2504000130
  • Open Access
  • Article
Flash-Boiling Spray Dynamics: Ethanol and Gasoline Compared Through X-ray and Schlieren Diagnostics
  • Weidi Huang,   
  • Hongliang Luo *

Received: 22 Mar 2025 | Revised: 02 Apr 2025 | Accepted: 07 Apr 2025 | Published: 09 Apr 2025

Abstract

Flash-boiling sprays in gasoline direct injection (GDI) engines play a pivotal role in achieving efficient fuel-air mixing, yet their dynamics under superheated conditions remain poorly understood, particularly for multi-component fuels. This study bridges this gap by employing advanced X-ray phase-contrast imaging (XPCI) and schlieren techniques to investigate ethanol and gasoline sprays, offering unprecedented insights into near-nozzle and downstream behaviors. The work reveals that ethanol’s distinct single-component properties trigger unambiguous flash-boiling phenomena (e.g., plume merging, upward curling), while gasoline’s complex composition suppresses homogeneous phase change, challenging conventional flash-boiling frameworks. XPCI captures persistent liquid cores near the nozzle exit under superheating—a critical yet overlooked feature—highlighting the interplay between inertial forces and vaporization kinetics. The study further demonstrates how flash boiling redistributes spray momentum, enhancing radial dispersion while reducing axial penetration, with implications for mitigating tip wetting and wall impingement. By correlating droplet size, velocity profiles, and phase-change dynamics, this research not only advances and refines the fundamental understanding of flash-boiling atomization but also provides actionable insights for optimizing combustion efficiency and reducing emissions in next-generation GDI engines.

