2504000128
  • Open Access
  • Article
Failure Analysis and Reliability Optimization Approaches for Particulate Filter of Diesel Engine after-Treatment System
  • Dongsheng Zhang 1, 2,   
  • Minglong Li 2,   
  • Liguang Li 1, *,   
  • Jun Deng 1,   
  • Ye Li 3,   
  • Rongfang Zhou 3,   
  • Long Ma 1

Received: 20 Sep 2024 | Revised: 10 Dec 2024 | Accepted: 14 Jan 2025 | Published: 14 Feb 2025

Abstract

Diesel particulate filter (DPF) clogging and high temperature failures are predominant issues affecting the reliability of diesel engines in the market applications. These failures, which include substrate crack and melting, can lead to a significant increment of tailpipe particulate matter (PM) emissions, even exceeding the acceptable limits. Such DPF events not only diminish the vehicle productivity but also escalate the maintenance costs. The DPF, situated downstream in the diesel engine exhaust system, is directly influenced by the health state of the upstream engine and diesel oxidation catalyst (DOC). Addressing the risks of DPF system failures is a complex systems engineering challenge. This paper employs a fault tree analysis (FTA) to identify the root causes of these failures, considering the DPF after-treatment functions, all elements affecting system performance, and key interconnections among these elements. Then the DPF reliability optimization strategies are discussed from a system optimization perspective, focusing on reducing the engine-out PM, ensuring the appropriate substrate volume and precious metal coating content for DPF clogging, improving the virtual DPF soot loading sensor accuracy, lowering the extremely uneven flow or DPF soot loading and adopting the conservative regeneration control for high temperature failures. These measures are crucial to mitigate the failure risks and ensure the reliable DPF operation. To achieve the tighter PN requirement of future regulation, additional DPF optimizations would be required. Adopting the new Cordierite material with a higher porosity, further smaller mean pore size and uniform pore size distribution are one of current developing tendencies from existing studies. The Cordierite material with membrane design would be a new developing direction for further improving of filtration efficiency and better hysteresis of DPF pressure drop, plus lower porosity and thicker wall design would get better robustness and DPF pressure drop.

References 

  • 1.
    Yang, H.; Xin, X.; Zheng, Z.; Yang, Y.; Liu, B.; Liu, Y.; Liu, B. Fault analysis on ring crack of DPF carrier. J. Shandong Jiaotong Univ. 2022, 30, 8–13. https://doi.org/10.3969/j.issn.1672-0032.2022.03.002.
  • 2.
    Gong, H. Analysis of Common Aftertreatment Faults in Diesel Engines. Agric. Mach. Using Maint. 2023, 44–47. https://doi.org/10.14031/j.cnki.njwx.2023.07.013.
  • 3.
    GB 17691-2018; Limits and Measurement Methods for Emissions from Diesel Fuelled Heavy-Duty Vehicles (China VI). China Environmental Science Press: Beijing, China, 2018.
  • 4.
    HJ 1014-2020; Emissions Control Technical Requirements of Non-Road Diesel Mobile Machinery. China Environmental Science Press: Beijing, China, 2020.
  • 5.
    Chaudhari, K.; Kumar, R.; Madhukar, P.; Wolter, M. The Diesel Particulate Filter Calibration—Challenges and Countermeasures Targeting the Indian Scenario; SAE Technical Paper 2021-26-0189; SAE: Warrendale, PA, USA, 2021. https://doi.org/10.4271/2021-26-0189.
  • 6.
    Cai, Z.; Yan, F.; Hu, J.; Wu, H.; Wang, M.; Shao, Y.; Li, Z. Influence of the engine drop-to-idle process on regeneration temperature, filtration and morphology characteristics of diesel particulate filters. Fuel 2023, 354, 129324. https://doi.org/10.1016/j.fuel.2023.129324.
  • 7.
    European Parliament and of the Council. Regulation (EU) 2024/1257 of the European Parliament and of the Council; Official Journal of the European Union: Aberdeen, UK, 2024. Available online: https://eur-lex.europa.eu/eli/reg/2024/1257/oj (accessed on 1 December 2024).
  • 8.
    Zhang, Z.; Tian, J.; Li, J.; Cao, C.; Wang, S.; Lv, J.; Zheng, W.; Tan, D. The development of diesel oxidation catalysts and the effect of sulfur dioxide on catalysts of metal-based diesel oxidation catalysts: A review. Fuel Process. Technol. 2022, 233, 107317. https://doi.org/10.1016/j.fuproc.2022.107317.
