- 1.
- 2.
- 3.
- 4.
- 5.
Dahham, R.Y.; Wei, H.; Pan, J. Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges. Energies 2022, 15, 6222.
https://doi.org/10.3390/en15176222.
- 6.
China-SAE. Technology Roadmap for Energy Saving and New Energy Vehicles 2.0; China Machine Press: Beijing, China, 2021.
- 7.
China Internal Combustion Engine Industry Association. High-Quality Development Plan for internal Combustion Engine Industry (2021–2035); China Internal Combustion Engine Industry Association: Shanghai, China, 2021.
- 8.
- 9.
Long, W.; Li, B.; Cao, J.; Meng, X.; Tian, J.; Cui, J.; Tian, H. Effects of dual-direct injection parameters on performance of fuel Jet Controlled Compression Ignition mode on a high-speed light duty engine. Fuel 2019, 235, 658–669.
https://doi.org/10.1016/j.fuel.2018.08.043.
- 10.
Suo, G.; Lu, L. Experimental Study on Performance and Emissions of Gasoline-Diesel Dual Fuel Low Temperature Combustion. Trans. Csice 2017, 35, 509–515.
- 11.
Tong, L.; Wang, H.; Zheng, Z.; Reitz, R.; Yao, M. Experimental study of RCCI combustion and load extension in a compression ignition engine fueled with gasoline and PODE. Fuel 2016, 181, 878–886.
https://doi.org/10.1016/j.fuel.2016.05.037.
- 12.
Li, Z.; Li, J.; Huang, G.; Zhang, Y.; He, Z.; Qian, Y.; Lu, X. A methodology for stratified-charge preparation via low-reactivity fuel multi-injection strategy in intelligent charge compression ignition (ICCI) mode. Fuel 2021, 289, 119751.
https://doi.org/10.1016/j.fuel.2020.119751.
- 13.
Ji, L.; Lü, X.; Ma, J.; Huang, C.; Han, D.; Huang, Z. Experimental Study on Influencing Factors of iso-Octane Thermo-atmosphere Combustion in a Dual-Fuel Stratified Charge Compression Ignition (SCCI) Engine. Energ Fuel 2009, 23, 2405–2412.
https://doi.org/10.1021/ef8009537.
- 14.
Liu, H.; Ma, G.; Ma, N.; Zheng, Z.; Huang, H.; Yao, M. Effects of charge concentration and reactivity stratification on combustion and emission characteristics of a PFI-DI dual injection engine under low load condition. Fuel 2018, 231, 26–36.
https://doi.org/10.1016/j.fuel.2018.05.027.
- 15.
Zhang, Y.; Wu, H.; Mi, S.; Zhao, W.; He, Z.; Qian, Y.; Lu, X. Comprehensive optimization of a diesel-E85 engine over the full operating range using the Taguchi method in intelligent charge compression ignition (ICCI) mode. Fuel 2023, 332, 126042.
https://doi.org/10.1016/j.fuel.2022.126042.
- 16.
Liu, S.; Lin, Z.; Zhang, H.; Fan, Q.; Lei, N.; Wang, Z. Experimental study on combustion and emission characteristics of ethanol-gasoline blends in a high compression ratio SI engine. Energy 2023, 274, 127398.
https://doi.org/10.1016/j.energy.2023.127398.
- 17.
Splitter, D.; Wissink, M.; DelVescovo, D.; Reitz, R.D. RCCI Engine Operation Towards 60% Thermal Efficiency; SAE: Warrendale, PA, USA, 2013.
- 18.
Peng, Q.; Rockstroh, T.; Hall, C. The impact of fuel and injection strategy on combustion characteristics, emissions and efficiency in gasoline compression ignition operation. Fuel 2022, 318, 123548.
https://doi.org/10.1016/j.fuel.2022.123548.
- 19.
Ding, B.; Wang, Y.; Bai, Y.; Xie, M.; Chen, J. Effects of PODE substitution rate and fuel injection timing on combustion, emission characteristic and energy balance in PODE-gasoline dual direct-injection engine. Energy 2024, 294, 130840.
https://doi.org/10.1016/j.energy.2024.130840.
- 20.
Xu, G.; Duan, H.; Cai, Y.; Li, Y.; Jia, M. Potential of the reverse-reactivity controlled compression ignition (R-RCCI) combustion for maintaining ultra-low emissions and enhanced thermal efficiency. Energy 2023, 280, 128249.
https://doi.org/10.1016/j.energy.2023.128249.
