- 1.
Central People’s Government of the People’s Republic of China. Medium and Long-Term Plan for the Development of Hydrogen Energy Industry (2021–2035). Statistics of China Association of Industrial Automobile. Available online: caam.org.cn (accessed on 24 March 2022).
- 2.
Cui, Z.Y. Current situation and development analysis of hydrogen storage and transportation technology. China Foreign Energy 2024, 29, 31–39. (In Chinese)
- 3.
Liu, Y.J.; Jin, Y.J. Design Points of Carbon Fiber fully Wound Hydrogen Cylinder for Vehicle Aluminum inner Liner. Press. Vessel. 2009, 26, 28–33.
- 4.
Zheng, J.; Liu, X.; Xu, P.; Liu, P.; Zhao, Y.; Yang, J. Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrogen Energy 2012, 37, 1048–1057.
- 5.
Preuster, P.; Alekseev, A.; Wasserscheid, P. Hydrogen storage technologies for future energy systems. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 445–471.
- 6.
Kubas, G.; Kluwer, J. Metal Dihydrogen and Ó-Bond Complexes: Structure, Theory and Reactivity; Springer Science & Business Media: New York, NY, USA, 2001.
- 7.
Kalamse, V.; Wadnerkar, N.; Chaudhari, A. Multi-functionalized naphthalene complexes for hydrogen storage. Energy 2013, 49, 469–474.
- 8.
Cao, J.W.; Qin, X.F.; Geng, G. The Development Status and Prospects of Hydrogen Storage and Transportation Technology. J. Pet. 2021, 37, 1461–1478.
- 9.
Qiu, Y.; Yang, H.; Tong, L.; Wang, L. Research progress of cryogenic materials for storage and transportation of liquid hydrogen. Metals 2021, 11, 1101.
- 10.
Fan, J.M.; Wang, Y.C.; Zheng, Z.X. Discussion about carbon-based solid-state hydrogen storage materials. IOP Conf. Ser. Earth Environ. Sci. 2022, 1011, 012008.
- 11.
Ismail, M. Effect of adding different percentages of HfCl4 on the hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 2021, 46, 8621–8628.
- 12.
Jalil, Z.; Rahwanto, A.; Handoko, E.; Akhyar, H. Hydrogen storage properties of mechanical milled MgH2-nano Ni for solid hydrogen storage material. Mater. Sci. Eng. 2018, 432, 012034.
- 13.
Ma, X. Entering the China International Import Expo to See the 72 Changes in Cars. China Automotive News, 11 November 2024.
- 14.
Zhang, X.C. Moving towards “Smart Manufacturing” and Transforming Towards High-End. Hebei Daily, 27 August 2024.
- 15.
Hu, Z.R.; Hu, W.J.; Huang, Q.H. Overview of performance test standards for large-capacity high-pressure hydrogen storage cylinders. China Stand. 2022, 19, 181–186.
- 16.
Yang, W.G.; Li, W.B.; Lin, S. Development and Application Progress of Carbon Fiber Wound Composite Hydrogen Storage Cylinders. Fiber Reinf. Plast. Compos. 2015, 12, 99–104.
- 17.
Zheng, J.Y.; Li, J.Y.; Huang, Q.H. Technical Development Trends of Vehicle High-Pressure Fuel Gas Cylinders and Challenges Facing China. Press. Vessel 2014, 31, 43–51.
- 18.
Wu, B. Research and Design of Hydrogen Safety for Fuel Cell Vehicles. Shanghai Auto 2013, 12, 5–8.
- 19.
Barth, R.R.; Simmons, K.L.; Marchi, C.S. Polymers for Hydrogen Infrastructure and Vehicle Fuel Systems: Applications, Properties, and Gap Analysis; Sandia National Lab.: Richland, WA, USA, 2013; pp. 1–51.
- 20.
Chen, M.; Hu, Z.; Jia, X.; Yang, Q.; Shen, A.; Xu, K. Research progress on key technologies of Type IV vehicle hydrogen storage cylinder. Press. Vessel. 2020, 37, 39–50.
- 21.
Ito, Y. Permeability of gases and vapors through highpolymer films: XII the permeation and diffusion of helium. Kobunshi Ronbunshu 1961, 18, 124–132.
- 22.
Humpenöder, J. Gas permeation of fibre reinforced plastics. Cryogenics 1998, 38, 143–147.
- 23.