  • 9.
    Yang, W.; Gong, J.; Wang, X.; Bao, Z.; Guo, Y.; Wu, Z. A Review on the Impact of SO2 on the Oxidation of NO, Hydrocarbons, and CO in Diesel Emission Control Catalysis. ACS Catal. 2021, 11, 12446–12468.
  • 10.
    Zhang, Z.; Dong, R.; Lan, G.; Yuan, T.; Tan, D. Diesel particulate filter regeneration mechanism of modern automobile engines and methods of reducing PM emissions: A review. Environ. Sci. Pollut. Res. 2023, 30, 39338–39376. https://doi.org/10.1007/s11356-023-25579-4.
  • 11.
    Luo, J.; Zhang, H.; Liu, Z.; Zhang, Z.; Pan, Y.; Liang, X.; Wu, S.; Xu, H.; Jiang, C. A review of regeneration mechanism and methods for reducing soot emissions from diesel particulate filter in diesel engine. Environ. Sci. Pollut. Res. 2023, 30, 86556–86597. https://doi.org/10.1007/s11356-023-28405-z.
  • 12.
    E, J.; Xu, W.; Ma, Y.; Tan, D.; Peng, Q.; Tan, Y.; Chen, L. Soot formation mechanism of modern automobile engines and methods of reducing soot emissions: A review. Fuel Process. Technol. 2022, 235, 107373. https://doi.org/10.1016/j.fuproc.2022.107373.
  • 13.
    Wang, X.; Cheng, D.; Zhang, J.; Ren, X.; Zhao, S. Analysis on failure characteristics of DPF system of diesel engine. J. Ordnance Equip. Eng. 2022, 43, 229–234+273.
  • 14.
    Xue, W.L.; Li, Y. Research on DPF of Particle Filter for Diesel Engine of Internal Combustion Diesel Forklift Truck. Intern. Combust. Engine Parts 2024, 54–57. https://doi.org/10.19475/j.cnki.issn1674-957x.2024.09.010.
  • 15.
    Bao, L.; Wang, J.; Shi, L.; Chen, H. Exhaust Gas After-Treatment Systems for Gasoline and Diesel Vehicles. Int. J. Automot. Manuf. Mater. 2022, 1, 9. https://doi.org/10.53941/ijamm0101009.
  • 16.
    Russell, A.; Epling, W.S. Diesel Oxidation Catalysts. Catal. Rev. 2011, 53, 337‒423.
  • 17.
    Raghu, M.Y.; Rajasekar, S., Sr.; Thavasu, R.K.; Bazeer, M.; Sandeep, S. Simulation-Based Approach for DPF Calibration to Reduce Overall Development Time with Improved Accuracy and Quality; SAE Technical Paper 2022-28-0373; SAE: Warrendale, PA, USA, 2022. https://doi.org/10.4271/ 2022-28-0373.
  • 18.
    Kimura, K.; Lynskey, M.; Corrigan, E.R.; Hickman, D.L.; Wang, J.; Fang, H.L.; Chatterjee, S. Real World Study of Diesel Particulate Filter Ash Accumulation in Heavy-Duty Diesel Trucks; SAE Technical Paper 2006-01-3257; SAE: Warrendale, PA, USA, 2006. https://doi.org/10.4271/2006-01-3257.
  • 19.
    Sappok, A.; Santiago, M.; Vianna, T.; Wong, V.W. Characteristics and Effects of Ash Accumulation on Diesel Particulate Filter Performance: Rapidly Aged and Field Aged Results; SAE Technical Paper 2009-01-1086; SAE: Warrendale, PA, USA, 2009. https://doi.org/10.4271/2009-01-1086.
  • 20.
    Andersson, J.; Antonsson, M.; Eurenius, L.; Olsson, E.; Skoglundh, M. Deactivation of diesel oxidation catalysts: Vehicle- and synthetic aging correlations. Appl. Catal. B Environ. 2007, 72, 71–81. https://doi.org/10.1016/j.apcatb.2006.10.011.
  • 21.
