- 1.
Li, X.; Wang, S.; Yang, S.; Qiu, S.; Sun, Z.; Hung, D.L.; Xu, M. A review on the recent advances of flash boiling atomization and combustion applications. Prog. Energy Combust. Sci. 2024, 100, 101119. https://doi.org/10.1016/j.pecs.2023.101119.
- 2.
Xu, M. Combustion Improved by Using Flash Boiling Sprays in an Ethanol-Gasoline Optical Engine under Cold Operating Conditions. Energy Fuels 2021, 35, 10134–10145. https://doi.org/10.1021/acs.energyfuels.1c00739.
- 3.
Wu, S.; Yang, S.; Wooldridge, M.; Xu, M. Experimental study of the spray collapse process of multi-hole gasoline fuel injection at flash boiling conditions. Fuel 2019, 242, 109–123. https://doi.org/10.1016/j.fuel.2019.01.027.
- 4.
Miao, X.; Xu, B.; Deng, J.; Li, L. Key Technologies to 50% Brake Thermal Efficiency for Gasoline Engine of Passenger Car. Int. J. Automot. Manuf. Mater. 2025, 4, 1. https://doi.org/10.53941/ijamm.2025.100001.
- 5.
Li, J.; Li, L.; Xiao, R.; Liang, Y.; Qiu, S.; Li, X. Macroscopic and Microscopic Characteristics of a GDI Spray Under Various Thermodynamic Conditions. Int. J. Automot. Manuf. Mater. 2023, 2, 1. https://doi.org/10.53941/ijamm.2023.100007.
- 6.
Zeng, W.; Xu, M.; Zhang, M.; Zhang, Y.; Cleary, D.J. Macroscopic characteristics for direct-injection multi-hole sprays using dimensionless analysis. Exp. Therm. Fluid. Sci. 2012, 40, 81–92. https://doi.org/10.1016/j.expthermflusci.2012.02.003.
- 7.
Zeng, W.; Xu, M.; Zhang, Y.; Wang, Z. Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/MIE techniques. Proc. Combust. Inst. 2013, 34, 1677–1685. https://doi.org/10.1016/j.proci.2012.07.061.
- 8.
Wu, S.; Gandhi, A.; Li, H.; Meinhart, M. Experimental and numerical study of the effects of nozzle taper angle on spray characteristics of GDI multi-hole injectors at cold condition. Fuel 2020, 275, 117888. https://doi.org/10.1016/j.fuel.2020.117888.
- 9.
Wu, S.; Xu, M.; Hung, D.L.S.; Pan, H. In-nozzle flow investigation of flash boiling fuel sprays. Appl. Therm. Eng. 2017, 117, 644–651. https://doi.org/10.1016/j.applthermaleng.2016.12.105.
- 10.
Huang, W.; Gong, H.; Moon, S.; Wang, J.; Murayama, K.; Taniguchi, H.; Arima, T.; Arioka, A.; Sasaki, Y. Nozzle Tip Wetting in GDI Injector at Flash-boiling Conditions. Int. J. Heat. Mass. Transf. 2021, 169, 120935. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120935.
- 11.
Xiao, D.; Qiu, S.; Zhang, X.; Zhang, Y.; Li, X.; Hung, D.; Xu, M. Dynamic behavior and mechanism analysis of tip wetting process under flash boiling conditions. Fuel 2022, 307, 121773. https://doi.org/10.1016/j.fuel.2021.121773.
- 12.
Chang, M.; Lee, Z.; Park, S.S.; Park, S.S. Characteristics of flash boiling and its effects on spray behavior in gasoline direct injection injectors: A review. Fuel 2020, 271, 117600. https://doi.org/10.1016/j.fuel.2020.117600.
- 13.
Dong, X.; Yang, J.; Hung, D.L.S.; Li, X.; Xu, M. Effects of flash boiling injection on in-cylinder spray, mixing and combustion of a spark-ignition direct-injection engine. Proc. Combust. Inst. 2019, 37, 4921–4928. https://doi.org/10.1016/j.proci.2018.09.014.
- 14.
