2504000479
  • Open Access
  • Review
Lightweight Materials in Electric Vehicles
  • Xianyan Zhou 1, *,   
  • Jun Jiang 2,   
  • Zhili Hu 3,   
  • Lin Hua 3

Received: 23 Sep 2022 | Accepted: 21 Nov 2022 | Published: 18 Dec 2022

Abstract

Lightweight materials are highly demanded in electric vehicles (EVs) to reduce environmental impacts and energy consumption. Aluminium alloys are promising materials in EVs due to their advantages such as high specific strength, corrosion resistance and recyclability. However, forming complex-shaped thin-wall aluminium products is challenging due to their poor formability and limited dimensional accuracy. Meanwhile, recycling some of the high-strength aluminium alloys from EVs is still challenging. This review highlights some of the future potential aluminium forming techniques for EV production, including incremental sheet forming (ISF), hot forming and quenching (HFQ ® ) technique, and transverse stretching and local bending (TSLB). Also, the issues associated with aluminium recycling are listed and discussed. This review provides scientific guidance to the industry and the scientific community for advancing the applications of aluminium alloys in EVs.

References 

  • 1.
    International Energy Agency . Global EV outlook 2022: securing supplies for an electric future. Available online: http://www.indiaenvironmentportal.org.in/content/472889/global-ev-outlook-2022-securing-supplies-for-an-electric-future/# (accessed on 14 September 2022).
  • 2.
    IEA (2018). Sustainable development scenario. 2019.
  • 3.
    Jung H. ; Silva R. ; Han M . Scaling trends of electric vehicle performance: driving range, fuel economy, peak power output, and temperature effect. World Electric Vehicle Journal, 2018, 9(4): 46.
  • 4.
    Redelbach M. ; Klötzke M. ; Friedrich H .E. Impact of lightweight design on energy consumption and cost effectiveness of alternative powertrain concepts. EEVC European Electric Vehicle Congress, Brüssel, Belgien: DLR, 2012: 1-9.
  • 5.
    Zheng K.L. ; Politis J.J. ; Wang L.N. ; et al . A review on forming techniques for manufacturing lightweight complex—shaped aluminium panel components. International Journal of Lightweight Materials and Manufacture, 2018, 1(2): 55-80.
  • 6.
    van Acker K. ; Verpoest I. ; de Moor J. ; et al . Lightweight materials for the automotive: environmental impact analysis of the use of composites. La Revue de Métallurgie, 2009, 106(12): 541-546.
  • 7.
    Taub A.I. ; Krajewski P.E. ; Luo A.A. ; et al . The evolution of technology for materials processing over the last 50 years: the automotive example. JOM, 2007, 59(2): 48-57.
  • 8.
    Industrials LGC . Electric vehicles: making them lighter, safer and more efficient with aluminum alloys. (2022-03-18)[2022-09-06]. https://www.armi.com/blog/electric-vehicles-making-them-lighter-safer-and-more-efficient-with-aluminum-alloys.
  • 9.
    Hughs, C. A2mac1 automotive benchmarking. 2018.
  • 10.
    Green Car Congress . CRU: EVs will transform aluminum demand. Available online: https://www.greencarcongress.com/2018/02/20180220-cru.html (accessed on 13 September 2022).
  • 11.
    Shui L. ; Chen F.Y. ; Garg A. ; et al . Design optimization of battery pack enclosure for electric vehicle. Structural and Multidisciplinary Optimization, 2018, 58(1): 331-347.
  • 12.
    Castelvecchi D . Electric cars and batteries: how will the world produce enough?. Nature, 2021, 596: 336-339.
  • 13.
    Zhou X.Y. ; Hu Z.L. ; Qin X.P. ; et al . Study on the stress characteristic and fatigue life of the shredder pin. Engineering Failure Analysis, 2016, 59: 444-455.
  • 14.
    Zhou X.Y. ; Hu Z.L. ; Xiao X. ; et al . Research on shredding process and characteristics of multi-material plates for recycled cars. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230(10): 1834-1844.