- 21.
Duan, H.; Jia, M.; Li, Y.; Wang, T. A comparative study on the performance of partially premixed combustion (PPC), reactivity-controlled compression ignition (RCCI), and RCCI with reverse reactivity stratification (R-RCCI) fueled with gasoline and polyoxymethylene dimethyl ethers (PODEn). Fuel 2021, 298, 120838.
https://doi.org/10.1016/j.fuel.2021.120838.
- 22.
Wang, H.; Tong, L.; Zheng, Z.; Yao, M. Experimental Study on High-Load Extension of Gasoline/PODE Dual-Fuel RCCI Operation Using Late Intake Valve Closing. SAE Int. J. Engines 2017, 10, 1482–1490.
https://doi.org/10.4271/2017-01-0754.
- 23.
Wang, H.; Zhong, X.; Mi, S.; Yao, M. Numerical investigation on the combustion characteristics of PODE3 gasoline RCCI and high load extension. Fuel 2020, 263, 116366.
https://doi.org/10.1016/j.fuel.2019.116366.
- 24.
- 25.
Xu, Y.; Zhang, Y.; Gong, J.; Su, S.; Wei, Z. Combustion behaviours and emission characteristics of a retrofitted NG/gasoline duel-fuel SI engine with various proportions of NG-gasoline blends. Fuel 2020, 266, 116957.
https://doi.org/10.1016/j.fuel.2019.116957.
- 26.
Zhang, H.; Sun, W.; Guo, L.; Yan, Y.; Li, J.; Lin, S.; Wang, Q.; Sun, Y. An experimental study of using coal to liquid (CTL) and diesel as pilot fuels for gasoline dual-fuel combustion. Fuel 2021, 289, 119962.
https://doi.org/10.1016/j.fuel.2020.119962.
- 27.
Daw, C.S.; Graves, R.L.; Caton, J.A.; Wagner, R.M. Summary Report on the Transportation Combustion Engine Efficiency Colloquium Held at USCAR, March 3 and 4, 2010; Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA, 2010.
- 28.
Yu, H.; Su, W. Numerical study on the approach for super-high thermal efficiency in a gasoline homogeneous charge compression ignition lean-burn engine. Int. J. Engine Res. 2019, 22, 1329–1341.
https://doi.org/10.1177/1468087419889248.
- 29.
- 30.
Hirose, I. Our Way Toward the Ideal Internal Combustion Engine for Sustainable Future. In Proceedings of the 28th Aachen Colloquium Automobile and Engine Technology, Aachen, Germany, 7–9 October 2019.
- 31.
Zhao, D.; An, Y.; Hu, J.; Pei, Y.; Sun, J.; Zhang, Z. Study of turbulent jet ignition based on synergy of airflow to achieve 53% indicated thermal efficiency for hybrid ultra-lean burning engines. In Powertrain Systems for a Sustainable Future; CRC Press: Boca Raton, FL, USA, 2023; pp. 139–149.
- 32.
Addepalli, S.K.; Pamminger, M.; Scarcelli, R.; Wallner, T. Modeling the impact of the fuel injection strategy on the combustion and performance characteristics of a heavy-duty GCI engine. Int. J. Engine Res. 2023, 25, 24–46.
https://doi.org/10.1177/14680874231206650.
- 33.
Hu, K.; Chao, Y.; Hu, Y.; Ma, J.; Cheng, H.; Wei, H.; Li, S. Experimental Study of the Prechamber of High Thermal Efficiency Lean Burn Engine. Chin. Intern. Combust. Engine Eng. 2023, 44, 84–89.
- 34.
Zhao, D.; Pei, Y.; An, Y.; Hu, J.; Zhang, Z.; Sun, J.; Gao, D. Evaluation of the turbulent hot jet flame characteristics for achieving high thermal efficiency of hybrid engine. Appl. Therm. Eng. 2024, 236, 121611.
https://doi.org/10.1016/j.applthermaleng.2023.121611.
- 35.
Wang, B.; Xie, F.; Hong, W.; Du, J.; Chen, H.; Li, X. Extending ultra-lean burn performance of high compression ratio pre-chamber jet ignition engines based on injection strategy and optimized structure. Energy 2023, 282, 128433.
https://doi.org/10.1016/j.energy.2023.128433.