References 

  • 1.
    Li, X.; Wang, S.; Yang, S.; Qiu, S.; Sun, Z.; Hung, D.L.; Xu, M. A review on the recent advances of flash boiling atomization and combustion applications. Prog. Energy Combust. Sci. 2024, 100, 101119. https://doi.org/10.1016/j.pecs.2023.101119.
  • 2.
    Xu, M. Combustion Improved by Using Flash Boiling Sprays in an Ethanol-Gasoline Optical Engine under Cold Operating Conditions. Energy Fuels 2021, 35, 10134–10145. https://doi.org/10.1021/acs.energyfuels.1c00739.
  • 3.
    Wu, S.; Yang, S.; Wooldridge, M.; Xu, M. Experimental study of the spray collapse process of multi-hole gasoline fuel injection at flash boiling conditions. Fuel 2019, 242, 109–123. https://doi.org/10.1016/j.fuel.2019.01.027.
  • 4.
    Miao, X.; Xu, B.; Deng, J.; Li, L. Key Technologies to 50% Brake Thermal Efficiency for Gasoline Engine of Passenger Car. Int. J. Automot. Manuf. Mater. 2025, 4, 1. https://doi.org/10.53941/ijamm.2025.100001.
  • 5.
    Li, J.; Li, L.; Xiao, R.; Liang, Y.; Qiu, S.; Li, X. Macroscopic and Microscopic Characteristics of a GDI Spray Under Various Thermodynamic Conditions. Int. J. Automot. Manuf. Mater. 2023, 2, 1. https://doi.org/10.53941/ijamm.2023.100007.
  • 6.
    Zeng, W.; Xu, M.; Zhang, M.; Zhang, Y.; Cleary, D.J. Macroscopic characteristics for direct-injection multi-hole sprays using dimensionless analysis. Exp. Therm. Fluid. Sci. 2012, 40, 81–92. https://doi.org/10.1016/j.expthermflusci.2012.02.003.
  • 7.
    Zeng, W.; Xu, M.; Zhang, Y.; Wang, Z. Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/MIE techniques. Proc. Combust. Inst. 2013, 34, 1677–1685. https://doi.org/10.1016/j.proci.2012.07.061.
  • 8.
    Wu, S.; Gandhi, A.; Li, H.; Meinhart, M. Experimental and numerical study of the effects of nozzle taper angle on spray characteristics of GDI multi-hole injectors at cold condition. Fuel 2020, 275, 117888. https://doi.org/10.1016/j.fuel.2020.117888.
  • 9.
    Wu, S.; Xu, M.; Hung, D.L.S.; Pan, H. In-nozzle flow investigation of flash boiling fuel sprays. Appl. Therm. Eng. 2017, 117, 644–651. https://doi.org/10.1016/j.applthermaleng.2016.12.105.
  • 10.
    Huang, W.; Gong, H.; Moon, S.; Wang, J.; Murayama, K.; Taniguchi, H.; Arima, T.; Arioka, A.; Sasaki, Y. Nozzle Tip Wetting in GDI Injector at Flash-boiling Conditions. Int. J. Heat. Mass. Transf. 2021, 169, 120935. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120935.
  • 11.
    Xiao, D.; Qiu, S.; Zhang, X.; Zhang, Y.; Li, X.; Hung, D.; Xu, M. Dynamic behavior and mechanism analysis of tip wetting process under flash boiling conditions. Fuel 2022, 307, 121773. https://doi.org/10.1016/j.fuel.2021.121773.
  • 12.
    Chang, M.; Lee, Z.; Park, S.S.; Park, S.S. Characteristics of flash boiling and its effects on spray behavior in gasoline direct injection injectors: A review. Fuel 2020, 271, 117600. https://doi.org/10.1016/j.fuel.2020.117600.
  • 13.
    Dong, X.; Yang, J.; Hung, D.L.S.; Li, X.; Xu, M. Effects of flash boiling injection on in-cylinder spray, mixing and combustion of a spark-ignition direct-injection engine. Proc. Combust. Inst. 2019, 37, 4921–4928. https://doi.org/10.1016/j.proci.2018.09.014.
  • 14.
    Devassy, B.M.; Zhang, Y.; Zhang, E.; Zhou, L. Complete Workflow of Internal Nozzle Flow and Engine Simulation Using Multi-Component Fuel at Flash Boiling Conditions. Int. J. Automot. Manuf. Mater. 2023, 2, 2. https://doi.org/10.53941/ijamm.2023.100008.
  • 15.
    Loureiro, D.D.; Reutzsch, J.; Kronenburg, A.; Weigand, B.; Vogiatzaki, K. Primary breakup regimes for cryogenic flash atomization. Int. J. Multiph. Flow 2020, 132, 103405. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103405.
  • 16.
    Loureiro, D.D.; Kronenburg, A.; Reutzsch, J.; Weigand, B.; Vogiatzaki, K. Droplet size distributions in cryogenic flash atomization. Int. J. Multiph. Flow 2021, 142, 103705. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103705.
  • 17.
    Oza, R.D. On the Mechanism of Flashing Injection of Initially Subcooled Fuels. J. Fluids Eng. 1984, 106, 105–109. https://doi.org/10.1115/1.3242383.
  • 18.
    Bar-Kohany, T.; Levy, M. State of the art review of flash-boiling atomization. At. Sprays 2016, 26, 1259–1305. https://doi.org/10.1615/AtomizSpr.2016015626.
  • 19.
    Duke, D.; Swantek, A.; Kastengren, A.; Fezzaa, K.; Powell, C. Recent Developments in X-ray Diagnostics for Cavitation. SAE Int. J. Fuels Lubr. 2015, 8, 135–146. https://doi.org/10.4271/2015-01-0918.
  • 20.
    Kastengren, A.; Powell, C.F.; Liu, Z.; Wang, J. Time Resolved, Three Dimensional Mass Distribution of Diesel Sprays Measured with X-ray Radiography; SAE Technical Papers; SAE: Warrendale, PA, USA, 2009. https://doi.org/10.4271/2009-01-0840.
  • 21.
    Huang, W.; Pratama, R.H.; Oguma, M.; Kinoshita, K.; Takeda, Y.; Suzuki, S. Spray dynamics of synthetic dimethyl carbonate and its blends with gasoline. Fuel 2023, 341, 127696. https://doi.org/10.1016/j.fuel.2023.127696.
  • 22.
    Wang, X.; Pan, J.; Wu, J.; Liu, Z. Surface tension of dimethoxymethane and methyl tert-butyl ether. J. Chem. Eng. Data 2006, 51, 1394–1397. https://doi.org/10.1021/je060097q.
