gas ratchets driven by thermal creep. Phys. Rev. Lett. 2011, 107, 164502.
- 17.
Chen, J.; Baldas, L.; Colin, S. Numerical study of thermal creep flow between two ratchet surfaces. Vacuum 2014, 109, 294–301.
- 18.
Chen, J.; Stefanov, S.K.; Baldas, L.; Colin, S. Analysis of flow induced by temperature fields in ratchet-like microchannels by Direct Simulation Monte Carlo. Int. J. Heat Mass Transf. 2016, 99, 672–680.
- 19.
Shahabi, V.; Baier, T.; Roohi, E.; Hardt, S. Thermally induced gas flows in ratchet channels with diffuse and specular boundaries. Sci. Rep. 2017, 7, 41412.
- 20.
Tatsios, G.; Lopez Quesada, G.; Rojas-Cardenas, M.; Baldas, L.; Colin, S.; Valougeorgis, D. Computational investigation and parametrization of the pumping effect in temperature-driven flows through long tapered channels. Microfluid. Nanofluid. 2017, 21, 99.
- 21.
Gupta, N.K.; Gianchandani, Y.B. Thermal transpiration in mixed cellulose ester membranes: Enabling miniature, motionless gas pumps. Microporous Mesoporous Mat. 2011, 142, 535–541.
- 22.
Han, F.; Wang, X.; Zhao, F.; Zhang, S.; Zhang, Z. Numerical investigation of gas separation via thermally induced flows in ratchet-like patterned microchannels. Int. J. Therm. Sci. 2022, 172, 107280.
- 23.
Han, F.; Wang, X.; Zhang, W.; Zhang, S.; Zhang, Z. Gas separation simulation based on ab initio and variable soft sphere model in ratchet-shaped microchannels. Int. J. Heat Mass Transf. 2023, 206, 123957.
- 24.
Han, F.; Zhang, Z.; Zhang, S.; Wang, X. Simulation Study of the Effect of Surface Properties on Gas Separation Characteristics for Ratchet-type Knudsen Pumps. Vacuum 2024, 61, 13–19.
- 25.
Wang, X.; Zhang, Z.; Zhang, W.; Zhang, P.; Zhang, S. Numerical simulation of thermal edge flow in ratchet-like periodically patterned micro-channels. Int. J. Heat Mass Transf. 2019, 135, 1023–1038.
- 26.
Han, F.; Wang, X.; Zhang, W.; Zhang, S.; Zhang, Z. Numerical Simulation Optimization via DSMC Method for Thermally Induced Flow in Microchannel-Type Knudsen Pumps with Quadrilateral Arrays. Chin. J. Vac. Sci. Technol. 2023, 43, 238–244.
- 27.
Ebrahimi, A.; Roohi, E. DSMC investigation of rarefied gas flow through diverging micro- and nanochannels. Microfluid. Nanofluid. 2017, 21, 1.
- 28.
Ebrahimi, A.; Roohi, E. Flow and Thermal Fields Investigation in Divergent Micro/Nano Channels. J. Therm. Eng. 2018, 2, 709–714.
- 29.
Ebrahimi, A.; Shahabi, V.; Roohi, E. Pressure-Driven Nitrogen Flow in Divergent Microchannels with Isothermal Walls. Appl. Sci. 2021, 11, 3602.
- 30.
Varade, V.; Duryodhan, V.S.; Agrawal, A.; Pradeep, A.M.; Ebrahimi, A.; Roohi, E. Low Mach number slip flow through diverging microchannel. Comput. Fluids 2015, 111, 46–61.
- 31.
Scanlon, T.J.; Roohi, E.; White, C.; Darbandi, M.; Reese, J.M. An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries. Comput. Fluids 2010, 39, 2078–2089.
- 32.
White, C.; Borg, M.K.; Scanlon, T.J.; Longshaw, S.M.; John, B.; Emerson, D.R.; Reese, J.M. DsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver. Comput. Phys. Commun. 2018, 224, 22–43.
- 33.
Bird, G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flow; Clarendon Press: Oxford, UK, 1994.
- 34.
Roohi, E.; Stefanov, S.; Shoja-Sani, A.; Ejraei, H. A generalized form of the Bernoulli Trial collision scheme in DSMC: Derivation and evaluation. J. Comput. Phys. 2018, 354, 476–492.
- 35.
Roohi, E.; Stefanov, S. Collision partner selection schemes in DSMC: From micro/nano flows to hypersonic flows. Phys. Rep. 2016, 656, 1–38.
- 36.
Zhu, M.; Roohi, E.; Ebrahimi, A. Computational Study of Rarefied Gas Flow and Heat Transfer in Lid-driven Cylindrical Cavities. Phys. Fluids 2023, 35, 052012.
- 37.
Sabouri, M.; Zakeri, R.; Ebrahimi, A. Improving Computational Efficiency in DSMC Simulations of Vacuum Gas Dynamics with a Fixed Number of Particles per Cell. Phys. Scr. 2024, 99, 085213.
- 38.
Shariati, V.; Roohi, E.; Ebrahimi, A. Numerical Study of Gas Flow in Super Nanoporous Materials Using the Direct Simulation Monte-Carlo Method. Micromachines 2023, 14, 139.