2504000131
  • Open Access
  • Review
A Novel Concept: Utilizing Curtailed Wind and Solar Power for Straw Crushing to Achieve Biomass Energy Storage
  • Xiying Zhou 1,   
  • Bing Hu 1,   
  • Huan Zhang 1,   
  • Yuguang Zhou 2,   
  • Hongqiong Zhang 3,   
  • Quanguo Zhang 4,   
  • Zhiping Zhang 1, *

Received: 30 Oct 2024 | Revised: 20 Mar 2025 | Accepted: 21 Mar 2025 | Published: 02 Apr 2025

Abstract

With various countries setting strategic goals for peaking carbon emissions and achieving carbon neutrality, the global demand for clean energy is showing an increasing trend. On the one hand, wind and solar energy, as the two main pillars of renewable energy, are widely promoted due to their clean and low-carbon environmental benefits. However, the intermittency and instability of these two types of energy have become the primary causes of challenges in new energy consumption and grid integration. On the other hand, a large amount of agricultural waste is produced globally each year, and biomass energy has huge potential. However, in our country, agricultural waste cannot be effectively utilized, one of the important reasons is that the transportation of raw materials is difficult, and some power plants opt to pulverize straw before transporting it, but the straw crushing consumes a lot of energy. This article proposes an innovative model: The straw-crushing plant is combined with the wind power station, and the straw is crushed by abandoning wind and light. This collaborative energy storage mode will effectively alleviate the dual problems of new energy consumption and agricultural waste management. This article, through the analysis of relevant data research indicates that provinces represented by Henan, Hebei, and Shandong not only boast abundant straw resources but also lead in total installed wind and solar power capacity. Rough estimates reveal that Henan Province wastes 1.2 billion kWh of wind and solar power annually, while Hebei Province discards 4 billion kWh yearly. This curtailed wind-solar-straw energy storage system can increase renewable energy utilization efficiency by 3–4%. Compared to traditional grid-based crushing methods, it reduces energy costs for straw pretreatment by 30–40% and achieves a 15–20% reduction in carbon emissions over its full lifecycle. This system offers an innovative approach to integrating renewable energy integration with agricultural circular economy development. It holds a certain guiding significance for the field of new energy consumption and storage.

References 

  • 1.
    Wang, Z.; Zeng, S.; Khan, Z. Impact of sustainable energy, fossil fuels and green finance on ecosystem: Evidence from China. Heliyon 2024, 10, 1005–1019.
  • 2.
    Tian, J.; Wang, P.; Zhu, D. Overview of Chinese new energy vehicle industry and policy development. Green Energy Resour. 2024, 2, 100075.
  • 3.
    Zhang, J.; Wei, J.; Guo, C.L.; Tang, Q.; Guo, H. The spatial distribution characteristics of the biomass residual potential in China. J. Environ. Manag. 2023, 338, 117777.
  • 4.
    Saleem, M. Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 2022, 8, e08905.
  • 5.
    Gu, F.; Gao, X.; Wu, F.; Hu, Z.; Chen, Y.; Zhang, C. Improving Uniform Scattering Device for Straw-smashing, Back-throwing, No-tillage Planter Under Complete Straw Mulching Condition. Int. J. Agric. Biol. Eng. 2018, 11, 49–57.
  • 6.
    Shi, Y.; Rex, S.X.; Wang, X.; Hu, Z.; Newman, D.; Ding, W. Numerical Simulation and Field Tests of Minimum-tillage Planter with Straw Smashing and Strip Laying Based on EDEM Software. Comput. Electron. Agric. 2019, 166, 105021.
  • 7.
    Xu, Y.; Zhang, X.; Wu, S.; Chen, C.; Wang, J.; Yuan, S.; Chen, B.; Li, P.; Xu, R. Numerical Simulation of Particle Motion at Cucumber Straw Grinding Process Based on EDEM. Int. J. Agric. Biol. Eng. 2020, 13, 227–235.
  • 8.
    Wang, J.; Hou, D.; Liu, Z.; Tao, J.; Yan, B.; Liu, Z.; Yang, T.; Su, H.; Tahir, M.H.; Chen, G. Emergy analysis of agricultural waste biomass for energy-oriented utilization in China: Current situation and perspectives. Sci. Total Environ. 2022, 894, 157798.
  • 9.
    Chou, C.-S.; Lin, S.-H.; Lu, W.-C. Preparation and characterization of solid biomass fuel made from rice straw and rice bran. Fuel Process. Technol. 2009, 90, 980–987.
  • 10.
