- 1.
- 2.
IEA (2018). Sustainable development scenario. 2019.
- 3.
Jung H. ; Silva R. ; Han M . Scaling trends of electric vehicle performance: driving range, fuel economy, peak power output, and temperature effect. World Electric Vehicle Journal, 2018, 9(4): 46.
- 4.
Redelbach M. ; Klötzke M. ; Friedrich H .E. Impact of lightweight design on energy consumption and cost effectiveness of alternative powertrain concepts. EEVC European Electric Vehicle Congress, Brüssel, Belgien: DLR, 2012: 1-9.
- 5.
Zheng K.L. ; Politis J.J. ; Wang L.N. ; et al . A review on forming techniques for manufacturing lightweight complex—shaped aluminium panel components. International Journal of Lightweight Materials and Manufacture, 2018, 1(2): 55-80.
- 6.
van Acker K. ; Verpoest I. ; de Moor J. ; et al . Lightweight materials for the automotive: environmental impact analysis of the use of composites. La Revue de Métallurgie, 2009, 106(12): 541-546.
- 7.
Taub A.I. ; Krajewski P.E. ; Luo A.A. ; et al . The evolution of technology for materials processing over the last 50 years: the automotive example. JOM, 2007, 59(2): 48-57.
- 8.
- 9.
Hughs, C. A2mac1 automotive benchmarking. 2018.
- 10.
- 11.
Shui L. ; Chen F.Y. ; Garg A. ; et al . Design optimization of battery pack enclosure for electric vehicle. Structural and Multidisciplinary Optimization, 2018, 58(1): 331-347.
- 12.
Castelvecchi D . Electric cars and batteries: how will the world produce enough?. Nature, 2021, 596: 336-339.
- 13.
Zhou X.Y. ; Hu Z.L. ; Qin X.P. ; et al . Study on the stress characteristic and fatigue life of the shredder pin. Engineering Failure Analysis, 2016, 59: 444-455.
- 14.
Zhou X.Y. ; Hu Z.L. ; Xiao X. ; et al . Research on shredding process and characteristics of multi-material plates for recycled cars. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230(10): 1834-1844.
- 15.
Wan B.B. ; Chen W.P. ; Lu T.W. ; et al . Review of solid state recycling of aluminum chips. Resources, Conservation and Recycling, 2017, 125: 37-47.
- 16.
Shamsudin S. ; Lajis M.A. ; Zhong Z .W. Solid-state recycling of light metals: a review. Advances in Mechanical Engineering, 2016, 8(8): 1-23.
- 17.
Borgert T. ; Homberg W . Energy saving potentials of an efficient recycling process of different aluminum rejects. Energy Reports, 2022, 8: 399-404.
- 18.
CUI J.R. ; ROVEN H .J. Recycling of automotive aluminum. Transactions of Nonferrous Metals Society of China, 2010, 20(11): 2057-2063.
- 19.
Horton P. ; Allwood J. ; Cassell P. ; et al . Material demand reduction and closed-loop recycling automotive aluminium. MRS Advances, 2018, 3(25): 1393-1398.
- 20.
Sutherland J.W. ; Skerlos S.J. ; Haapala K.R. ; et al . Industrial sustainability: reviewing the past and envisioning the future. Journal of Manufacturing Science and Engineering, 2020, 142(11): 110806.
- 21.
Matsubara S . Incremental backward bulge forming of a sheet metal with a hemispherical head tool: a study of a numerical control forming system Ⅱ. The Japan Society for Technology of Plasticity, 1994, 35: 1311-1316.
- 22.
Amino M. ; Mizoguchi M. ; Terauchi Y. ; et al . Current status of “dieless” amino’s incremental forming. Procedia Engineering, 2014, 81: 54-62.
- 23.
Cristino V.A. ; Magrinho J.P. ; Centeno G. ; et al . Theory of single point incremental forming of tubes. Journal of Materials Processing Technology, 2021, 287: 116659.
- 24.
Martins P .A.F.; Bay N.; Skjoedt M.; et al. Theory of single point incremental forming. CIRP Annals, 2008, 57(1): 247-252.
- 25.
Gohil A. ; Modi B . Review of the effect of process parameters on performance measures in the incremental sheet forming process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235(3): 303-332.
- 26.
Park J.J. ; Kim Y.H. . Fundamental studies on the incremental sheet metal forming technique. Journal of Materials Processing Technology, 2003, 140(1/3): 447-453.