    Lee, S.J.; Jeong, S.J.; Kim, W.S.; Lee, C.B. Numerical Study on the Effect of Geometric Shape of DOC/DPF and Catalyst Loading for NO2-Assisted Continuous Regeneration; SAE Technical Paper 2007-24-0101; SAE: Warrendale, PA, USA, 2007. https://doi.org/10.4271/2007-24-0101.
  • 22.
    Bai, S.Z.; Tang, J.; Wang, G.H.. Soot loading estimation model and passive regeneration characteristics of DPF system for heavy-duty engine. Appl. Therm. Eng. 2016, 100, 1292–1298. https://doi.org/10.1016/j.applthermaleng.2016.02.05.
  • 23.
    Cordtz, R.; Ivarsson, A.; Schramm, J. Steady State Investigations of DPF Soot Burn Rates and DPF Modeling; SAE Technical Paper 2011-24-0181; SAE: Warrendale, PA, USA, 2011. https://doi.org/10.4271/2011-24-0181.
  • 24.
    Xin, Q. Diesel Engine System Design; Woodhead Publishing: Cambridge, UK, 2013; pp. 651–758.
  • 25.
    Singh, N.; Mandarapu, S. DPF Soot Estimation Challenges and Mitigation Strategies and Assessment of Available DPF Technologies; SAE Technical Paper 2013-01-0838; SAE: Warrendale, PA, USA, 2013. https://doi.org/10.4271/2013-01-0838.
  • 26.
    Majewski, W. DieselNet Technology Guide, Diesel Particulate Filters, Diesel Filter Systems. Available online: https://dieselnet.com/tech/dpf_sys.php (accessed on 1 September 2024).
  • 27.
    Majewski, W. DieselNet Technology Guide, Diesel Particulate Filters, Wall-Flow Monoliths. Available online: https://dieselnet.com/tech/dpf_wall-flow.php (accessed on 1 September 2024).
  • 28.
    Sappok, A.; Wong, V. Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control. SAE Int. J. Fuels Lubr. 2010, 3, 380–396. https://doi.org/10.4271/2010-01-0811.
  • 29.
    Dittler, A. Ash Transport in Diesel Particle Filters; SAE Technical Paper 2012-01-1732; SAE: Warrendale, PA, USA, 2012. https://doi.org/10.4271/2012-01-1732.
  • 30.
    Kim, K.; Mital, R.; Higuchi, T.; Chan, S.; Kim, C.H. An Investigative Study of Sudden Pressure Increase Phenomenon Across the DPF; SAE Technical Paper 2014-01-1516; SAE: Warrendale, PA, USA, 2014. https://doi.org/10.4271/2014-01-1516.
  • 31.
    Chu, G.; Wang, G.; Qi, J.; Yang, B.; Shuai, S. Study on Passive Regeneration Characteristics and Regeneration Balance Condition of CDPF. Automot. Eng. 2019, 41, 1365–1369+1434. https://doi.org/10.19562/j.chinasae.qcgc.2019. 012.003.
  • 32.
    Majewski, W. DieselNet Technology Guide, Diesel Particulate Filters, Diesel Filter Systems, Catalytic Diesel Filters. Available online: https://dieselnet.com/tech/dpf_catalytic.php (accessed on 1 September 2024).
  • 33.
    Guo, D.; Pan, W.; Zhuang, M.; Li, J.; Zhang, C. Optimization of control strategy of intake flow for CHINA Ⅵ diesel engine. Intern. Combust. Engine Powerpl. 2022, 39, 29–34. https://doi.org/10.19471/j.cnki.1673-6397.2022.03.005.
  • 34.
    Mao, Y.; Xu, J.; Fu, X.; Yang, H.; Chang, Z. EGR Rate and Swirl Ratio Study on Combustion Characteristics of HPD Diesel Engine. Intern. Combust. Engines 2018, 38–41.
  • 35.
    Liu, H.; Ma, J.; Dong, F.; Yang, Y.; Liu, X.; Ma, G.; Zheng, Z.; Yao, M. Experimental investigation of the effects of diesel fuel properties on combustion and emissions on a multi-cylinder heavy-duty diesel engine. Energy Convers. Manag. 2018, 171, 1787–1800. https://doi.org/10.1016/j.enconman.2018.06.089.
  • 36.
    Wang, Y.; Liu, H.; Feng, L.; Maes, N.; Fang, T.; Cui, Y.; Yi, W.; Somers, B.; Yao, M. Effects of oxygen enrichment on diesel spray flame soot formation in O2/Ar atmosphere. Combust. Flame 2024, 260, 113244. https://doi.org/10.1016/j.combustflame.2023.113244.