    Meng, H.; Yang, H.; Wu, Z.; Li, D.; Wang, Z.; Wang, D.; Wang, H.; Li, H.; Li, J. Co-Pyrolysis of Mushroom Residue Blended with Pine Sawdust/Wheat Straw for Sustainable Utilization of Biomass Wastes: Thermal Characteristics, Kinetic/Thermodynamic Analysis, and Structure Evolution of Co-Pyrolytic Char. Sustainability 2024, 16, 6677.
  • 11.
    Zhang, Z.P. Study on the Feasibility of Ultrafine Pretreatment Technology of Straw Biomass and Its Hydrogen Production. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2012. (In Chinese)
  • 12.
    Yang, J.; Chen, R.; Zhang, Q.; Zhang, L.; Li, Q.; Zhang, Z.; Wang, Y.; Qu, B. Green and chemical-free pretreatment of corn straw using cold isostatic pressure for methane production. Sci. Total Environ. 2023, 897, 165442.
  • 13.
    Tiwari, M.; Vinu, R. Microwave-assisted co-pyrolysis of rice straw pellets and plastic packaging wastes for value-added products and energy recovery. Process Saf. Environ. Prot. 2024, 190, 606–621.
  • 14.
    Singh, Y.; Sharma, S.; Kumar, U.; Sihag, P.; Balyan, P.; Singh, K.P.; Dhankher, O.P. Strategies for economic utilization of rice straw residues into value-added by-products and prevention of environmental pollution. Sci. Total Environ. 2024, 906, 167714.
  • 15.
    Campbell, M.M.; Sederoff, R.R. Variation in Lignin Content and Composition Mechanisms of Control and Implications for The Genetic Improvement of Plants. Plant Physiol. 1996, 110, 3–13.
  • 16.
    Zhao, X.; Liu, P. Focus on bioenergy industry development and energy security in China. Renew. Sustain. Energy Rev. 2014, 32, 302–312.
  • 17.
    Stanley, J.T.; Thanarasu, A.; Kumar, P.S.; Periyasamy, K.; Raghunandhakumar, S.; Periyaraman, P.; Devaraj, K.; Dhanasekaran, A.; Subramanian, S. Potential pre-treatment of lignocellulosic biomass for the enhancement of biomethane production through anaerobic digestion—A review. Fuel 2022, 318, 123593.
  • 18.
    Li, Y.; Yan, F.; Li, T.; Zhou, Y.; Jiang, H.; Qian, M.; Xu, Q. High-solid anaerobic digestion of corn straw for methane production and pretreatment of bio-briquette. Bioresour. Technol. 2018, 250, 741–749.
  • 19.
    Rezaei, H.; Tajilrou, M.; Lee, J.S.; Singaraveloo, K.; Lau, A.; Sokhansanj, S. Evolution of biomass particles during pelletization process. Particuology 2024, 86, 182–187.
  • 20.
    Zhang, X.; Jenne, S.P.; Ding, Y.; Spencer, J.; He, W.; Wang, J. A wind power curtailment mitigation strategy via co-location and co-operation of compressed air energy storage with wind power generation. Electr. Power Syst. Res. 2025, 241, 111318.
  • 21.
    Yang, J.; Chi, H.; Cheng, M.; Dong, M.; Li, S.; Yao, H. Performance analysis of hydrogen supply using curtailed power from a solar-wind-storage power system. Renew. Energy 2023, 212, 1005–1019.
  • 22.
    Rudra, S.; Akhtar, T. Algal Biomass Conversion: Hydrothermal Liquefaction for Advanced Bio-Fuel Production. In Encyclopedia of Renewable Energy, Sustainability and the Environment, 1st ed.; Rahimpour, M.R., Ed.; Elsevier: Amsterdam, the Netherlands, 2024; pp. 745–762.
  • 23.
    Lewis, N.G.; Yamamoto, E. Lignin: Occurrence, Biogenesis and Biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1990, 41, 455–496.
  • 24.
    Millo, F.; Bensaid, S.; Fino, D.; Marcano, S.J.C.; Vlachos, T.; Debnath, B.K. Influence on The Performance and Emissions of An Automotive Euro 5 Diesel Engine Fueled with F30 from Farnesane. Fuel 2014, 138, 134–142.
  • 25.
    Sentanuhady, J.; Atmaja, G.P.S.G.; Muflikhun, M.A. Challenges of Biofuel Applications in Industrial and Automotive: A Review. J. Eng. Sci. Technol. Rev. 2021, 14, 119–134.
  • 26.
