- 1.
Kook, S.; Zhang, R.; Szeto, K.; Pickett, L.M.; Aizawa, T. In-Flame Soot Sampling and Particle Analysis in a Diesel Engine. SAE Int. J. Fuels Lubr. 2013, 6, 80–97.
https://doi.org/10.4271/2013-01-0912.
- 2.
- 3.
- 4.
Reitz, R.D.; Ogawa, H.; Payri, R.; Fansler, T.; Kokjohn, S.; Moriyoshi, Y.; Agarwal, A.; Arcoumanis, D.; Assanis, D.; Bae, C.; et al. IJER Editorial: The Future of the Internal Combustion Engine. Int. J. Engine Res. 2020, 21, 3–10.
https://doi.org/10.1177/1468087419877990.
- 5.
Muncrief, R. NOx Emissions from Heavy-Duty and Light-Duty Diesel Vehicles in the EU: Comparison of Real-World Performance and Current Type-Approval Requirements; International Clean Transportation Commission (ICCT): Washington, DC, USA, 2016.
- 6.
- 7.
Ni, H. The development history of China’s mobile source emission standard. World Environ. 2019, 4, 16–21.
- 8.
Yang, L. China’s First National Portable Emissions Testing Standard for Heavy-Duty Vehicles; International Clean Transportation Commission (ICCT): Washington, DC, USA, 2017.
- 9.
- 10.
Yu, Q.; Tan, J.; Ge, Y.; Hao, L.; Peng, Z. Application of Diesel Particulate Filter on In-Use On-Road Vehicles. Energy Procedia 2017, 105, 1730–1736.
- 11.
Johnson, T.; Joshi, A. Review of Vehicle Engine Efficiency and Emissions. SAE Int. J. Engines 2018, 11, 1307–1330.
- 12.
Dec, J.E.; Espey, C. Chemiluminescence Imaging of Autoignition in a DI Diesel Engine. SAE Trans. 1995, 107, 2230–2254.
- 13.
Flynn, P.F.; Durrett, R.P.; Hunter, G.L.; zur Loye, A.O.; Akinyemi, O.C.; Dec, J.E.; Westbrook, C.K. Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, and Empirical Validation. SAE Trans. 1999, 108, 587–600.
- 14.
Zheng, M.; Han, X.; Reader, G.T. Empirical Studies of EGR Enabled Diesel Low Temperature Combustion. J. Automot. Saf. Energy 2010, 1, 219–228.
- 15.
Asad, U.; Zheng, M. Tightened Intake Oxygen Control for Improving Diesel Low-Temperature Combustion. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 2011, 225, 513–530.
https://doi.org/10.1177/2041299110393211.
- 16.
Alriksson, M.; Rente, T.; Denbratt, I. Low Soot, Low NOx in a Heavy Duty Diesel Engine Using High Levels of EGR; SAE: Warrendale, PA, USA, 2005.
- 17.
- 18.
Pickett, L.M.; Siebers, D.L. Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion. SAE Trans. 2004, 113, 614–630.
- 19.
Butts, R.T.; Foster, D.; Krieger, R.; Andrie, M.; Ra, Y. Investigation of the Effects of Cetane Number, Volatility, and Total Aromatic Content on Highly Dilute Low Temperature Diesel Combustion; SAE: Warrendale, PA, USA, 2010.
- 20.
Han, X. Study of Fuels and Fuelling Strategies for Enabling Clean Combustion in Compression Ignition Engines. Ph.D. Thesis, University of Windsor, Windsor, ON, Canada, 2014.
- 21.
Kitamura, T.; Ito, T.; Kitamura, Y.; Ueda, M.; Senda, J.; Fujimoto, H. Soot Kinetic Modeling and Empirical Validation on Smokeless Diesel Combustion with Oxygenated Fuels. SAE Trans. 2003, 112, 945–963.
- 22.
Park, S.H.; Kim, H.J.; Lee, C.S. Macroscopic Spray Characteristics and Breakup Performance of Dimethyl Ether (DME) Fuel at High Fuel Temperatures and Ambient Conditions. Fuel 2010, 89, 3001–3011.
https://doi.org/10.1016/j.fuel.2010.05.002.
- 23.
Ryan, T.W. Correlation of Physical and Chemical Ignition Delay to Cetane Number. SAE Trans. 1985, 94, 687–699.