Quang Dao, D.; Luche, J.; Rogaume, T.; Richard, F.; Bustamante-Valencia, L.; Ruban, S. Polyamide 6 and polyurethane used as linerfor hydrogen composite cylinder: An estimation of fire behaviours. Fire Technol. 2016, 52, 397–420.
- 24.
Marshall, M.R. The effect of ventilation on the accumulation and dispersal of hazardous gases. Inst. Chem. Eng. 1983, 3, 82.
- 25.
Breakthrough in blow molding production of large capacity hydrogen cylinder. Mod. Plast. 2020, 3, 31–33.
- 26.
Pepin, J.; Lainé, E.; Grandidier, J.C.; Castagnet, S.; Blanc-Vannet, P.; Papin, P.; Weber, M. Determination of key parameters responsible forpolymeric liner collapse in hyperbaric type IV hydrogen storage vessels. Int. J. Hydrogen Energy 2018, 43, 16386–16399.
- 27.
Neto, E.B.; Chludzinski, M.; Roese, P.B.; Fonseca, J.S.O.; Amico, S.C.; Ferreira, C.A. Experimental and numerical analysis of a LLDPE/HDPE liner for a composite pressure vessel. Polym. Test. 2011, 30, 693–700.
- 28.
Sun, Y.; Lv, H.; Zhou, W.; Zhang, C. Research on hydrogen permeability of polyamide 6 as the liner material for type IV hydrogen storage tank. Int. J. Hydrogen Energy 2020, 45, 24980–24990.
- 29.
Osman, M.A.; Rupp, J.E.; Suter, U.W. Gas permeation properties of polyethylene-layered silicate nanocomposites. J. Mater. Chem. 2005, 15, 1298–1304.
- 30.
Wang, L. Research on Strength and Life of Composite Hydrogen Storage Vessels Based on Micromechanical Analysis; Zhejiang University: Hangzhou, China, 2016.
- 31.
Ren, Y.Q.; Dong, X.; Chen, X.L. Effects of rotational molding process parameters on low temperature impact performance of crosslinked HDPE. China Plast. Ind. 2017, 45, 38–42.
- 32.
Wang, X.L.; Yang, W.M.; Xie, P.C. Rotational molding process and equipment for the inner liner of high-pressure and large-capacity Type IV hydrogen storage cylinders. Press. Vessel 2022, 39, 1–9.
- 33.
Zhang, W.; Xu, J. Advanced lightweight materials for Automobiles: A review. Mater. Des. 2022, 221, 110994.
- 34.
Takeichi, N.; Senoh, H.; Yokota, T. Hybrid hydrogen storage vessel, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material. Int. J. Hydrogen Energy 2003, 28, 1121–1129.
- 35.
Toyota Motor Corporation. High Pressure Tank: China. CN106989265A, 27 February 2017.
- 36.
Yang, G. Study on high-performance epoxy resin matrix for winding carbon fiber. Aging Appl. Synth. Mater. 2016, 45, 33–35. (In Chinese)
- 37.
Huang, Y.Q.; Zhang, K.Z.; Wang, X.J. Study on epoxy resin matrix for wet winding of carbon fiber. Thermosetting Resins 2007, 1, 27–29.
- 38.
Hua, T.Q.; Roh, H.-S.; Ahluwalia, R.K. Performance assessment of 700-bar compressed hydrogen storage for light duty fuel cell vehicles. Int. J. Hydrogen Energy 2017, 42, 25121–25129.
- 39.
Li, X.C.; Sui, G.; Li, P. Effect of activated carbon nanotubes on properties of T700CF/epoxy resin composites. Glass Fiber Reinf. Plast. Compos. Mater. 2012, 2, 30–35.
- 40.
De Carvalho, J.; Lossie, M.; Vandepitte, D.; Van Brussel, H. Optimization of filament-wound parts based on nongeodesic winding. Compos. Manuf. 1995, 6, 79–84.
- 41.
Wang, B.; Zhang, X.; Liu, A.H. Epoxy resin system for curing and winding at 60 °C. J. Mater. Eng. 2007, 4, 15–19.
- 42.
Zou, C.Y.; Yang, T.; Ge, B. Study on wet Winding System of multi-strand Carbon Fiber. Glass Fiber Reinf. Plast. Compos. Mater. 2013, Z3, 52–54.
- 43.
