- 1.
Zuo, K.W. Exploration on the development prospect of natural gas industry under the background of dual carbon. In Proceedings of the Shanghai: 2023 Annual Meeting of China City Gas Association Standards Working Committee and Gas Safety Operation and Smart Construction Seminar, Shanghai, China, 26–29 July 2023; pp. 258–261.
- 2.
Qin, P.; Xu, H.; Liu, M.; Xiao, C.; Forrest, K.E.; Samuelsen, S.; Tarroja, B. Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China. Appl. Energy 2020, 279, 115694.
- 3.
Zhou, Y.; Zhou, H.J.; Xu, C.M. Exploration of the development path for the hydrogen energy. Chem. Ind. Eng. Prog. 2022, 41, 4587–4592.
- 4.
National Development and Reform Commission & National Energy Administration. Medium and Long Term Planning for the Development of Hydrogen Energy Industry (2021–2035); National Development and Reform Commission & National Energy Administration: Beijing, China, 2022.
- 5.
China New Energy Network. For the First Time in the World! Germany Will Achieve 20% Hydrogen Access; China New Energy Network: Beijing, China, 2019.
- 6.
Zhang, L.; Deng, H.T.; Sun, G.J.; Ning, C.; Sun, G.; Liu, W.; Sun, C.; Lan, X.; Lu, Y.; Jia, G.; et al. Research progress of natural gas follow-up hydrogen mixing technology. Mech. Eng. 2022, 44, 755–766.
- 7.
Anon. China’s long-distance hydrogen transport technology has achieved a breakthrough in hydrogen mixing ratio of 24%. Shanghai Energy Conserv. 2023, 4, 467.
- 8.
Anon. China’s first urban gas hydrogen mixing comprehensive experimental platform put into operation. Welded Pipe Tube 2024, 47, 38.
- 9.
Editorial Board of White Paper on China’s Hydrogen Energy and Fuel Cell Industry. White Paper on China’s Hydrogen Energy and Fuel Cell Industry (2019 Edition); China Hydrogen Alliance: Beijing, China, 2019.
- 10.
Chu, W.Y.; Qiao, L.J.; Li, J.X.; Su, Y.J.; Yan, Y.; Bai, Y.; Huang, H.Y. Hydrogen Embrittlement and Stress Corrosion Cracking; Science Press: Beijing, China, 2013; p. 116.
- 11.
Zhou, D.; Li, T.; Huang, D.; Wu, Y.; Huang, Z.; Xiao, W.; Wang, X. The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel. Int. J. Hydrogen Energy 2021, 46, 7402–7414.
- 12.
Dong, J.N.; Liu, Y.S.; Zhang, X.C. Influence Law of Hydrogen Pressure on Hydrogen Embrittlement Sensitivity of L80 Steel. Mater. Prot. 2022, 55, 53–59.
- 13.
Zhao, Q.; Xing, Y.Y.; Wang, X.Y. Research Status of Compatibility of Hydrogen-blended Natural Gas Pipeline. Mater. Rep. 2024, 38, 132–138.
- 14.
Robinson, S.L.; Stoltz, R.E. Hydrogen Effects in Metals; Bernstein, I.M., Thompson, A.W., Eds.; The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME), Inc.: New York, NY, USA, 1981; p. 987.
- 15.
Alvaro, A.; Olden, V.; Macadre, A.; Akselsen, O.M. Hydrogen embrittlement susceptibility of a weld simulated X70 heat affected zone under H₂ pressure. Mater. Sci. Eng. A 2014, 597, 29–36.
- 16.
Nguyen, T.T.; Park, J.S.; Kim, W.S.; Nahm, S.H.; Beak, U.B. Environment hydrogen embrittlement of pipeline steel X70 under various gas mixture conditions with in situ small punch tests. Mater. Sci. Eng. 2020, 781, 139114.
- 17.
Shi, H.; Lyu, Y.; Tan, G.B. Feasibility study on pipeline transportation of hydrogen-blended natural gas. Nat. Gas Oil 2022, 40, 23–31.
- 18.
Nagumo, M. Fundamentals of Hydrogen Embrittlement; Springer: Singapore, 2016; p. 921.
- 19.
Han, Y.D.; Wang, R.Z.; Wang, H.; Xu, L.Y. Hydrogen embrittlement sensitivity of X100 pipeline steel under different pre–strain. Int. J. Hydrogen Energy 2019, 44, 22380–22393.
- 20.
Al-Mansour, M.; Alfantazi, A.M.; El-boujdaini, M. Sulfide stress cracking resistance of API–X100 high strength low alloy steel. Mater. Des. 2009, 30, 4088–4094.
- 21.
Dong, C.F.; Liu, Z.Y.; Li, X.G.; Cheng, Y.F. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen–induced cracking. Int. J. Hydrogen Energy 2009, 34, 9879–9884.
- 22.
Nanninga, N.E.; Levy, Y.S.; Drexler, E.S.; Condon, R.T.; Stevenson, A.E.; Slifka, A.J. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments. Corros. Sci. 2012, 59, 1–9.
- 23.
Cauwels, M.; Claeys, L.; Depover, T.; Verbeken, K. The hydrogen embrittlement sensitivity of duplex stainless steel with different phase fractions evaluated by in-situ mechanical testing. Frat. Integrità Strutt. 2020, 14, 449.
- 24.
Cheng, D.B.; Lin, J.G.; Wei, N.T. Review of hydrogen transmission pipeline technology development. Oil Gas Storage Transp. 2024, 43, 624–631.
- 25.