  • 37.
    Chen, B.; Liu, X.; Liu, H.; Wang, H.; Kyritsis, D.C.; Yao, M. Soot reduction effects of the addition of four butanol isomers on partially premixed flames of diesel surrogates. Combust. Flame 2017, 177, 123–136. https://doi.org/10.1016/j.combustflame.2016.12.012.
  • 38.
    Zheng, Z.; Li, C.; Liu, H.; Zhang, Y.; Zhong, X.; Yao, M. Experimental study on diesel conventional and low temperature combustion by fueling four isomers of butanol. Fuel 2015, 141, 109–119. https://doi.org/10.1016/j.fuel.2014.10.053.
  • 39.
    Zhang, X.; Liu, Y.; Xing, S.; Sun, L. Matching Analysis of Aftertreatment System of Off-road Diesel Engine. Tract. Farm Transp. 2022, 49, 35–38.
  • 40.
    Gaiser, G.; Mucha, P. Prediction of Pressure Drop in Diesel Particulate Filters Considering Ash Deposit and Partial Regenerations; SAE Technical Paper 2004-01-0158; SAE: Warrendale, PA, USA, 2004. https://doi.org/10.4271/2004-01-0158.
  • 41.
    Oesterle, J.; Gaiser, G.; Zacke, P. Homogeneous Loading and Regeneration of Diesel Particulate Filters Using Progressive Spin Elements; SAE Technical Paper 2004-01-1424; SAE: Warrendale, PA, USA, 2004. https://doi.org/10.4271/2004-01-1424.
  • 42.
    Price, K.; Ummel, D.; Pauly, T. A Systematic Evaluation of Sulfur Poisoning and Desulfation Behavior for HD Diesel Oxidation Catalysts; SAE Technical Paper 2018-01-1262; SAE: Warrendale, PA, USA, 2018. https://doi.org/10.4271/2018-01-1262.
  • 43.
    Munnannur, A.; Ottinger, N.; Gerald Liu, Z. Thermal Management of Exhaust Aftertreatment for Diesel Engines. In Handbook of Thermal Management of Engines; Lakshminarayanan, P.A., Agarwal, A.K., Eds.; Springer: Singapore, 2022. https://doi.org/10.1007/978-981-16-8570-5_2.
  • 44.
    Kim, J.; Kim, C.; Choung, S. J. Comparison studies on sintering phenomenon of diesel oxidation catalyst depending upon aging conditions. Catal. Today 2012, 185, 296–301. https://doi.org/10.1016/j.cattod.2011.09.021.
  • 45.
    Pfeifer, M.; Kögel, M.; Spurk, P.; Jeske, G. New Platinum/Palladium Based Catalyzed Filter Technologies for Future Passenger Car Applications; SAE Technical Paper 2007-01-0234; SAE: Warrendale, PA, USA, 2007. https://doi.org/10.4271/2007-01-0234.
  • 46.
    Majewski, W. DieselNet Technology Guide, Diesel Catalysts, Diesel Oxidation Catalyst. Available online: https://dieselnet.com/tech/cat_doc_deactiv.php (accessed on 1 September 2024).
  • 47.
    Bodek, K.; Wong, V. The Effects of Sulfated Ash, Phosphorus and Sulfur on Diesel Aftertreatment Systems—A Review; SAE Technical Paper 2007-01-1922; SAE: Warrendale, PA, USA, 2007. https://doi.org/10.4271/2007-01-1922.
  • 48.
    Agote-Arán, M.; Jacobsen, V.V.; Elsener, M.; Schütze, F.W.; Schilling, C.M.; Sridhar, M.; Katsaounis, E.; Kröcher, O.; Alxneit, I.; Ferri, D. Thermal Sintering and Phosphorus Poisoning of a Layered Diesel Oxidation Catalyst. Top. Catal. 2023, 66, 777–786. https://doi.org/10.1007/s11244-022-01752-w.
  • 49.
    Agote-Arán, M.; Elsener, M.; Schütze, F.W.; Schilling, C.M.; Sridhar, M.; Katsaounis, E.; Kröcher, O.; Ferri, D. On the relevance of P poisoning in real-world DOC aging. Appl. Catal. B Environ. 2021, 291, 120062. https://doi.org/10.1016/j.apcatb.2021.120062.