- 36.
Li, Z.; Xia, J.; Jiang, C.; He, Z.; Qian, Y.; Zhu, L.; Lu, X. Experimental study on wide load operation of gasoline compression ignition engine: Real distillate gasoline versus primary reference fuel. Fuel 2020, 277, 118211.
https://doi.org/10.1016/j.fuel.2020.118211.
- 37.
Zhao, Z.; Qi, Y.; Wang, Z. Thermal efficiency optimization of a single cylinder gasoline engine based on active jet ignition. Int. J. Engine Res. 2023, 25, 835–849.
https://doi.org/10.1177/14680874231208346.
- 38.
- 39.
Chen, H.; Qi, H.; Jiang, X.; Du, J.; Ye, L.; Zhang, Z. Effect of Pre-Chamber Structure Parameters on Lean-Burn Characteristics for a Gasoline Engine. Trans. Csice 2024, 42, 106–113.
- 40.
Du, J.; Qi, H.; Chen, H.; Li, Y.; Zhan, W.; Jiang, X.; Wu, W.; Zhang, Z. Pre-Chamber Combustion System Development for an Ultra-Lean Gasoline Engine; SAE Technical Paper; SAE: Warrendale, PA, USA, 2024.
- 41.
Qian, Y.; Wu, H.; Mi, S.; Zhao, W.; Zhou, D.; Lu, X. High-efficiency combustion of gasoline compression ignition (GCI) mode with medium-pressure injection of low-octane gasoline under wide engine load conditions. Appl. Energy Combust. Sci. 2023, 15, 100179.
https://doi.org/10.1016/j.jaecs.2023.100179.
- 42.
Peethambaram, M.R.; Zhou, Q.; Waters, B.; Pendlebury, K.; Fu, H.; Haines, A.; Hale, D.; Hu, T.; Zhang, J.; Wu, X.; et al. Combustion Analysis of Active Pre-Chamber Design for Ultra-Lean. Engine Operation. SAE Int. J. Engines 2024, 17, 705–720.
https://doi.org/10.4271/03-17-05-0040.
- 43.
Wang, Z.; Zhang, H.; Hu, K.; Li, L.; Wei, H.; Li, S.; Wang, R. Experimental Research on the Effect of Ultra-lean Combustion on the Gasoline Engine Performance. Small Intern. Combust. Engine Veh. Tech. 2021, 50, 9–12.
- 44.
Yu, L.; Li, Y.; Li, B.; Liu, H.; Wang, Z.; He, X.; Shuai, S. Comparative Study on Gasoline HCCI and DICI Combustion in High Load Range with High Compression Ratio for Passenger Cars Application. SAE Int. J. Fuels Lubr. 2017, 10, 710–717.
https://doi.org/10.4271/2017-01-2257.
- 45.
Wu, H.; Mi, S.; Qian, Y.; Zhang, Y.; Zhao, W.; Lu, X. Investigation of injection parameters coupled with fuel reactivity on combustion and emissions in dual direct-injection GCI engine. Int. J. Engine Res. 2024, 25, 1281–1298.
https://doi.org/10.1177/14680874241229489.
- 46.
Cai, W.; Xu, H.; Ma, S.; Wang, Y. Experiment on a Homogeneous Lean Burn Gasoline Engine with High-Energy Ignition. Trans. Csice 2020, 38, 298–303.
- 47.
Sellnau, M.; Foster, M.; Moore, W.; Sinnamon, J.; Hoyer, K.; Klemm, W. Second Generation GDCI Multi-Cylinder Engine for High Fuel Efficiency and US Tier 3 Emissions. SAE Int. J. Engines 2016, 9, 1002–1020.
- 48.
Wu, H.; Zhang, Y.; Mi, S.; Zhao, W.; He, Z.; Qian, Y.; Lu, X. A methodology for regulating fuel stratification and improving fuel economy of GCI mode via double main-injection strategy. Front. Energy 2023, 17, 678–691.
https://doi.org/10.1007/s11708-022-0859-z.
- 49.
Meng, S.; Wu, Z.; Han, Z.; Wang, Y.; Lyu, M.; Kong, D. Modeling Analysis of Thermal Efficiency Improvement up to 45% of a Turbocharged Gasoline Engine; SAE Technical Paper; SAE: Warrendale, PA, USA, 2022.