- 27.
Ji Y.H. ; Park J .J. Formability of Magnesium AZ31 sheet in the incremental forming at warm temperature. Journal of Materials Processing Technology, 2008, 201(1/3): 354-358.
- 28.
Duflou J.R. ; Callebaut B. ; Verbert J. ; et al . Laser assisted incremental forming: formability and accuracy improvement. CIRP Annals, 2007, 56(1): 273-276.
- 29.
Fan G.Q. ; Gao L. ; Hussain G. ; et al . Electric hot incremental forming: a novel technique. International Journal of Machine Tools and Manufacture, 2008, 48(15): 1688-1692.
- 30.
Ambrogio G. ; Filice L. ; Manco G .L. Warm incremental forming of magnesium alloy AZ31. CIRP Annals, 2008, 57(1): 257-260.
- 31.
Liu Z .B. Heat-assisted incremental sheet forming: a state-of-the-art review. The International Journal of Advanced Manufacturing Technology, 2018, 98(9): 2987-3003.
- 32.
Araghi B.T. ; Manco G.L. ; Bambach M. ; et al . Investigation into a new hybrid forming process: ncremental sheet forming combined with stretch forming. CIRP Annals, 2009, 58(1): 225-228.
- 33.
Lu B. ; Chen J. ; Ou H. ; et al . Feature-based tool path generation approach for incremental sheet forming process. Journal of Materials Processing Technology, 2013, 213(7): 1221-1233.
- 34.
Lin J.L. ; Dean T.A. ; Garrett R.P. ; et al . Process for forming metal alloy sheet components: British, GB2007004347. 2008-10-23.
- 35.
Li H.H. ; Hu Z.L. ; Chen Y.Z. ; et al . Modeling mechanical properties and plastic strain for hot forming-quenching AA6061 aluminum alloy parts. International Journal of Lightweight Materials and Manufacture, 2020, 3(1): 66-72.
- 36.
Zheng K.L. ; Dong Y.C. ; Zheng J.H. ; et al . The effect of hot form quench (HFQ®) conditions on precipitation and mechanical properties of aluminium alloys. Materials Science and Engineering: A, 2019, 761: 138017.
- 37.
- 38.
Wang L.L. ; Dean T. ; Lin J .G. Innovation, development and implementation of the HFQ® process. Zhang, Y.S.; Ma, M.T. Advanced high strength steel and press hardening. Singapore: World Scientific, 2017: 289-300.
- 39.
Garrett R.P. ; Lin J. ; Dean T .A. Solution heat treatment and cold die quenching in forming AA 6xxx sheet components: feasibility study. Advanced Materials Research, 2005, 6/8: 673-680.
- 40.
Barenji B.A. ; Eivani A.R. ; Hasheminiasari M. ; et al . Effects of hot forming cold die quenching and inter-pass solution treatment on the evolution of microstructure and mechanical properties of AA2024 aluminum alloy after equal channel angular pressing. Journal of Materials Research and Technology, 2020, 9(2): 1683-1697.
- 41.
Barenji B.A. ; Eivani A.R. ; Hasheminiasari M. ; et al . Application of hot forming cold die quenching for facilitating equal channel angular pressing of AA2024 aluminum alloy. Journal of Alloys and Compounds, 2019, 791: 265-277.
- 42.
Mohamed M.S. ; Foster A.D. ; Lin J.G. ; et al . Investigation of deformation and failure features in hot stamping of AA6082: experimentation and modelling. International Journal of Machine Tools and Manufacture, 2012, 53(1): 27-38.
- 43.
Garrett R.P. ; Lin J. ; Dean T .A. An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling. International Journal of Plasticity, 2005, 21(8): 1640-1657.
- 44.
Meng Q.D. ; Yu G.C. ; Huang X.Y. ; et al . Study on a straightening process by reciprocating bending for metal profiles. Metallurgical Research & Technology, 2021, 118(6): 605.
- 45.
Guan B. ; Zang Y. ; Wu D.P. ; et al . Stress-inheriting behavior of H-beam during roller straightening process. Journal of Materials Processing Technology, 2017, 244: 253-272.
- 46.
Güner A. ; Gösling M. ; Burchitz I. ; et al . Experimental and numerical investigation of ironing in deep drawn parts. Journal of Physics: Conference Series, 2018, 1063: 012105.
- 47.