  • 50.
    Friese, K.; Eilts, P.; Lüers, B. Investigations Regarding Deposit Formation on Diesel Oxidation Catalysts; SAE Technical Paper 2020-01-1432; SAE: Warrendale, PA, USA, 2020. https://doi.org/10.4271/2020-01-1432.
  • 51.
    Shakya, B.; Sukumar, B.; López-De Jesús, Y.; Markatou, P. The Effect of Pt:Pd Ratio on Heavy-Duty Diesel Oxidation Catalyst Performance: An Experimental and Modeling Study. SAE Int. J. Engines 2015, 8, 1271–1282. https://doi.org/10.4271/2015-01-1052.
  • 52.
    Kato, D.; Okano, H.; Inoue, K.; Nakano, K. Development of DPF regeneration system under all operating conditions for generators. SAE Int. J. Adv. Curr. Prac. Mobil. 2023, 5, 1719–1725. https://doi.org/10.4271/2022-32-0050.
  • 53.
    Kumar, A.; Zokoe, R.; Joshi, S.; Kamasamudram, K.; Yezerets, A. Reactor System with Diesel Injection Capability for DOC Evaluations; SAE Technical Paper 2018-01-0647; SAE: Warrendale, PA, USA, 2018. https://doi.org/10.4271/2018-01-0647.
  • 54.
    Tiwari, A.; Durve, A.; Barman, J.; Srinivasan, P. Evaluation of Different Methodologies of Soot Mass Estimation for Optimum Regeneration Interval of Diesel Particulate Filter (DPF); SAE Technical Paper 2021-26-0208; SAE: Warrendale, PA, USA, 2021. https://doi.org/10.4271/2021-26-0208.
  • 55.
    Yamaguchi, S.; Fujii, S.; Kai, R.; Miyazaki, M.; Miyairi, Y.; Miwa, S.; Busch, P. Design Optimization of Wall Flow Type Catalyzed Cordierite Particulate Filter for Heavy Duty Diesel; SAE Technical Paper 2005-01-0666; SAE: Warrendale, PA, USA, 2005. https://doi.org/10.4271/2005-01-0666.
  • 56.
    Li, J.; Mital, R. Effect of DPF Design Parameters on Fuel Economy and Thermal Durability; SAE Technical Paper 2012-01-0847; SAE: Warrendale, PA, USA, 2012. https://doi.org/10.4271/2012-01-0847.
  • 57.
    Zhan, R.; Huang, Y.; Khair, M. Methodologies to Control DPF Uncontrolled Regenerations; SAE Technical Paper 2006-01-1090; SAE: Warrendale, PA, USA, 2006. https://doi.org/10.4271/2006-01-1090.
  • 58.
    Recker, P.; Pischinger, S. Thermal Shock Protection for Diesel Particulate Filters. SAE Int. J. Engines 2012, 5, 112–118. https://doi.org/10.4271/2011-01-2429.
  • 59.
    Huang, T.; Hu, G.; Guo, F.; Yang, M.; Zhu, Y.; Ran, Y. Experiment of DPF Temperature Control During Thermal Regeneration. Trans. CSICE 2020, 38, 257–264. https://doi.org/10.16236/j.cnki.nrjxb.202003034.
  • 60.
    Xie, T.; Gao, C.; Lu, W.; Zhang, S.; Li, L. Development and verification of control strategy for DPF regeneration temperature based on model. Intern. Combust. Engine Powerpl. 2022, 39, 16–21.
  • 61.
    Iwasaki, S.; Mizutani, T.; Miyairi, Y.; Yuuki, K.; Makino, M. New Design Concept for Diesel Particulate Filter. SAE Int. J. Engines 2011, 4, 527–536. https://doi.org/10.4271/2011-01-0603.
  • 62.
    Ran, Y.; Huang, T.; Zhang, M.; Jing, S.; Zhu, Y. DPF Soot Loading Estimation Strategy Based on Pressure Difference. IFAC-PapersOnLine 2018, 51, 366–368. https://doi.org/10.1016/j.ifacol.2018.10.075.
  • 63.
    Rose, D.; Boger, T. Different Approaches to Soot Estimation as Key Requirement for DPF Applications; SAE Technical Paper 2009-01-1262; SAE: Warrendale, PA, USA, 2009. https://doi.org/10.4271/2009-01-1262.