- 24.
Konno, M.; Chiba, K.; Okamoto, T. Experimental and Numerical Analysis of High Pressure DME Spray; SAE: Warrendale, PA, USA, 2010.
- 25.
Teng, H.; Mccandless, J.C. Comparative Study of Characteristics of Diesel-Fuel and Dimethyl-Ether Sprays in the Engine. SAE Trans. 2005, 114, 1202–1213.
- 26.
- 27.
LeBlanc, S.; Yu, X.; Wang, L.; Zheng, M. Dimethyl Ether to Power Next-Generation Road Transportation. Int. J. Automot. Manuf. Mater. 2023, 2, 3.
- 28.
Soltic, P.; Hilfiker, T.; Wright, Y.; Hardy, G.; Fröhlich, B.; Klein, D. The Potential of Dimethyl Ether (DME) to Meet Current and Future Emissions Standards in Heavy-Duty Compression-Ignition Engines. Fuel 2024, 355, 129357.
https://doi.org/10.1016/j.fuel.2023.129357.
- 29.
McCandless, J.C.; Li, S. Development of a Novel Fuel Injection System (NFIS) for Dimethyl Ether-and Other Clean Alternative Fuels; SAE: Warrendale, PA, USA, 1997.
- 30.
Oguma, M.; Goto, S.; Suzuki, S.; Yuki, S. Research and Development towards Utilization of DME Powered Diesel Engines. J. Jpn. Petrol. Inst. 2008, 51, 317–331.
https://doi.org/10.1627/jpi.51.317.
- 31.
VOLVO BIO-DME: Unique Field Test in Commercial Operations, 2010–2012; Volvo Trucks: Gothenburg, Sweden, 2012; p. 6.
- 32.
LeBlanc, S.; Wang, L.; Sandhu, N.S.; Yu, X.; Zheng, M. Investigation of Fuel Injection Pressure Impact on Dimethyl Ether Combustion; SAE: Warrendale, PA, USA, 2023.
- 33.
Asad, U.; Zheng, M.; Han, X.; Reader, G.T.; Wang, M. Fuel Injection Strategies to Improve Emissions and Efficiency of High Compression Ratio Diesel Engines. SAE Int. J. Engines 2008, 1, 1220–1233.
https://doi.org/10.4271/2008-01-2472.
- 34.
Bosch, W. The Fuel Rate Indicator: A New Measuring Instrument for Display of the Characteristics of Individual Injection; SAE: Warrendale, PA, USA, 1966.
- 35.
Cong, B.; Leblanc, S.; Yu, X.; Zheng, M. Study of Dimethyl Ether Fuel Spray Characteristics and Injection Profile; SAE: Warrendale, PA, USA, 2024.
- 36.
Leblanc, S.; Han, X.; Tjong, J.; Zheng, M. Performance and Emission Characteristics of Direct Injection DME Combustion under Low NOx Emissions; SAE: Warrendale, PA, USA, 2023.
- 37.
Youn, I.M.; Park, S.H.; Roh, H.G.; Lee, C.S. Investigation on the Fuel Spray and Emission Reduction Characteristics for Dimethyl Ether (DME) Fueled Multi-Cylinder Diesel Engine with Common-Rail Injection System. Fuel Process. Technol. 2011, 92, 1280–1287.
https://doi.org/10.1016/j.fuproc.2011.01.018.
- 38.
- 39.
Xu, M.; Nishida, K.; Hiroyasu, H. A Practical Calculation Method for Injection Pressure and Spray Penetration in Diesel Engines. SAE Trans. 1992, 101, 1169–1195.
- 40.
Yu, X.; LeBlanc, S.; Sandhu, N.; Tjong, J.; Zheng, M. Combustion Control of DME HCCI Using Charge Dilution and Spark Assistance. Proc IMechE Part D: J Automob. Eng. 2022, 237, 1959–1974.
https://doi.org/10.1177/09544070221103361.
- 41.
- 42.
Miyamoto, N.; Ogawa, H.; Nabi, M.N. Approaches to Extremely Low Emissions and Efficient Diesel Combustion with Oxygenated Fuels. Int. J. Engine Res. 2000, 1, 71–85.
https://doi.org/10.1243/1468087001545272.