- 1.
Wei, H.; Feng, D.; Shu, G.; Pan, M.; Guo, Y.; Gao, D.; Li, W. Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine. Appl. Energy 2014, 132, 317–324.
- 2.
Román-Leshkov, Y.; Barrett, C.J.; Liu, Z.Y.; Dumesic, J.A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 2007, 447, 982–985.
- 3.
He, J.; Qiang, Q.; Liu, S.; Song, K.; Zhou, X.; Guo, J.; Zhang, B.; Li, C. Upgrading of biomass-derived furanic compounds into high-quality fuels involving aldol condensation strategy. Fuel 2021, 306, 121765.
- 4.
Zhao, H.; Holladay, J.E.; Brown, H.; Zhang, Z.C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 2007, 316, 1597–1600.
- 5.
Dumesic, J.A.; Roman-Leshkov, Y.; Chheda, J.N. Catalytic Process for Producing Furan Derivatives from Carbohydrates in a Biphasic Reactor. Google Patents No. 2653706A; 12 May 2015.
- 6.
Eldeeb, M.A.; Akih-Kumgeh, B. Recent trends in the production, combustion and modeling of furan-based fuels. Energies 2018, 11, 512.
- 7.
Liu, H.; Olalere, R.; Wang, C.; Ma, X.; Xu, H. Combustion characteristics and engine performance of 2-methylfuran compared to gasoline and ethanol in a direct injection spark ignition engine. Fuel 2021, 299, 120825.
- 8.
Wang, X.; Gao, J.; Chen, Z.; Chen, H.; Zhao, Y.; Huang, Y.; Chen, Z. Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review. Renewable Energy 2022, 194, 504–525.
- 9.
Zhou, Z.; Yan, F.; Zhang, G.; Wu, D.; Xu, H. A Study on the Dynamic Collision Behaviors of a Hydrous Ethanol Droplet on a Heated Surface. Processes 2023, 11, 1804.
- 10.
Jin, C.; Geng, Z.; Liu, X.; Ampah, J.D.; Ji, J.; Wang, G.; Niu, K.; Hu, N.; Liu, H. Effects of water content on the solubility between Isopropanol-Butanol-Ethanol (IBE) and diesel fuel under various ambient temperatures. Fuel 2021, 286, 119492.
- 11.
Qian, Y.; Zhu, L.; Wang, Y.; Lu, X. Recent progress in the development of biofuel 2, 5-dimethylfuran. Renewable Sustainable Energy Rev. 2015, 41, 633–646.
- 12.
Van, V.; Stahl, W.; Nguyen, H.V.L. The heavy atom microwave structure of 2-methyltetrahydrofuran. J. Mol. Struct. 2016, 1123, 24–29.
- 13.
Ma, X.; Jiang, C.; Xu, H.; Ding, H.; Shuai, S. Laminar burning characteristics of 2-methylfuran and isooctane blend fuels. Fuel 2014, 116, 281–291.
- 14.
Pan, M.; Shu, G.; Pan, J.; Wei, H.; Feng, D.; Guo, Y.; Liang, Y. Performance comparison of 2-methylfuran and gasoline on a spark-ignition engine with cooled exhaust gas recirculation. Fuel 2014, 132, 36–43.
- 15.
Wang, C.; Xu, H.; Daniel, R.; Ghafourian, A.; Herreros, J.M.; Shuai, S.; Ma, X. Combustion characteristics and emissions of 2-methylfuran compared to 2, 5-dimethylfuran, gasoline and ethanol in a DISI engine. Fuel 2013, 103, 200–211.
- 16.
Hoang, A.T. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renewable Sustainable Energy Rev. 2021, 148, 111265.
- 17.
Parry, L. Engine Combustion and Emission Performance of Furan Fuels in Comparison to Conventional Automotive Fuels. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2020.
- 18.
Thewes, M.; Muether, M.; Pischinger, S.; Budde, M.; Brunn, A.; Sehr, A.; Adomeit, P.; Klankermayer, J. Analysis of the impact of 2-methylfuran on mixture formation and combustion in a direct-injection spark-ignition engine. Energy Fuels 2011, 25, 5549–5561.
- 19.
Canakci, M.; Ozsezen, A.N.; Alptekin, E.; Eyidogan, M. Impact of alcohol—Gasoline fuel blends on the exhaust emission of an SI engine. Renewable Energy 2013, 52, 111–117.
- 20.
Bluhm, K.; Heger, S.; Redelstein, R.; Brendt, J.; Anders, N.; Mayer, P.; Schaeffer, A.; Hollert, H. Genotoxicity of three biofuel candidates compared to reference fuels. Environ. Toxicol. Pharmacol. 2018, 64, 131–138.
- 21.
Talibi, M.; Hellier, P.; Ladommatos, N. Investigating the Combustion and Emissions Characteristics of Biomass-Derived Platform Fuels as Gasoline Extenders in a Single Cylinder Spark-Ignition Engine. In SAE Technical Papers; SAE International: Warrendale, PA, USA, 2017.
- 22.
Rudolph, T.; Thomas, J. NOx, NMHC and CO emissions from biomass derived gasoline extenders. Biomass 1988, 16, 33–49.
- 23.