  • 64.
    Choi, S.; Lee, K. Detailed Investigation of Soot Deposition and Oxidation Characteristics in a Diesel Particulate Filter Using Optical Visualization; SAE Technical Paper 2013-01-0528; SAE: Warrendale, PA, USA, 2013. https://doi.org/10.4271/2013-01-0528.
  • 65.
    Voutsi, O.; Tsinoglou, D.; Karamitros, D.; Koltsakis, G. Pressure Drop of Particulate Filters and Correlation with the Deposited Soot for Heavy-Duty Engines. Adv. Curr. Pract. Mobil. 2020, 2, 692–701. https://doi.org/10.4271/2019-24-0151.
  • 66.
    Kuki, T.; Miyairi, Y.; Kasai, Y.; Miyazaki, M.; Miwa, S. Study on Reliability of Wall-Flow Type Diesel Particulate Filter; SAE Technical Paper 2004-01-0959; SAE: Warrendale, PA, USA, 2004. https://doi.org/10.4271/2004-01-0959.
  • 67.
    Dimou, I.; Sappok, A.; Wong, V.; Fujii, S.; Sakamoto, H.; Yuuki, K.; Vogt, C.D. Influence of Material Properties and Pore Design Parameters on Non-Catalyzed Diesel Particulate Filter Performance with Ash Accumulation; SAE Technical Paper 2012-01-1728; SAE: Warrendale, PA, USA, 2012. https://doi.org/10.4271/2012-01-1728.
  • 68.
    Huang, T.; Zhu, Y.; Ran, Y.; Zhang, M.; Jing, S. Calibration of a Mass Balance Based Soot Load Estimation Model for Diesel Particulate Filter. IFAC-PapersOnLine 2018, 51, 362–365. https://doi.org/10.1016/j.ifacol.2018.10.074.
  • 69.
    Yu, J.; Xing, B.; Gao, L. Comparative Study on Different Soot Accumulation Modes of DPF. Veh. Engine 2023, 39-43. https://doi.org/10.3969/j.issn.1001-2222.2023.01.007.
  • 70.
    Viswanathan, S.; George, S.; Govindareddy, M.; Heibel, A. Advanced Diesel Particulate Filter Technologies for Next Generation Exhaust Aftertreatment Systems; SAE Technical Paper 2020-01-1434; SAE: Warrendale, PA, USA, 2020. https://doi.org/10.4271/2020-01-1434.
  • 71.
    Liu, Y.; Su, C.; Clerc, J.; Harinath, A.; Rogoski, L. Experimental and Modeling Study of Ash Impact on DPF Backpressure and Regeneration Behaviors. SAE Int. J. Engines 2015, 8, 1313–1321. https://doi.org/10.4271/2015-01-1063.
  • 72.
    Zhang, J. Studies on the Mechanisms of Ash Effects on DPF Performance and Its Related Application Issues. Ph.D. Thesis, Tsinghua University, Beijing, China, 2019. https://doi.org/10.27266/d.cnki.gqhau.2019.000178.
  • 73.
    Cao, S. Research on Diesel Engine Performance Meeting the National Stage VI Emission Regulation; Dalian University of Technology: Dalian, China, 2017.
  • 74.
    Sheng, W.; Jin Lin, M.; Yang, Y.; Zhao, H.; Wang, D. Development Direction and Trend of Emission Control of Off-road Diesel Engines (37–130 kW). Intern. Combust. Engine Parts 2022, 91–93. https://doi.org/10.19475/j.cnki.issn1674-957x.2022.04.029.
  • 75.
    Wang, P. Optimization of Combustion Process for Diesel Engines of Non-Road Machinery. Master’s Thesis, Shandong University, Jinan, China, 2020. https://doi.org/10.27272/d.cnki.gshdu.2020.002191.
  • 76.
    Tan, X.; Wang, T.; Li, Z.; Li, W.; Tian, H.; Sun, K. Key Technology Development for Efficient-Clean- Reliable Heavy-Duty Diesel Engine. Trans. CSICE 2020, 38, 385–391. https://doi.org/10.16236/j.cnki.nrjxb.202005050.
  • 77.
    Guo, J.; Li, F.; Li, J.; Li, J. Development Method of Non-Road CN IV EGR Engine Combustion Test. Mod. Veh. Power 2022, 28–33. https://doi.org/10.3969/j.issn.1671-5446.2022.04.007.