  • 15.
    Wan B.B. ; Chen W.P. ; Lu T.W. ; et al . Review of solid state recycling of aluminum chips. Resources, Conservation and Recycling, 2017, 125: 37-47.
  • 16.
    Shamsudin S. ; Lajis M.A. ; Zhong Z .W. Solid-state recycling of light metals: a review. Advances in Mechanical Engineering, 2016, 8(8): 1-23.
  • 17.
    Borgert T. ; Homberg W . Energy saving potentials of an efficient recycling process of different aluminum rejects. Energy Reports, 2022, 8: 399-404.
  • 18.
    CUI J.R. ; ROVEN H .J. Recycling of automotive aluminum. Transactions of Nonferrous Metals Society of China, 2010, 20(11): 2057-2063.
  • 19.
    Horton P. ; Allwood J. ; Cassell P. ; et al . Material demand reduction and closed-loop recycling automotive aluminium. MRS Advances, 2018, 3(25): 1393-1398.
  • 20.
    Sutherland J.W. ; Skerlos S.J. ; Haapala K.R. ; et al . Industrial sustainability: reviewing the past and envisioning the future. Journal of Manufacturing Science and Engineering, 2020, 142(11): 110806.
  • 21.
    Matsubara S . Incremental backward bulge forming of a sheet metal with a hemispherical head tool: a study of a numerical control forming system Ⅱ. The Japan Society for Technology of Plasticity, 1994, 35: 1311-1316.
  • 22.
    Amino M. ; Mizoguchi M. ; Terauchi Y. ; et al . Current status of “dieless” amino’s incremental forming. Procedia Engineering, 2014, 81: 54-62.
  • 23.
    Cristino V.A. ; Magrinho J.P. ; Centeno G. ; et al . Theory of single point incremental forming of tubes. Journal of Materials Processing Technology, 2021, 287: 116659.
  • 24.
    Martins P .A.F.; Bay N.; Skjoedt M.; et al. Theory of single point incremental forming. CIRP Annals, 2008, 57(1): 247-252.
  • 25.
    Gohil A. ; Modi B . Review of the effect of process parameters on performance measures in the incremental sheet forming process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235(3): 303-332.
  • 26.
    Park J.J. ; Kim Y.H. . Fundamental studies on the incremental sheet metal forming technique. Journal of Materials Processing Technology, 2003, 140(1/3): 447-453.
  • 27.
    Ji Y.H. ; Park J .J. Formability of Magnesium AZ31 sheet in the incremental forming at warm temperature. Journal of Materials Processing Technology, 2008, 201(1/3): 354-358.
  • 28.
    Duflou J.R. ; Callebaut B. ; Verbert J. ; et al . Laser assisted incremental forming: formability and accuracy improvement. CIRP Annals, 2007, 56(1): 273-276.
  • 29.
    Fan G.Q. ; Gao L. ; Hussain G. ; et al . Electric hot incremental forming: a novel technique. International Journal of Machine Tools and Manufacture, 2008, 48(15): 1688-1692.
  • 30.
    Ambrogio G. ; Filice L. ; Manco G .L. Warm incremental forming of magnesium alloy AZ31. CIRP Annals, 2008, 57(1): 257-260.
  • 31.
    Liu Z .B. Heat-assisted incremental sheet forming: a state-of-the-art review. The International Journal of Advanced Manufacturing Technology, 2018, 98(9): 2987-3003.
  • 32.
    Araghi B.T. ; Manco G.L. ; Bambach M. ; et al . Investigation into a new hybrid forming process: ncremental sheet forming combined with stretch forming. CIRP Annals, 2009, 58(1): 225-228.
  • 33.
    Lu B. ; Chen J. ; Ou H. ; et al . Feature-based tool path generation approach for incremental sheet forming process. Journal of Materials Processing Technology, 2013, 213(7): 1221-1233.
  • 34.