- 50.
Gainey, B.; Gandolfo, J.; Yan, Z.; Vedpathak, K.; Kumar, R.; Jordan, E.H.; Sellnau, M.; Filipi, Z.; Lawler, B. A two-material thermal barrier coating spatially tailored for high-efficiency GCI combustion. Int. J. Engine Res. 2023, 25, 156–169.
https://doi.org/10.1177/14680874231194386.
- 51.
Zhang, Z.; Zheng, Z. Numerical simulation of the effects of the EGR ratio and ignition timing on a supercharged and high compression ratio hybrid gasoline engine. Fuel 2023, 341, 127695.
https://doi.org/10.1016/j.fuel.2023.127695.
- 52.
Yan, Z.; Levi, A.; Zhang, Y.; Sellnau, M.; Filipi, Z.; Lawler, B. A numerical evaluation and guideline for thermal barrier coatings on gasoline compression ignition engines. Int. J. Engine Res. 2023, 24, 2206–2222.
https://doi.org/10.1177/14680874221114534.
- 53.
Pei, Y.; Zhang, Q.; Peng, Z.; An, Y.; Shi, H.; Qin, J.; Zhang, B.; Zhang, Z.; Gao, D. Thermal efficiency improvement of lean burn high compression ratio engine coupled with water direct injection. Energy Convers. Manag. 2022, 251, 114969.
https://doi.org/10.1016/j.enconman.2021.114969.
- 54.
Serrano, D.; Zaccardi, J.-M.; Müller, C.; Libert, C.; Habermann, K. Ultra-Lean Pre-Chamber Gasoline Engine for Future Hybrid Powertrains. SAE Int. J. Adv. Curr. Pract. Mobil. 2019, 2, 607–622.
https://doi.org/10.4271/2019-24-0104.
- 55.
Jiang, C.; Li, Z.; Liu, G.; Qian, Y.; Lu, X. Achieving high efficient gasoline compression ignition (GCI) combustion through the cooperative-control of fuel octane number and air intake conditions. Fuel 2019, 242, 23–34.
https://doi.org/10.1016/j.fuel.2019.01.032.
- 56.
Vedula, R.T.; Song, R.; Stuecken, T.; Zhu, G.G.; Schock, H. Thermal efficiency of a dual-mode turbulent jet ignition engine under lean and near-stoichiometric operation. Int. J. Engine Res. 2017, 18, 1055–1066.
https://doi.org/10.1177/1468087417699979.
- 57.
Zhang, L.; Wang, H.; Zhong, X.; Han, X.; Wang, M.; Zheng, Z.; Yao, M. Study on the influence mechanism of mixture stratification on GCI combustion and the compound injection strategy under high load operation. Energy Sci. Eng. 2021, 9, 2434–2448.
https://doi.org/10.1002/ese3.997.
- 58.
Li, Z.; Qin, J.; Pei, Y.; Zhong, K.; Zhang, Z.; Sun, J. The Lean-Burn Limit Extending Experiment on Gasoline Engine with Dual Injection Strategy and High Power Ignition System. Energies 2023, 16, 5662.
https://doi.org/10.3390/en16155662.
- 59.
Yuan, S.; Wei, H.; Zhang, Y.; Liu, X.; Ma, X.; Ding, J.; Hu, K.; Lū, X.; Ma, J.; Zhao, F. Geely's Lean-burn Gasoline Engine with Brake Thermal Efficiency of 46%. In Lecture Notes in Electrical Engineering; Springer Nature: Singapore, 2024; pp. 1079–1098.
- 60.
Dec, J.E.; Lopez Pintor, D.; Vijayagopal, R. Practical low-temperature gasoline combustion for very high efficiency off-road, medium- and heavy-duty engines. Int. J. Engine Res. 2024, 25, 1691–1707.
https://doi.org/10.1177/14680874241244550.
- 61.
Cung, K.; Moiz, A.A.; Smith, E.M.; Bitsis, D.C.; Michlberger, A.; Briggs, T.; Miwa, J. Gasoline compression ignition (GCI) combustion of pump-grade gasoline fuel under high compression ratio diesel engine. Transp. Eng. 2021, 4, 100066.
https://doi.org/10.1016/j.treng.2021.100066.
- 62.