Raknes C.A. ; Ma J. ; Welo T. ; et al . A new mechanical calibration strategy for U-channel extrusions. The International Journal of Advanced Manufacturing Technology, 2020, 110(1): 241-253.
- 48.
Zhou X.Y. ; Welo T. ; Ma J. ; et al . Deformation characteristics in a stretch-based dimensional correction method for open, thin-walled extrusions. Metals, 2021, 11(11): 1786.
- 49.
Das S .K. Emerging trends in aluminum recycling: reasons and responses. TMS (The Minerals, Metals & Materials Society) Annual Meeting, San Antonio TX (US): TMS, 2006: 911-916.
- 50.
Gaustad G. ; Olivetti E. ; Kirchain R . Design for recycling. Journal of Industrial Ecology, 2010, 14(2): 286-308.
- 51.
Zhu Y.X. ; Chappuis L.B. ; de Kleine R. ; et al . The coming wave of aluminum sheet scrap from vehicle recycling in the United States. Resources Conservation and Recycling, 2021, 164: 105208.
- 52.
Schultz P.B. ; Wyss R .K. Color sorting aluminum alloys for recycling-Part Ⅱ. Plating and Surface Finishing, 2000, 87(6): 62-65.
- 53.
Gesing A. ; Wolanski R . Recycling light metals from end-of-life vehicle. JOM, 2001, 53(11): 21-23.
- 54.
Gesing A. ; Harbeck H . Particle sorting of light-metal alloys and expanded use of manufacturing scrap in automotive, marine and aerospace markets. 2008 Global Symposium on Recycling, Waste Treatment and Clean Technology, Cancun, Mexico: The Minerals, Metals, & Materials Society, 2008: 1-10.
- 55.
Utigard T .A. The properties and uses of fluxes in molten aluminum processing. JOM, 1998, 50(11): 38-43.
- 56.
Rao S .R. Resource recovery and recycling from metallurgical wastes. Amsterdam: Elsevier, 2006.
- 57.
Gronostajski J. ; Marciniak H. ; Matuszak A . New methods of aluminium and aluminium-alloy chips recycling. Journal of Materials Processing Technology, 2000, 106(1/3): 34-39.
- 58.
Thein M.A. ; Lu L. ; Lai M .O. Mechanical properties of nanostructured Mg–5wt%Al–x wt%AlN composite synthesized from Mg chips. Composite Structures, 2006, 75(1/4): 206-212.
- 59.
McDonald D.T. ; Luo P. ; Palanisamy S. ; et al . Ti-6Al-4V recycled from machining chips by equal channel angular pressing. Key Engineering Materials, 2012, 520: 295-300.
- 60.
Luo P. ; McDonald D.T. ; Palanisamy S. ; et al . Ultrafine-grained pure Ti recycled by equal channel angular pressing with high strength and good ductility. Journal of Materials Processing Technology, 2013, 213(3): 469-476.
- 61.
Zhilyaev A.P. ; Gimazov A.A. ; Raab G.I. ; et al . Using high-pressure torsion for the cold-consolidation of copper chips produced by machining. Materials Science and Engineering: A, 2008, 486(1/2): 123-126.
- 62.
Sugiyama S. ; Mera T. ; Yanagimoto J . Recycling of minute metal scraps by semisolid processing: manufacturing of design materials. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1567-1571.
- 63.
Xu H.Y. ; Ji Z.S. ; Hu M.L. ; et al . Microstructure evolution of hot pressed AZ91D alloy chips reheated to semi-solid state. Transactions of Nonferrous Metals Society of China, 2012, 22(12): 2906-2912.
- 64.
Wu H.Y. ; Hsu C.C. ; Won J.B. ; et al . Effect of heat treatment on the microstructure and mechanical properties of the consolidated Mg alloy AZ91D machined chips. Journal of Materials Processing Technology, 2009, 209(8): 4194-4200.
- 65.
Borah R. ; Hughson F.R. ; Johnston J. ; et al . On battery materials and methods. Materials Today Advances, 2020, 6: 100046.
- 66.
Nitta N. ; Wu F.X. ; Lee J.T. ; et al . Li-ion battery materials: present and future. Materials Today, 2015, 18(5): 252-264.
- 67.
Kim H.J. ; Krishna T .N.V.; Zeb K.; et al. A comprehensive review of li-ion battery materials and their recycling techniques. Electronics, 2020, 9(7): 1161.