    Chen, H.; Qiu, T.; Rong, J.; He, C.; Wang, Q. Microalgal Biofuel Revisited: An Informatics-based Analysis of Developments to Date and Future Prospects. Appl. Energy 2015, 155, 585–598.
  • 27.
    Ajuka, L.O. Biofuel Resources Plan: Theoretical Case Assessment of Automotive Industries. Eng. Technol. J. 2021, 6, 985–1001.
  • 28.
    Borman, S. Synthesized Biofuel Meets Vehicle Standards. Chem. Eng. News 2017, 95, 10–11.
  • 29.
    Manivannan, A.; Prabu, R.; Kumar, K.M. Investigation on Influence of Blending Jatropha Biofuel with Diesel to Improve Fuel Quality. Aust. J. Mech. Eng. 2019, 19, 49–56.
  • 30.
    Jeremic, S.; Milovanovic, J.; Mojicevic, M.; Skaro-Bogojevic, S.; Nikodinovic-Runic, J. Understanding Bioplastic Materials—Current State and Trends. J. Serbian Chem. Soc. 2020, 85, 1507–1538.
  • 31.
    Coppola, G.; Gaudio, M.T.; Lopresto, C.G.; Calabro, V.; Curcio, S.; Chakraborty, S. Bioplastic from Renewable Biomass: A Facile Solution for A Greener Environment. Earth Syst. Environ. 2021, 5, 231–251.
  • 32.
    Aristri, M.A.; Lubis, M.A.R.; Iswanto, A.H.; Fatriasari, W.; Sari, R.K.; Antov, P.; Gajtanska, M.; Papadopoulos, A.N.; Pizzi, A. Bio-Based Polyurethane Resins Derived from Tannin: Source, Synthesis, Characterisation, and Application. Forests 2021, 12, 1516.
  • 33.
    Mekonnen, T.; Mussone, P.; Khalil, H.; Bressler, D. Progress in Bio-based Plastics and Plasticizing Modifications. J. Mater. Chem. 2013, 1, 13379–13398.
  • 34.
    Zini, E.; Scandola, M. Green Composites: An Overview. Polym. Compos. 2011, 32, 1905–1915.
  • 35.
    Dias, O.A.T.; Negrão, D.R.; Silva, R.C.; Funari, C.S.; Cesarino, I.; Leao, A.L. Studies of Lignin as Reinforcement for Plastics Composites. Mol. Cryst. Liq. Cryst. 2016, 628, 72–78.
  • 36.
    Liu, T.; Hou, S.; Nguyen, X.; Han, X. Energy Absorption Characteristics of Sandwich Structures with Composite Sheets and Bio Coconut Core. Compos. Part B-Eng. 2017, 114, 328–338.
  • 37.
    Esposti, M.D.; Morselli, D.; Fava, F.; Bertin, L.; Cavani, F.; Viaggi, D.; Fabbri, P. The Role of Biotechnology in The Transition from Plastics to Bioplastics: An Opportunity to Reconnect Global Growth with Sustainability. Febs Open Bio 2020, 11, 967–983.
  • 38.
    Liu, Q.; Xiong, B.; Liu, Y.; Zhang, C.; Yuan, S.; Ma, W. Study on Performance Simulation Matching of One-Dimensional Hydrogen Storage and Supply System for Hydrogen Fuel Cell Vehicles. Int. J. Automot. Manuf. Mater. 2024, 3, 6.
  • 39.
    Wang, C.; Jin, S.; Deng, J.; Ding, W.; Tang, Y.; Li, L. Future High-Efficiency and Zero-Emission Argon Power Cycle Engines: A Review. Int. J. Automot. Manuf. Mater. 2023, 2, 2.
  • 40.
    Lu, C.; Chen, W.; Zuo, Q.; Zhu, G., Zhang; Y.; Liu, Z. Review of Combustion Performance Improvement and Nitrogen-Containing Pollutant Control in the Pure Hydrogen Internal Combustion Engine. Int. J. Automot. Manuf. Mater. 2022, 1, 7.
  • 41.
    Zhang, Z.; Jiao, Y.; Li, Y.; Zhang, H.; Zhang, Q.; Hu, B. Lignocellulosic Biomass to Automotive Manufacturing: The Adoption of Bio-Based Materials and Bio-Fuels. Int. J. Automot. Manuf. Mater. 2023, 3, 6.
  • 42.
    Niu, K.; Yang, Q.; Bai, S.; Zhou, L.; Chen, K.; Wang, F.; Xiong, S.; Zhao, B. Simulation Analysis and Experimental Research on Silage Corn Crushing and Throwing Device. Appl. Eng. Agric. 2021, 37, 725–734.