Zheng, Z.; Huang, Z.; Wang, T.; Wang, L.; Chen, H.; Chen, W. Influence of Heat Transfer of Combustion Chamber Wall on the Performance of Gasoline Engine Based on Polishing Technology under Different Compression Ratio and Air-Fuel Ratio. Int. J. Automot. Technol. 2022, 23, 1055–1063.
https://doi.org/10.1007/s12239-022-0092-0.
- 63.
Ikeya, K.; Takazawa, M.; Yamada, T.; Park, S.; Tagishi, R. Thermal Efficiency Enhancement of a Gasoline Engine. SAE Int. J. Engines 2015, 8, 1579–1586.
- 64.
- 65.
Lago Sari, R.; Zhang, Y.; Merritt, B.; Kumar, P.; Shah, A. Combining Gasoline Compression Ignition and Powertrain Hybridization for Long-Haul Applications. Energies 2024, 17, 1099.
https://doi.org/10.3390/en17051099.
- 66.
Li, Y.; Wu, W.; Li, Y.; Chen, H.; Zhang, Z.; Du, J. Study on Lean Combustion Characteristics of Gasoline Direct Injection Engines with Jet Ignition and Intake Water Injection Technologies. Chin. Intern. Combust. Engine Eng. 2024, 45, 8–17.
- 67.
Liu, S.; Lin, Z.; Qi, Y.; Lu, G.; Wang, B.; Liu, Y.; Wang, Z. Simulation Investigation of Turbulent Jet Ignition (TJI) Combustion in a Dedicated Hybrid Engine under Stoichiometric Condition; SAE Technical Papers; SAE: Warrendale, PA, USA, 2024.
- 68.
Bunce, M.; Peters, N.; Pothuraju Subramanyam, S.K.; Blaxill, H.; Gao, J.; Choi, E. The Impact of Advanced Fuels and Lubricants on Thermal Efficiency in a Highly Dilute Engine. SAE Int. J. Adv. Curr. Pract. Mobil. 2021, 3, 2540–2553.
https://doi.org/10.4271/2021-01-0462.
- 69.
Sellnau, M.; Foster, M.; Moore, W.; Sinnamon, J.; Hoyer, K.; Klemm, W. Pathway to 50% Brake Thermal Efficiency Using Gasoline Direct Injection Compression Ignition. SAE Int. J. Adv. Curr. Pract. Mobil. 2019, 1, 1581–1603.
https://doi.org/10.4271/2019-01-1154.
- 70.
Li, Y.; Zhang, S.; Wang, H.; Chen, Y.; Li, B.; Yao, M. Experimental Investigations on Optimization Control Strategies of Gasoline Compression Ignition Combustion with High Compression Ratio at Low Loads. Chin. Intern. Combust. Engine Eng. 2023, 44, 33.
- 71.
Ye, T.; Wang, L.; Cao, Y. Experimental Study on Effect of Intake Port Water Injection on Engine Combustion Performance. Mech. Sci. Technol. Aerosp. Eng. 2024, 43, 45–53.
- 72.
Lee, B.; Oh, H.; Han, S.; Woo, S.; Son, J. Development of High Efficiency Gasoline Engine with Thermal Efficiency over 42%; SAE: Warrendale, PA, USA, 2017.
- 73.
Mao, B.; Wang, Q.; Liu, J.; Liu, H.; Zheng, Z.; Yao, M. Effects of gasoline viscosity and injection pressure on the performance and emissions of a multi-cylinder partially premixed combustion engine. In Proceedings of the 9th International Conference on Modeling and Diagnostics for Advanved Engine Systems (COMODIA 2017), Okayama, Japan, 25–28 July 2017.
- 74.
Osborne, R.; Lane, A.; Turner, N.; Geddes, J.; Atkins, P.; Pohorelsky, L.; Gidney, J.; Cleeton, J. A New Generation Lean Gasoline Engine for Premium Vehicle CO2 Reduction; SAE Technical Papers; SAE: Warrendale, PA, USA, 2021.
- 75.
Zhang, Q.; Pei, Y.; An, Y.; Peng, Z.; Qin, J.; Shi, H.; Zhang, B.; Zhang, Z.; Gao, D. Study of water direct injection on knock control and combustion process of a high compression ratio GDI engine. Fuel 2021, 306, 121631.
https://doi.org/10.1016/j.fuel.2021.121631.
- 76.