Devassy, B.M.; Zhang, Y.; Zhang, E.; Zhou, L. Complete Workflow of Internal Nozzle Flow and Engine Simulation Using Multi-Component Fuel at Flash Boiling Conditions. Int. J. Automot. Manuf. Mater. 2023, 2, 2. https://doi.org/10.53941/ijamm.2023.100008.
- 15.
Loureiro, D.D.; Reutzsch, J.; Kronenburg, A.; Weigand, B.; Vogiatzaki, K. Primary breakup regimes for cryogenic flash atomization. Int. J. Multiph. Flow 2020, 132, 103405. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103405.
- 16.
Loureiro, D.D.; Kronenburg, A.; Reutzsch, J.; Weigand, B.; Vogiatzaki, K. Droplet size distributions in cryogenic flash atomization. Int. J. Multiph. Flow 2021, 142, 103705. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103705.
- 17.
Oza, R.D. On the Mechanism of Flashing Injection of Initially Subcooled Fuels. J. Fluids Eng. 1984, 106, 105–109. https://doi.org/10.1115/1.3242383.
- 18.
Bar-Kohany, T.; Levy, M. State of the art review of flash-boiling atomization. At. Sprays 2016, 26, 1259–1305. https://doi.org/10.1615/AtomizSpr.2016015626.
- 19.
Duke, D.; Swantek, A.; Kastengren, A.; Fezzaa, K.; Powell, C. Recent Developments in X-ray Diagnostics for Cavitation. SAE Int. J. Fuels Lubr. 2015, 8, 135–146. https://doi.org/10.4271/2015-01-0918.
- 20.
Kastengren, A.; Powell, C.F.; Liu, Z.; Wang, J. Time Resolved, Three Dimensional Mass Distribution of Diesel Sprays Measured with X-ray Radiography; SAE Technical Papers; SAE: Warrendale, PA, USA, 2009. https://doi.org/10.4271/2009-01-0840.
- 21.
Huang, W.; Pratama, R.H.; Oguma, M.; Kinoshita, K.; Takeda, Y.; Suzuki, S. Spray dynamics of synthetic dimethyl carbonate and its blends with gasoline. Fuel 2023, 341, 127696. https://doi.org/10.1016/j.fuel.2023.127696.
- 22.
Wang, X.; Pan, J.; Wu, J.; Liu, Z. Surface tension of dimethoxymethane and methyl tert-butyl ether. J. Chem. Eng. Data 2006, 51, 1394–1397. https://doi.org/10.1021/je060097q.
- 23.
Ramos-Estrada, M.; Iglesias-Silva, G.A.; Hall, K.R. Experimental measurements and prediction of liquid densities for n-alkane mixtures. J. Chem. Thermodyn. 2006, 38, 337–347. https://doi.org/10.1016/j.jct.2005.05.020.
- 24.
Schifter, I.; González, U.; González-Macías, C. Effects of ethanol, ethyl-tert-butyl ether and dimethyl-carbonate blends with gasoline on SI engine. Fuel 2016, 183, 253–261. https://doi.org/10.1016/j.fuel.2016.06.051.
- 25.
Huang, W.; Oguma, M.; Kinoshita, K.; Abe, Y.; Tanaka, K. Investigating Spray Characteristics of Synthetic Fuels: Comparative Analysis with Gasoline. Int. J. Automot. Manuf. Mater. 2024, 3, 2. https://doi.org/10.53941/ijamm.2024.100008
- 26.
Wu, P.; Xuan, T.; He, Z.; Shao, Z.; Wang, Q.; Payri, R. A comparative study on combustion characteristics of PPC and RCCI combustion modes in an optical engine with renewable fuels. Fuel 2025, 381, 133361. https://doi.org/10.1016/j.fuel.2024.133361.
- 27.
Chang, F.; Luo, H.; Zhai, C.; Jin, Y.; Xiong, P.; Wang, J.; Song, B.; Zhang, J.; Nishida, K. Experimental investigation of fuel adhesion from wall-impinging spray with various injection mass ratios. Exp. Therm. Fluid. Sci. 2025, 163, 111403. https://doi.org/10.1016/j.expthermflusci.2024.111403.
- 28.
Properties of Ethanol at NIST. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C64175&Mask=4 (accessed on 13 March 2024).