    Lin J.L. ; Dean T.A. ; Garrett R.P. ; et al . Process for forming metal alloy sheet components: British, GB2007004347. 2008-10-23.
  • 35.
    Li H.H. ; Hu Z.L. ; Chen Y.Z. ; et al . Modeling mechanical properties and plastic strain for hot forming-quenching AA6061 aluminum alloy parts. International Journal of Lightweight Materials and Manufacture, 2020, 3(1): 66-72.
  • 36.
    Zheng K.L. ; Dong Y.C. ; Zheng J.H. ; et al . The effect of hot form quench (HFQ®) conditions on precipitation and mechanical properties of aluminium alloys. Materials Science and Engineering: A, 2019, 761: 138017.
  • 37.
    Bakewell J . Drawing attention: aluminium hot form quench. Available online: https://www.automotivemanufacturingsolutions.com/aluminium/drawing-attention-aluminium-hot-form-quench/ 39731.article (accessed on 14 September 2022).
  • 38.
    Wang L.L. ; Dean T. ; Lin J .G. Innovation, development and implementation of the HFQ® process. Zhang, Y.S.; Ma, M.T. Advanced high strength steel and press hardening. Singapore: World Scientific, 2017: 289-300.
  • 39.
    Garrett R.P. ; Lin J. ; Dean T .A. Solution heat treatment and cold die quenching in forming AA 6xxx sheet components: feasibility study. Advanced Materials Research, 2005, 6/8: 673-680.
  • 40.
    Barenji B.A. ; Eivani A.R. ; Hasheminiasari M. ; et al . Effects of hot forming cold die quenching and inter-pass solution treatment on the evolution of microstructure and mechanical properties of AA2024 aluminum alloy after equal channel angular pressing. Journal of Materials Research and Technology, 2020, 9(2): 1683-1697.
  • 41.
    Barenji B.A. ; Eivani A.R. ; Hasheminiasari M. ; et al . Application of hot forming cold die quenching for facilitating equal channel angular pressing of AA2024 aluminum alloy. Journal of Alloys and Compounds, 2019, 791: 265-277.
  • 42.
    Mohamed M.S. ; Foster A.D. ; Lin J.G. ; et al . Investigation of deformation and failure features in hot stamping of AA6082: experimentation and modelling. International Journal of Machine Tools and Manufacture, 2012, 53(1): 27-38.
  • 43.
    Garrett R.P. ; Lin J. ; Dean T .A. An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling. International Journal of Plasticity, 2005, 21(8): 1640-1657.
  • 44.
    Meng Q.D. ; Yu G.C. ; Huang X.Y. ; et al . Study on a straightening process by reciprocating bending for metal profiles. Metallurgical Research & Technology, 2021, 118(6): 605.
  • 45.
    Guan B. ; Zang Y. ; Wu D.P. ; et al . Stress-inheriting behavior of H-beam during roller straightening process. Journal of Materials Processing Technology, 2017, 244: 253-272.
  • 46.
    Güner A. ; Gösling M. ; Burchitz I. ; et al . Experimental and numerical investigation of ironing in deep drawn parts. Journal of Physics: Conference Series, 2018, 1063: 012105.
  • 47.
    Raknes C.A. ; Ma J. ; Welo T. ; et al . A new mechanical calibration strategy for U-channel extrusions. The International Journal of Advanced Manufacturing Technology, 2020, 110(1): 241-253.
  • 48.
    Zhou X.Y. ; Welo T. ; Ma J. ; et al . Deformation characteristics in a stretch-based dimensional correction method for open, thin-walled extrusions. Metals, 2021, 11(11): 1786.
  • 49.
    Das S .K. Emerging trends in aluminum recycling: reasons and responses. TMS (The Minerals, Metals & Materials Society) Annual Meeting, San Antonio TX (US): TMS, 2006: 911-916.
  • 50.
    Gaustad G. ; Olivetti E. ; Kirchain R . Design for recycling. Journal of Industrial Ecology, 2010, 14(2): 286-308.
  • 51.