  • 78.
    Hannu, J.; Magdi, K. K. DieselNet Technology Guide, Engine Emission & Efficiency Technologies, Combustion Systems. Available online: https://dieselnet.com/tech/engine_combustion.php (accessed on 1 September 2024).
  • 79.
    Zhang, Z.; Liu, Y.; Wu, B.; Nie, J.; Su, W. Effect of Nozzle Diameter on Combustion and Emissions of a Heavy Duty Diesel Engine. Trans. CSICE 2022, 40, 97–105. https://doi.org/10.16236/j.cnki.nrjxb.202202012.
  • 80.
    Federico, M.; Paolo, F.; Marco, G. Analysis of different exhaust gas recirculation architectures for passenger car Diesel engines. Appl. Energy 2012, 98, 79–91. https://doi.org/10.1016/j.apenergy.2012.02.081.
  • 81.
    Zhang, K.; Guo, X.; Fu, S.; Ding, K.; Li, A. Experiments of cooling EGR temperature influence on emission of diesel engines of vehicles. Trans. CSAE 2009, 25, 127–130.
  • 82.
    Du, X.W. Diesel Engine EGR Cooler Fouling Investigation. Intern. Combust. Engine Parts 2017, 22–25. https://doi.org/10.19475/j.cnki.issn1674-957x.2017.12.012.
  • 83.
    Zhu, R.; Sun, W.; Du, J.; Li, L.; Li, G.; Li, W. Effects of EGR on Combustion and Emission Characteristics for Two-stage Turbocharged High-pressure Common Rail Diesel Engine. Veh. Engine 2014, 73–77+88. https://doi.org/10.3969/j.issn.1001-2222.2014.04.015.
  • 84.
    Guan, W. Experimental Study on Performance Optimization of China Stage IV Diesel Engine Combustion System Based on EGR. Master’s Thesis, Guangxi University, Nanning, China, 2015.
  • 85.
    Feng, H.; Li, J.; Wang, X.; Yu, J. Development and Experimental Verification of CDPF Assisted Passive Regeneration Control Strategy. Veh. Engine 2022, 15–20. https://doi.org/10.3969/j.issn.1001-2222.2022.05.003.
  • 86.
    Miyairi, Y.; Miwa, S.; Abe, F.; Xu, Z.; Nakasuji, Y. Numerical Study on Forced Regeneration of Wall-Flow Diesel Particulate Filters; SAE Technical Paper 2001-01-0912; SAE: Warrendale, PA, USA, 2001. https://doi.org/10.4271/2001-01-0912.
  • 87.
    Ohno, K.; Taoka, N.; Furuta, T.; Kudo, A.; Komori, T. Characterization of High Porosity SiC-DPF; SAE Technical Paper 2002-01-0325; SAE: Warrendale, PA, USA, 2002. https://doi.org/10.4271/2002-01-0325.
  • 88.
    Kurimoto, Y.; Mishina, R.; Kato, K.; Aoki, T.; Honda, T.; Kaneda, A.; Vogt, C.D. Next Generation Diesel Particulate Filter for Future Tighter HDV/NRMM Emission Regulations; SAE Technical Paper 2022-01-0545; SAE: Warrendale, PA, USA, 2022. https://doi.org/10.4271/2022-01-0545.
  • 89.
    Kitagawa, J.; Hijikata, T.; Makino, M. Effects of DPF Volume on Thermal Shock Failures during Regeneration; SAE Technical Paper 890173; SAE: Warrendale, PA, USA, 1989. https://doi.org/10.4271/890173.
  • 90.
    Lee, S.J.; Jeong, S.J.; Kim, W.S. Numerical design of the diesel particulate filter for optimum thermal performances during regeneration, Appl. Energy 2009, 86, 1124–1135. https://doi.org/10.1016/j.apenergy.2008.07.002.
  • 91.
    Fekete, N.; Mandel, R.; Meissner, R.; Sander, H.; Wenninger, G. Method for Determining Mass of Soot Arranged in Particle Filter in Exhaust Gas System of Internal Combustion Engine, Involves Determining Parameter of Particulate Filter Laden with Soot Using Particulate Specific Input Size. Germany DE102008014509A1, 19 February 2009. Available online: https://patents.google.com/patent/DE102008014509A1/en (accessed on 1 September 2024).