  • 43.
    Fu, J.; Ji, C.; Wang, W.; Liu, H.; Zhang, G.; Gao, Y.; Zhou, Y.; Abdeen, M.A. Design and Test of Smashing and Scattering Device of Double-channel Feeding Ratoon Rice Harvester. Sci. Rep. 2022, 12, 15943.
  • 44.
    Tumuluru, J.S.; Tabil, L.G.; Song, Y.; Iroba, K.L.; Meda, V. Grinding energy and physical properties of chopped and hammer-milled barley, wheat, oat, and canola straws. Biomass Bioenergy 2014, 60, 58–67.
  • 45.
    Jensen, P.D.; Temmerman, M.; Westborg, S. Internal particle size distribution of biofuel pellets. Fuel 2011, 90, 980–986.
  • 46.
    Jiang, Y.; Lu, Y.; Liu, J.; Zhao, Y.; Fan, F. Characterization of bamboo shoot cellulose nanofibers modified by TEMPO oxidation and ball milling method and its application in W/O emulsion. LWT 2024, 205, 116563.
  • 47.
    Wen, L.; Yan, C.; Shi, Y.; Wang, Z.; Liu, G.; Shi, W. Experimental Study on the Compressive Strength of Concrete with Different Wheat Straw Treatment Techniques. J. Renew. Mater. 2023, 11, 3681–3692.
  • 48.
    Dunbar, E.; Graham, R.A.; Holman, G.T.; Anderson, M.U.; Thadhani, N.N. Time-resolved Pressure Measurements in Chemically Reacting Powder Mixtures. High-Press. Sci. Technol. 1994, 309, 1303–1306.
  • 49.
    Coutinho, R.; Hoshima, H.Y.; Vianna, M.T.G.; Marques, M. Sustainable Application of Modified Luffa Cylindrica Biomass for Removal of Trimethoprim in Water by Adsorption with Process Optimization. Environ. Sci. Pollut. Res. Int. 2024, 31, 55280–55300.
  • 50.
    Yu, F.R.; Zhang, P.; Xiao, W.; Choudhury, P. Communication Systems for Grid Integration of Renewable Energy Resources. IEEE Netw. 2011, 25, 22–29.
  • 51.
    Dai, J.; Yang, X.; Wen, L. Development of wind power industry in China: A comprehensive assessment. Renew. Sustain. Energy Rev. 2018, 97, 156–164.
  • 52.
    Estanqueiro, A.; Couto, A. Chapter 1-New electricity markets. The Challenges of Variable Renewable Energy. In Local Electricity Markets; Pinto, T., Vale, Z., Widergren, S., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 3–20.
  • 53.
    Al-Shetwi, A.Q.; Abidin, I.Z.; Mahafzah, K.A.; Hannan, M.A. Feasibility of future transition to 100% renewable energy: Recent progress, policies, challenges, and perspectives. J. Clean. Prod. 2024, 478, 143942.
  • 54.
    Han, X.; Lv, F.; Li, J.; Zeng, F. Flexible interactive control method for multi-scenario sharing of hybrid pumped storage-wind-photovoltaic power generation. J. Energy Storage 2024, 100, 113590.
  • 55.
    Yan, J.; Liu, S.; Yan, Y.; Liu, Y.; Han, S.; Zhang, H. How to choose mobile energy storage or fixed energy storage in high proportion renewable energy scenarios: Evidence in China. Appl. Energy 2024, 376, 124274.
  • 56.
    Tian, C.; Tan, Q.; Fang, G.; Wen, X. Hydrogen production to combat power surpluses in hybrid hydro-wind-photovoltaic power systems. Appl. Energy 2024, 371, 123627.
  • 57.
    Zhao, F.; Liu, X.; Zhao, X.; Wang, H. Spatiotemporal distribution pattern and analysis of influencing factors of pumped storage power generation in China. J. Energy Storage 2024, 79, 110078.
  • 58.
    Qian, B.; Shao, C.; Yang, F. Spatial suitability evaluation of the conversion and utilization of crop straw resources in China. Environ. Impact Assess. Rev. 2024, 105, 107438.
Share this article:
How to Cite
Zhou, X.; Hu, B.; Zhang, H.; Zhou, Y.; Zhang, H.; Zhang, Q.; Zhang, Z. A Novel Concept: Utilizing Curtailed Wind and Solar Power for Straw Crushing to Achieve Biomass Energy Storage. International Journal of Automotive Manufacturing and Materials 2025, 4 (2), 1. https://doi.org/10.53941/ijamm.2025.100007.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.