    Zhu Y.X. ; Chappuis L.B. ; de Kleine R. ; et al . The coming wave of aluminum sheet scrap from vehicle recycling in the United States. Resources Conservation and Recycling, 2021, 164: 105208.
  • 52.
    Schultz P.B. ; Wyss R .K. Color sorting aluminum alloys for recycling-Part Ⅱ. Plating and Surface Finishing, 2000, 87(6): 62-65.
  • 53.
    Gesing A. ; Wolanski R . Recycling light metals from end-of-life vehicle. JOM, 2001, 53(11): 21-23.
  • 54.
    Gesing A. ; Harbeck H . Particle sorting of light-metal alloys and expanded use of manufacturing scrap in automotive, marine and aerospace markets. 2008 Global Symposium on Recycling, Waste Treatment and Clean Technology, Cancun, Mexico: The Minerals, Metals, & Materials Society, 2008: 1-10.
  • 55.
    Utigard T .A. The properties and uses of fluxes in molten aluminum processing. JOM, 1998, 50(11): 38-43.
  • 56.
    Rao S .R. Resource recovery and recycling from metallurgical wastes. Amsterdam: Elsevier, 2006.
  • 57.
    Gronostajski J. ; Marciniak H. ; Matuszak A . New methods of aluminium and aluminium-alloy chips recycling. Journal of Materials Processing Technology, 2000, 106(1/3): 34-39.
  • 58.
    Thein M.A. ; Lu L. ; Lai M .O. Mechanical properties of nanostructured Mg–5wt%Al–x wt%AlN composite synthesized from Mg chips. Composite Structures, 2006, 75(1/4): 206-212.
  • 59.
    McDonald D.T. ; Luo P. ; Palanisamy S. ; et al . Ti-6Al-4V recycled from machining chips by equal channel angular pressing. Key Engineering Materials, 2012, 520: 295-300.
  • 60.
    Luo P. ; McDonald D.T. ; Palanisamy S. ; et al . Ultrafine-grained pure Ti recycled by equal channel angular pressing with high strength and good ductility. Journal of Materials Processing Technology, 2013, 213(3): 469-476.
  • 61.
    Zhilyaev A.P. ; Gimazov A.A. ; Raab G.I. ; et al . Using high-pressure torsion for the cold-consolidation of copper chips produced by machining. Materials Science and Engineering: A, 2008, 486(1/2): 123-126.
  • 62.
    Sugiyama S. ; Mera T. ; Yanagimoto J . Recycling of minute metal scraps by semisolid processing: manufacturing of design materials. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1567-1571.
  • 63.
    Xu H.Y. ; Ji Z.S. ; Hu M.L. ; et al . Microstructure evolution of hot pressed AZ91D alloy chips reheated to semi-solid state. Transactions of Nonferrous Metals Society of China, 2012, 22(12): 2906-2912.
  • 64.
    Wu H.Y. ; Hsu C.C. ; Won J.B. ; et al . Effect of heat treatment on the microstructure and mechanical properties of the consolidated Mg alloy AZ91D machined chips. Journal of Materials Processing Technology, 2009, 209(8): 4194-4200.
  • 65.
    Borah R. ; Hughson F.R. ; Johnston J. ; et al . On battery materials and methods. Materials Today Advances, 2020, 6: 100046.
  • 66.
    Nitta N. ; Wu F.X. ; Lee J.T. ; et al . Li-ion battery materials: present and future. Materials Today, 2015, 18(5): 252-264.
  • 67.
    Kim H.J. ; Krishna T .N.V.; Zeb K.; et al. A comprehensive review of li-ion battery materials and their recycling techniques. Electronics, 2020, 9(7): 1161.
Share this article:
How to Cite
Zhou, X.; Jiang, J.; Hu, Z.; Hua, L. Lightweight Materials in Electric Vehicles. International Journal of Automotive Manufacturing and Materials 2022, 1 (1), 3. https://doi.org/10.53941/ijamm0101003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2022 by the authors.