Zhang, S.J.; Liu, N.; Li, H. Study on the Effect of Winding Tension on the Properties of Carbon Fiber Composite Materials. Aging Appl. Synth. Mater. 2024, 53, 1–4.
- 44.
Liu, B.Y.; Wang, X.J.; Han, J.P. Preliminary Study on Forming Technology of Conical shell of Carbon Fiber Composite. Zi Hang Mater. 2000, 22, 26–29.
- 45.
Chen, D. Structural Design and Development of Type IV Composite Pressure Vessels Wound with Carbon Fiber; Wuhan University of Technology: Wuhan, China, 2019.
- 46.
Yu, B.; Liu, Z.D.; Zhao, W.W. Development and standard analysis of Composite Gas Cylinders at home and abroad (I). Press. Vessel. 2011, 28, 47–52.
- 47.
Du, Y. Mechanics, Design, Application and Evaluation of Composite Materials and Their Structures; Harbin Institute of Technology Press: Harbin, China, 2000.
- 48.
Liu, Y.X. Design and Application of Composite Products; Chemical Industry Press: Beijing, China, 2003.
- 49.
Jaravel, J.; Castagnet, S.; Grandidier, J.C.; Benoît, G. On key parameters influencing cavitation damage upon fast decompression in a hydrogen saturated elastomer. Polym. Test. 2011, 30, 811–818.
- 50.
Zhang, M.; Lv, H.; Kang, H.; Zhou, W.; Zhang, C. A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks. Int. J. Hydrogen Energy 2019, 44, 25777–25799.
- 51.
Yersak, T.A.; Baker, D.R.; Yanagisawa, Y.; Slavik, S.; Immel, R.; Mack-Gardner, A.; Cai, M. Predictive model for depressurization-induced blistering of type IV tank liners for hydrogen storage. Int. J. Hydrogen Energy 2017, 42, 28910–28917.
- 52.
Cha, Y.; Wang, X.L.; Yang, W.M. Numerical Simulation Study on the Collapse and Peeling Mechanism of Plastic Liner of Type IV Hydrogen Storage Cylinder. In Proceedings of the 17th China CAE Engineering Analysis Technology Annual Conference, Haikou, China, 21 June 2021.
- 53.
Melnichuk, M.; Gardavaud, Q.; Thiébaud, F.; Perreux, D. Temperature effect in cavitation risk assessments of polymers for hydrogen systems. Int. J. Hydrogen Energy 2020, 45, 23020–23026.
- 54.
Hui, H.; Bai, H.; Huang, S. Research status of filament wound composite pressure vessels. Press. Vessel 2021, 38, 53–63.
- 55.
Liu, Y.; Liu, H.Y. Development of Combined Valve for High-Pressure Hydrogen Storage Cylinders. Gen. Mach. 2008, 9, 93–95.
- 56.
Liu, R.H.; Wang, D.Y.; Meng, L.Y. Research and Test Methods of Combined Valve for Vehicle High-Pressure Hydrogen Cylinders. Low Temp. Spec. Gases 2022, 40, 14–18.
- 57.
Gu, C.L.; Zhao, B.D.; Zhang, B. Development Status of Valves for Vehicle-Mounted High-Pressure Hydrogen Storage Cylinders in China. China Spec. Equip. Saf. 2019, 35, 5–8.
- 58.
Fujiwara, H.; Yamabe, J.; Nishimura, S. Evaluation of the change in chemical structure of acrylonitrile butadiene rubber after high-pressure hydrogen exposure. Int. J. Hydrogen Energy 2012, 37, 8729–8733.
- 59.
Zhang, F.; Zhao, P.; Niu, M.; Maddy, J. The survey of key technologies in hydrogen energy storage. Int. J. Hydrogen Energy 2016, 41, 14535–14552.
- 60.
Zhou, C.L.; Chen, G.H. Characterization of O-ring rubber seals in high-pressure hydrogen environment. CIESC J. 2018, 69, 3557–3564.
- 61.
Su, H.Y.; He, C.H.; Jin, B.H. Research on the sealing technology of the nozzle of 70 MPa vehicle-mounted Type IV hydrogen storage cylinder. China Spec. Equip. Saf. 2023, 39, 9–15.
- 62.
Jiao, J.; Zhang, Y.T.; Sun, L.Q.; et al. Simulation and Topology Optimization Research of Combined Valve for Fuel Cell Hydrogen Supply. Mod. Chem. Ind. 2018, 38, 221–225.