  • 23.
    Ramos-Estrada, M.; Iglesias-Silva, G.A.; Hall, K.R. Experimental measurements and prediction of liquid densities for n-alkane mixtures. J. Chem. Thermodyn. 2006, 38, 337–347. https://doi.org/10.1016/j.jct.2005.05.020.
  • 24.
    Schifter, I.; González, U.; González-Macías, C. Effects of ethanol, ethyl-tert-butyl ether and dimethyl-carbonate blends with gasoline on SI engine. Fuel 2016, 183, 253–261. https://doi.org/10.1016/j.fuel.2016.06.051.
  • 25.
    Huang, W.; Oguma, M.; Kinoshita, K.; Abe, Y.; Tanaka, K. Investigating Spray Characteristics of Synthetic Fuels: Comparative Analysis with Gasoline. Int. J. Automot. Manuf. Mater. 2024, 3, 2. https://doi.org/10.53941/ijamm.2024.100008
  • 26.
    Wu, P.; Xuan, T.; He, Z.; Shao, Z.; Wang, Q.; Payri, R. A comparative study on combustion characteristics of PPC and RCCI combustion modes in an optical engine with renewable fuels. Fuel 2025, 381, 133361. https://doi.org/10.1016/j.fuel.2024.133361.
  • 27.
    Chang, F.; Luo, H.; Zhai, C.; Jin, Y.; Xiong, P.; Wang, J.; Song, B.; Zhang, J.; Nishida, K. Experimental investigation of fuel adhesion from wall-impinging spray with various injection mass ratios. Exp. Therm. Fluid. Sci. 2025, 163, 111403. https://doi.org/10.1016/j.expthermflusci.2024.111403.
  • 28.
    Properties of Ethanol at NIST. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C64175&Mask=4 (accessed on 13 March 2024).
  • 29.
    Leick, P.; Bork, B.; Geiler, J.N. Experimental characterization of tip wetting in gasoline DI injectors. In Proceedings of the ICLASS 2018—14th International Conference on Liquid Atomization and Spray Systems, Chicago, IL, USA, 22–26 July 2018.
  • 30.
    Nobach, H.; Honkanen, M. Two-dimensional Gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry. Exp. Fluids 2005, 38, 511–515. https://doi.org/10.1007/s00348-005-0942-3.
  • 31.
    Huang, W.; Moon, S.; Ohsawa, K. Near-nozzle dynamics of diesel spray under varied needle lifts and its prediction using analytical model. Fuel 2016, 180, 292–300. https://doi.org/10.1016/j.fuel.2016.04.042.
  • 32.
    Gao, Y.; Huang, W.; Pratama, R.H. Influence of hydraulic flip on spray uniformity and dynamics in Gasoline Direct Injection nozzles. Int. J. Heat. Mass. Transf. 2025, 242, 126848. https://doi.org/10.1016/j.ijheatmasstransfer.2025.126848.
  • 33.
    Gao, Y.; Huang, W.; Hendra Pratama, R.; Wang, J. Transient Nozzle-Exit Velocity Profile in Diesel Spray and Its Influencing Parameters. Int. J. Automot. Manuf. Mater. 2022, 1, 8.
  • 34.
    Sechenyh, V.; Duke, D.J.; Swantek, A.B.; Matusik, K.E.; Kastengren, A.L.; Powell, C.F.; Viera, A.; Payri, R.; Crua, C. Quantitative analysis of dribble volumes and rates using three-dimensional reconstruction of X-ray and diffused back-illumination images of diesel sprays. Int. J. Engine Res. 2020, 21, 43–54. https://doi.org/10.1177/1468087419860955.
  • 35.
    Gong, H.; Huang, W.; Gao, Y.; Wang, J.; Arioka, A.; Sasaki, Y. End-of-injection fuel dribbling dynamics of multi-hole GDI injector. Fuel 2022, 317, 123406. https://doi.org/10.1016/j.fuel.2022.123406.
  • 36.
    Pratama, R.H.; Huang, W.; Moon, S. Unveiling needle lift dependence on near-nozzle spray dynamics of diesel injector. Fuel 2021, 285, 119088. https://doi.org/10.1016/j.fuel.2020.119088.
  • 37.
    Otsu, N. Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62–66. https://doi.org/10.1109/TSMC.1979.4310076.
  • 38.
    Huang, W.; Oguma, M.; Kinoshita, K.; Abe, Y.; Tanaka, K. Investigating Spray Characteristics of Synthetic Fuels: Comparative Analysis with Gasoline. Int. J. Automot. Manuf. Mater. 2024, 3, 2. https://doi.org/10.53941/ijamm.2024.100008.
  • 39.
    Naber, J.D.; Siebers, D.L. Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays; SAE Technical Papers; SAE: Warrendale, PA, USA,1996. https://doi.org/10.4271/960034.
  • 40.
    Reitz, R.D. Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays. At. Spray. Technol. 1987, 3, 309–337.
  • 41.
    Du, W.; Lou, J.; Liu, F. Effects of Nozzle Hole Diameter on Diesel Sprays in Constant Injection Mass Condition; SAE Technical Papers; SAE: Warrendale, PA, USA, 2017. https://doi.org/10.4271/2017-01-2300.
  • 42.
    Jin, Y.; Zhang, Y.; Dong, P.; Zhai, C.; Nishida, K.; Wang, Y.; Leng, X. Diesel spray characteristics of multi-hole injectors under geometrical similarity condition. At. Sprays 2025, 35, 19–45. https://doi.org/10.1615/ATOMIZSPR.2025053971.
  • 43.
    Zhai, C.; Liu, E.; Zhang, G.; Xing, W.; Chang, F.; Jin, Y.; Luo, H.; Nishida, K.; Ogata, Y. Similarity and normalization study of fuel spray and combustion under ultra-high injection pressure and micro-hole diameter conditions–spray characteristics. Energy 2024, 288, 129684. https://doi.org/10.1016/j.energy.2023.129684.
Share this article:
How to Cite
Huang, W.; Luo, H. Flash-Boiling Spray Dynamics: Ethanol and Gasoline Compared Through X-ray and Schlieren Diagnostics. International Journal of Automotive Manufacturing and Materials 2025, 4 (2), 2. https://doi.org/10.53941/ijamm.2025.100008.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.