- 29.
Leick, P.; Bork, B.; Geiler, J.N. Experimental characterization of tip wetting in gasoline DI injectors. In Proceedings of the ICLASS 2018—14th International Conference on Liquid Atomization and Spray Systems, Chicago, IL, USA, 22–26 July 2018.
- 30.
Nobach, H.; Honkanen, M. Two-dimensional Gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry. Exp. Fluids 2005, 38, 511–515. https://doi.org/10.1007/s00348-005-0942-3.
- 31.
Huang, W.; Moon, S.; Ohsawa, K. Near-nozzle dynamics of diesel spray under varied needle lifts and its prediction using analytical model. Fuel 2016, 180, 292–300. https://doi.org/10.1016/j.fuel.2016.04.042.
- 32.
Gao, Y.; Huang, W.; Pratama, R.H. Influence of hydraulic flip on spray uniformity and dynamics in Gasoline Direct Injection nozzles. Int. J. Heat. Mass. Transf. 2025, 242, 126848. https://doi.org/10.1016/j.ijheatmasstransfer.2025.126848.
- 33.
Gao, Y.; Huang, W.; Hendra Pratama, R.; Wang, J. Transient Nozzle-Exit Velocity Profile in Diesel Spray and Its Influencing Parameters. Int. J. Automot. Manuf. Mater. 2022, 1, 8.
- 34.
Sechenyh, V.; Duke, D.J.; Swantek, A.B.; Matusik, K.E.; Kastengren, A.L.; Powell, C.F.; Viera, A.; Payri, R.; Crua, C. Quantitative analysis of dribble volumes and rates using three-dimensional reconstruction of X-ray and diffused back-illumination images of diesel sprays. Int. J. Engine Res. 2020, 21, 43–54. https://doi.org/10.1177/1468087419860955.
- 35.
Gong, H.; Huang, W.; Gao, Y.; Wang, J.; Arioka, A.; Sasaki, Y. End-of-injection fuel dribbling dynamics of multi-hole GDI injector. Fuel 2022, 317, 123406. https://doi.org/10.1016/j.fuel.2022.123406.
- 36.
Pratama, R.H.; Huang, W.; Moon, S. Unveiling needle lift dependence on near-nozzle spray dynamics of diesel injector. Fuel 2021, 285, 119088. https://doi.org/10.1016/j.fuel.2020.119088.
- 37.
Otsu, N. Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62–66. https://doi.org/10.1109/TSMC.1979.4310076.
- 38.
Huang, W.; Oguma, M.; Kinoshita, K.; Abe, Y.; Tanaka, K. Investigating Spray Characteristics of Synthetic Fuels: Comparative Analysis with Gasoline. Int. J. Automot. Manuf. Mater. 2024, 3, 2. https://doi.org/10.53941/ijamm.2024.100008.
- 39.
Naber, J.D.; Siebers, D.L. Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays; SAE Technical Papers; SAE: Warrendale, PA, USA,1996. https://doi.org/10.4271/960034.
- 40.
Reitz, R.D. Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays. At. Spray. Technol. 1987, 3, 309–337.
- 41.
Du, W.; Lou, J.; Liu, F. Effects of Nozzle Hole Diameter on Diesel Sprays in Constant Injection Mass Condition; SAE Technical Papers; SAE: Warrendale, PA, USA, 2017. https://doi.org/10.4271/2017-01-2300.
- 42.
Jin, Y.; Zhang, Y.; Dong, P.; Zhai, C.; Nishida, K.; Wang, Y.; Leng, X. Diesel spray characteristics of multi-hole injectors under geometrical similarity condition. At. Sprays 2025, 35, 19–45. https://doi.org/10.1615/ATOMIZSPR.2025053971.
- 43.
Zhai, C.; Liu, E.; Zhang, G.; Xing, W.; Chang, F.; Jin, Y.; Luo, H.; Nishida, K.; Ogata, Y. Similarity and normalization study of fuel spray and combustion under ultra-high injection pressure and micro-hole diameter conditions–spray characteristics. Energy 2024, 288, 129684. https://doi.org/10.1016/j.energy.2023.129684.