  • 92.
    Nakamura, K.; Vlachos, N.; Konstandopoulos, A.; Iwata, H.; Kazushige, O. Performance Improvement of Diesel Particulate Filter by Layer Coating; SAE Technical Paper 2012-01-0842; SAE: Warrendale, PA, USA, 2012. https://doi.org/10.4271/2012-01-0842.
  • 93.
    Ogyu, K.; Yamakawa, T.; Ishii, Y.; MInoura, D.; Nagatsu, Y.; Kasuga, T.; Ohno, K. Soot Loading Estimation Accuracy Improvement by Filtration Layer Forming on DPF and New Algorithm of Pressure Loss Measurement; SAE Technical Paper 2013-01-0525; SAE: Warrendale, PA, USA, 2013. https://doi.org/10.4271/2013-01-0525.
  • 94.
    Obata, S.; Furuta, Y.; Ohashi, T.; Aoki, T. Gasoline Particulate Filter with Membrane Technology to Achieve the Tight PN Requirement; SAE Technical Paper 2023-01-0394; SAE: Warrendale, PA, USA, 2023. https://doi.org/10.4271/2023-01-0394.
  • 95.
    Aravelli, K.; Heibel, A. Improved Lifetime Pressure Drop Management for Robust Cordierite (RC) Filters with Asymmetric Cell Technology (ACT); SAE Technical Paper 2007-01-0920; SAE: Warrendale, PA, USA, 2007. https://doi.org/10.4271/2007-01-0920.
  • 96.
    Konstandopoulos, A.G.; Zarvalis, D.; Kladopoulou, E.; Dolios, I. A Multi-Reactor Assembly for Screening of Diesel Particulate Filters; SAE Technical Paper 2006-01-0874; SAE: Warrendale, PA, USA, 2006. https://doi.org/10.4271/2006-01-0874.
  • 97.
    Nakano, K.; Okano, H.; Inoue, K.; Obuchi, A. Study on the Prevention of Face-Plugging of Diesel Oxidation Catalyst (DOC); SAE Technical Paper 2018-32-0069; SAE: Warrendale, PA, USA, 2018. https://doi.org/10.4271/2018-32-0069.
  • 98.
    Yang, K.; Fox, J.T.; Hunsicker, R. Characterizing Diesel Particulate Filter Failure During Commercial Fleet Use due to Pinholes, Melting, Cracking, and Fouling. Emiss. Control Sci. Technol. 2016, 2, 145–155. https://doi.org/10.1007/s40825-016-0036-0.
  • 99.
    Ragaller, P.; Sappok, A.; Bromberg, L.; Gunasekaran, N.; Warkins, J.; Wilhelm, R. Particulate Filter Soot Load Measurements using Radio Frequency Sensors and Potential for Improved Filter Management; SAE Technical Paper 2016-01-0943; SAE: Warrendale, PA, USA, 2016. https://doi.org/10.4271/2016-01-0943.
  • 100.
    Joshi, A.; Chatterjee, S.; Sawant, A.; Akerlund, C.; Andersson, S.; Blomquist, M.; Brooks, J.; Kattan, S. Development of an Actively Regenerating DPF System for Retrofit Applications; SAE Technical Paper 2006-01-3553; SAE: Warrendale, PA, USA, 2006. https://doi.org/10.4271/2006-01-3553.
  • 101.
    Boger, T.; Rose, D.; Tilgner, I.; Heibel, A. Regeneration Strategies for an Enhanced Thermal Management of Oxide Diesel Particulate Filters. SAE Int. J. Fuels Lubr. 2009, 1, 162–172. https://doi.org/10.4271/2008-01-0328.
  • 102.
    Miao, L.; Chen, C. Experimental Study on Drop-to-Idle During Diesel Particulate Filter Active Regeneration Process. Moden Veh. Power 2020, 25–29. https://doi.org/10.3969/j.issn.1671-5446.2020.04.006.
Share this article:
How to Cite
Zhang, D.; Li, M.; Li, L.; Deng, J.; Li, Y.; Zhou, R.; Ma, L. Failure Analysis and Reliability Optimization Approaches for Particulate Filter of Diesel Engine after-Treatment System. International Journal of Automotive Manufacturing and Materials 2025, 4 (1), 2. https://doi.org/10.53941/ijamm.2025.100002.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.