Sok, R.; Kusaka, J. Experimental Investigation of Direct Fuel Injection Into Low-Oxygen Recompression Interval in a Homogenous Charge Compression Ignition Engine. J. Energy Resour. Technol.-Trans. Asme 2022, 144, 012301.
https://doi.org/10.1115/1.4052470.
- 77.
hakariya, M.; Toda, T.; Sakai, M. The New Toyota Inline 4-Cylinder 2.5 L Gasoline Engine; SAE Technical Papers; SAE: Warrendale, PA, USA, 2017.
- 78.
Yang, H.; Zhang, L.; Liu, J.; Fu, J.; Shen, D.; Yuan, Z. Development and Validation of a Variable Displacement Variable Compression Ratio Miller Cycle Technology on an Automotive Gasoline Engine. Energies 2023, 16, 4480.
https://doi.org/10.3390/en16114480.
- 79.
Zhu, D. SI/HCCI Ion Current Characteristics and Combustion Diagnosis and Control Based on Ion Current/Cylinder Pressure Synergy for High Compression Ratio Gasoline Engine; Tongji University: Shanghai, China, 2021.
- 80.
Chao, Y. SI/HCCI Combustion Optimization and Incycle Closed Loop Control for High Compression Ratio Gasoline Engine; Tongji University: Shanghai, China, 2019.
- 81.
Wang, J. Research on Lean Limit Expansion of Gasoline Engine Based on Pre-Chamber Ignition; Tongji University: Shanghai, China, 2022.
- 82.
- 83.
Lv, Y.; Feng, S.; Luo, J.; Liu, Q.; Li, L.; Kang, Z. Effect of key structure parameters of passive pre-chamber on in-cylinder combustion processes and emissions within a gasoline engine. Case Stud. Therm. Eng. 2024, 59, 104467.
https://doi.org/10.1016/j.csite.2024.104467.
- 84.
Niizato, T. Honda Powertrain Strategy and ICE Technology for the Future. In Proceedings of the in SAE 2018 High Efficiency IC Engine Symposium, Detroit, MI, USA, 8–9 April 2018.
- 85.
Reader, G.T.; Asad, U.; Zheng, M. Energy efficiency trade-off with phasing of HCCI combustion. Int. J. Energy Res. 2013, 37, 200–210.
https://doi.org/10.1002/er.1900.
- 86.
Xu, J.; Zhou, Z.; Jiang, L.; Zhou, H.; Zhang, C. Influence of Inlet Water Injection on Energy Conservation and Emission of Gasoline Engine. Int. J. Automot. Technol. 2023, 24, 935–943.
https://doi.org/10.1007/s12239-023-0076-8.
- 87.
Caton, J.A. Quantification of Efficiency Gains for Dilute IC Engines due to Increases of the Ratio of Specific Heats. In Proceedings of the ASME 2014 Internal Combustion Engine Division Fall Technical Conference, Columbus, IN, USA, 19–22 October 2014.
- 88.
Qian, Y.; Mi, S.; Wu, H.; Zhang, Y.; Li, Z.; Lu, X. Towards high efficiency of intelligent charge compression ignition (ICCI) engine by optimizing the high-reactivity fuel injection strategies under medium-high loads. Fuel 2023, 335, 127037.
https://doi.org/10.1016/j.fuel.2022.127037.
- 89.
Qian, Y.; Zhang, Y.; Mi, S.; Wu, H.; Li, Z.; Lu, X. Efficient and clean combustion of intelligent charge compression ignition (ICCI) engine at low load conditions. Fuel 2023, 332, 126002.
https://doi.org/10.1016/j.fuel.2022.126002.
- 90.
Bakhshi, M.; Pritanshu, R.; Shukla, A. Numerical investigation on effect of spark plug configuration on performance in an engine cylinder. FME Trans. 2023, 51, 585–594.
https://doi.org/10.5937/fme2304585m.
- 91.
- 92.
Han, X.; Yu, S.; Tjong, J.; Zheng, M. Study of an innovative three-pole igniter to improve efficiency and stability of gasoline combustion under charge dilution conditions. Appl. Energy 2020, 257, 113999.
https://doi.org/10.1016/j.apenergy.2019.113999.
- 93.
Toulson, E.; Schock, H.J.; Attard, W.P. A Review of Pre-Chamber Initiated jet ignition Combustion Systems; SAE Technical Papers; SAE: Warrendale, PA, USA, 2010.