Li, J.H.; Xie, F.; Wang, D.; Ma, C.; Wu, M. Synergistic effect of sulfate-reducing bacteria and cathodic protection potential on hydrogen permeation and stress corrosion cracking of X100 steel in the maritime mud environment. Metall. Mater. Trans. A 2022, 53, 1682–1692.
- 26.
Yao, C.; Ming, H.; Chen, J.; Wang, J.; Han, E.H. Effect of cold deformation on the hydrogen permeation behavior of X65 pipeline steel. Coatings 2023, 13, 280.
- 27.
Zhu, J.L.; Zhou, H.; Li, Y.X.; Li, F.Y. Dynamic simulation of hydrogen blending natural gas transportation pipeline design. Nat. Gas Ind. 2021, 41, 132–142.
- 28.
Jia, W.L.; Wen, C.X.; Yang, M.; Huang, J.; Wu, X.; Li, C.J. Study on leakage and diffusion of hydrogen mixed natural gas in the valve chamber. Pet. New Energy 2021, 33, 75–82.
- 29.
Wang, X.; Xu, H.Y.; Cheng, D. Study on the leakage and diffusion behavior of hydrogen-blended natural gas pipeline under influence of obstacles. Chem. Saf. Environ. 2023, 36, 12–21.
- 30.
Shchelkin, K.I. Influence of tube roughness on the formation and detonation propagation in gas. J. Exp. Theor. Phys. 1940, 10, 823–827.
- 31.
Lee, J.H.S.; Moen, I.O. The mechanism of transition from deflagration to detonation in vapor cloud explosion. Prog. Energy Combust. Sci. 1980, 6, 359–389.
- 32.
Shepherd, J.E.; Lee, J.H.S. On the Transition from Deflagration to Detonation; Major Research Topics in Combustion. Springer: New York, NY, USA, 1992; pp. 439–487.
- 33.
Urtiew, P.A.; Oppenheim, A.K. Experimental observations of the transition to detonation in an explosive gas. Proceedings of the Royal Society of London. Ser. A Math. Phys. Sci. 1966, 295, 13–28.
- 34.
Ni, J.; Pan, J.; Jiang, C.; Chen, X.; Zhang, S. Effects of hydrogen-blending ratio on detonation characteristics of premixed methane-oxygen gas. Explos. Shock Waves 2020, 40, 25–33.
- 35.
Yu, J.; Zhang, H.; Jia, W.L. Numerical simulation of leakage and diffusion in hydrogen mixed natural gas transmission station. J. Southwest Pet. Univ. 2022, 44, 153–161.
- 36.
Wan, X.G.; Liu, W.; Fang, T.; Dai, H.; Cai, X.; Li, Q.; Wang, J.; Huang, Z.; Lan, X.; Chang, X. Effect of methane addition on hydrogen combustion and explosion characteristics. Mech. Eng. 2022, 44, 786–793.
- 37.
Zhang, G.; Xu, H.; Wu, D.; Yang, J.; Morsy, M.E.; Jangi, M.; Kim, W. Deep learning-driven analysis for cellular structure characteristics of spherical premixed hydrogen-air flames. Int. J. Hydrogen Energy 2024, 68, 63–73.
- 38.
Zhang, G.; Xu, H.; Wu, D.; Yang, J.; Morsy, M.E.; Jangi, M.; Cracknell, R. Quantitative three-dimensional reconstruction of cellular flame area for spherical hydrogen-air flames. Fuel 2024, 375, 132504.
- 39.
Witkowski, A.; Rusin, A.; Majkut, M.; Stolecka, K. Analysis of compression and transport of the methane/hydrogen mixture in existing natural gas pipelines. Int. J. Press. Vessel. Pip. 2018, 166, 24–34.
- 40.
Ma, J.; Liu, S.; Zhou, W.; Pan, X. Comparison of Hydrogen Transportation Methods for Hydrogen Refueling Station. J. Tongji Univ. 2008, 36, 615–619.
- 41.
Sierens, R.; Rosseel, E. Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions. J. Eng. Gas Turbines Power 2000, 122, 135–140.
- 42.
Ma, X.Y.; Huang, X.M.; Wu, C. Study on the influence of natural gas hydrogenation on combustion characteristics of domestic gas cooker. Renew. Energy 2018, 36, 1746−1751.
- 43.
Luo, Z.X.; Xu, H.C.; Yuan, M. Safety and emission performance test and evaluation of natural gas mixed with hydrogen combustion on domestic gas appliances. Chem. Eng. Oil Gas 2019, 48, 50−56.
- 44.
Xie, P.; Wu, Y.; Li, C.; Jia, W.; Zhang, H.; Wu, X. Research progress on pipeline transportation technology of hydrogen-mixed natural gas. Oil Gas Storage Transp. 2021, 40, 361–370.
- 45.
Shang, J.; Lu, Y.H.; Zheng, J.Y.; Sun, C.; Hua, Z.L.; Yu, W.T.; Zhang, Y.W. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures. Chem. Ind. Eng. Prog. 2021, 40, 5499–5505.
- 46.
Guandalini, G.; Colbertaldo, P.; Campanari, S. Dynamic modeling of natural gas quality within transport pipelines in presence of hydrogen injections. Appl. Energy 2017, 185, 1712–1723.
- 47.
Qiu, Y.; Zhou, S.; Gu, W.; Pan, G.; Chen, X. Application Prospect Analysis of Hydrogen Enriched Compressed Natural Gas Technologies Under the Target of Carbon Emission Peak and Carbon Neutrality. Proc. CSEE 2022, 42, 1301–1320.