Tran, L.-S.; Glaude, P.-A.; Battin-Leclerc, F. Experimental study of pollutants formation in laminar premixed flames of tetrahydrofuran family fuels. In Proceedings of the 8th US National Combustion Meeting, Salt Lake City, UT, USA, 19–22 May 2013; pp. 1–15.
- 24.
Abraham, J.; Bracco, F.; Reitz, R. Comparisons of computed and measured premixed charge engine combustion. Combust. Flame 1985, 60, 309–322.
- 25.
Jayashankara, B.; Ganesan, V. Effect of fuel injection timing and intake pressure on the performance of a DI diesel engine–A parametric study using CFD. Energy Convers. Manage. 2010, 51, 1835–1848.
- 26.
Suryawanshi, J.G.; Deshpande, N. Effect of injection timing retard on emissions and performance of a pongamia oil methyl ester fuelled CI engine. In SAE Technical Paper; SAE International: Warrendale, PA, USA, 2005.
- 27.
Austin, E.; Hoang, K.T. Evaluation of gasmet TM DX-4015 series Fourier transform infrared gas analyzer. In DTIC Document; DTIC: Fairfax, VA, USA, 2009.
- 28.
Daniel, R.; Tian, G.; Xu, H.; Wyszynski, M.L.; Wu, X.; Huang, Z. Effect of spark timing and load on a DISI engine fuelled with 2, 5-dimethylfuran. Fuel 2011, 90, 449–458.
- 29.
Lucas, S.V.; Loehr, D.A.; Meyer, M.E.; Thomas, J.; Gordon, E.E. Exhaust emissions and field trial results of a new, oxygenated, non-petroleum-based, waste-derived gasoline blending component: 2-methyltetrahydrofuran. In SAE Technical Paper; SAE International: Warrendale, PA, USA, 1993.
- 30.
Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill Education: New York, NY, USA, 2018.
- 31.
Madsen, J.; Bjerg, B.S.; Hvelplund, T.; Weisbjerg, M.R.; Lund, P. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livest. Sci. 2010, 129, 223–227.
- 32.
Gupta, S.K.; Da, Y.; Zhang, Y.-B.; Pandey, V.; Zhang, J.-L. Tropospheric ozone is a catastrophe, and ethylenediurea (EDU) is a phytoprotectant, recent reports on climate change scenario: A review. Atmos. Pollut. Res. 2023, 14, 101907.
- 33.
Ainsworth, E.A. Understanding and improving global crop response to ozone pollution. Plant J. 2017, 90, 886–97.
- 34.
Levin, S.; Lilis, R. Diseases Associated with Exposure to Chemical Substances. Public Health Preventive Med. 2008, 619.
- 35.
van Thriel, C.; Boyes, W.K. Neurotoxicity of organic solvents: An update on mechanisms and effects. In Advances in Neurotoxicology; Elsevier: Amsterdam, Netherlands, 2022; pp. 133–201.
- 36.
Keller, N.; Ducamp, M.-.N.; Robert, D.; Keller, V. Ethylene removal and fresh product storage: A challenge at the frontiers of chemistry. Toward an approach by photocatalytic oxidation. Chem. Rev. 2013, 113, 5029–5070.
- 37.
Yang, X.; Gao, L.; Zhao, S.; Pan, G.; Fan, G.; Xia, Z.; Sun, X.; Xu, H.; Chen, Y.; Jin, X. Volatile Organic Compounds in the North China Plain: Characteristics, Sources, and Effects on Ozone Formation. Atmosphere 2023, 14, 318.
- 38.
Zhang, K.; Li, L.; Huang, L.; Wang, Y.; Huo, J.; Duan, Y.; Wang, Y.; Fu, Q. The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai. Atmos. Environ. 2020, 232, 117511.
- 39.
Terrill, J.; Van Horn, W.; Robinson, D.; Thomas, D. Acute inhalation toxicity of furan, 2-methylfuran, furfuryl alcohol, and furfural in the rat. Am. Ind. Hyg. Assoc. J. 1989, 50, A359–A361.
- 40.
Tabaran, A.F.; O’Sullivan, M.G.; Seabloom, D.E.; Vevang, K.R.; Smith, W.E.; Wiedmann, T.S.; Peterson, L.A. Inhaled Furan Selectively Damages Club Cells in Lungs of A/J Mice. Toxicol. Pathol. 2019, 47, 842–850.
- 41.
EFSA Panel on Contaminants in the Food Chain; Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; et al. Risks for public health related to the presence of furan and methylfurans in food. EFSA J. 2017, 15, e05005.
- 42.
Eastwood, P. Particulate Emissions from Vehicles; John Wiley & Sons: Hoboken, NJ, USA, 2008.
- 43.
Ursem, B. Climate shifts and the role of nano structured particles in the atmosphere. Atmos. Clim. Sci. 2015, 6, 51–76.
- 44.
Kittelson, D.B. Engines and nanoparticles: A review. J. Aerosol Sci. 1998, 29, 575–588.
- 45.
Armas, O.; Gómez, A.; Mata, C. Methodology for measurement of diesel particle size distributions from a city bus working in real traffic conditions. Meas. Sci. Technol. 2011, 22, 105404.