- 94.
- 95.
Pavel, N.; Bärwinkel, M.; Heinz, P.; Brüggemann, D.; Dearden, G.; Croitoru, G.; Grigore, O.V. Laser ignition—Spark plug development and application in reciprocating engines. Prog. Quantum Electron. 2018, 58, 1–32.
https://doi.org/10.1016/j.pquantelec.2018.04.001.
- 96.
Ricci, F.; Martinelli, R.; Dal Re, M.; Grimaldi, C.N. Comparative analysis of thermal and non-thermal discharge modes on ultra-lean mixtures in an optically accessible engine equipped with a corona ignition system. Combust. Flame 2024, 259, 113123.
https://doi.org/10.1016/j.combustflame.2023.113123.
- 97.
Suess, M.; Guenthner, M.; Schenk, M.; Rottengruber, H.S. Investigation of the potential of corona ignition to control gasoline homogeneous charge compression ignition combustion. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2011, 226, 275–286.
https://doi.org/10.1177/0954407011416905.
- 98.
DeFilippo, A.C. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2013.
- 99.
Hwang, J.; Kim, W.; Bae, C.; Choe, W.; Cha, J.; Woo, S. Application of a novel microwave-assisted plasma ignition system in a direct injection gasoline engine. Appl. Energy 2017, 205, 562–576.
https://doi.org/10.1016/j.apenergy.2017.07.129.
- 100.
Shiraishi, T.; Urushihara, T.; Gundersen, M. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition. J. Phys. D Appl. Phys. 2009, 42, 135208.
https://doi.org/10.1088/0022-3727/42/13/135208.
- 101.
Balmelli, M.; Farber, R.; Merotto, L.; Soltic, P.; Bleiner, D.; Franck, C.M.; Biela, J. Experimental Analysis of Breakdown With Nanosecond Pulses for Spark-Ignition Engines. IEEE Access 2021, 9, 100050–100062.
https://doi.org/10.1109/ACCESS.2021.3095664.
- 102.
Huang, Z.; Wang, L.; Wang, T.; Shen, K. Effects of Dilution Combustion and Miller Cycle on the Performance of Gasoline Engine. Int. J. Automot. Technol. 2022, 23, 511–519.
https://doi.org/10.1007/s12239-022-0047-5.
- 103.
Uchida, N. A review of thermal barrier coatings for improvement in thermal efficiency of both gasoline and diesel reciprocating engines. Int. J. Engine Res. 2020, 23, 3–19.
https://doi.org/10.1177/1468087420978016.
- 104.
Wang, C.; Jin, S.; Deng, J.; Ding, W.; Tang, Y.; Li, L. Future High-Efficiency and Zero-Emission Argon Power Cycle Engines: A Review. Int. J. Automot. Manuf. Mater. 2023, 2, 2.
https://doi.org/10.53941/ijamm.2023.100002.
- 105.
Wang, C.; Jin, S.; Deng, J.; Li, L. An Innovative Argon/Miller Power Cycle for Internal Combustion Engine: Thermodynamic Analysis of its Efficiency and Power Density. Automot. Innov. 2023, 6, 76–88.
https://doi.org/10.1007/s42154-022-00208-x.
- 106.
- 107.
Wong, V.W.; Tung, S.C. Overview of automotive engine friction and reduction trends–Effects of surface, material, and lubricant-additive technologies. Friction 2016, 4, 1–28.
https://doi.org/10.1007/s40544-016-0107-9.
- 108.
- 109.
- 110.
Hasan, A.O.; Al-Rawashdeh, H.; Ala′a, H.; Abu-jrai, A.; Ahmad, R.; Zeaiter, J. Impact of changing combustion chamber geometry on emissions, and combustion characteristics of a single cylinder SI (spark ignition) engine fueled with ethanol/gasoline blends. Fuel 2018, 231, 197–203.
https://doi.org/10.1016/j.fuel.2018.05.045.
- 111.
- 112.
Wang, J.; Shi, J.; Deng, J.; Miao, X.; Liu, Y.; Pan, S.; Li, L. Misfire and knock detection based on the ion current inside a passive pre-chamber of gasoline engine. Fuel 2021, 311, 122528.
https://doi.org/10.1016/j.fuel.2021.122528.