2504000565
  • Open Access
  • Article
Experimental Study on the Deflagration to Detonation Transition of Hydrogen Mixture under Elevated Pressure and Temperature Conditions
  • Xiao Yu,   
  • Long Jin,   
  • Linyan Wang,   
  • Navjot Sandhu,   
  • Ming Zheng *

Received: 26 Mar 2025 | Revised: 07 Apr 2025 | Accepted: 14 Apr 2025 | Published: 24 Apr 2025

Abstract

In this paper, the deflagration to detonation transition (DDT) process of a hydrogen-air mixture is investigated using a small tube with an inner diameter of 11.1 mm. A rapid compression machine (RCM) is utilized to compress the mixture, attaining high pressure and temperature to resemble engine applications. Both piezoelectric pressure transducers and ion sensors are used to detect the flame front, calculating the flame propagation speed. The background absolute pressure before DDT is adjusted from 20 kPa to 810 kPa via a combination of charging pressure and RCM compression, while the background temperature is adjusted from 296 K to 460 K with spark timing adjustment after the compression process of RCM. It is observed that background pressure is an important parameter that decides the existence of a successful DDT process, while background temperature offers a limited contribution to accelerating the flame speed within 1 m tube length.

References 

  • 1.
    Barsun, S.; Cheah, B.; Shelton, J. Renewable 49 Natural Gas in California; California Energy Commission: Sacramento, CA, USA, 2023.
  • 2.
    Karim, G.A. Hydrogen as a spark ignition engine fuel. Int. J. Hydrogen Energy 2003, 28, 569–577.
  • 3.
    Qiang, Y.; Zhao, S.; Su, F.; Wang, F.; Yang, J.; Wang, S.; Ji, C. Experimental and numerical assessment on co-combustion of hydrogen with ammonia in passive pre-chamber engines. Appl. Therm. Eng. 2025, 259, 124919. https://doi.org/10.1016/j.applthermaleng.2024.124919.
  • 4.
    Rueda-Vázquez, J.M.; Serrano, J.; Jiménez-Espadafor, F.J.; Dorado, M.P. Experimental analysis of the effect of hydrogen as the main fuel on the performance and emissions of a modified compression ignition engine with water injection and compression ratio reduction. Appl. Therm. Eng. 2024, 238, 121933. https://doi.org/10.1016/j.applthermaleng.2023.121933.
  • 5.
    Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.I.F.; Bowen, P.J. Ammonia for power. Prog. Energy Combust. Sci. 2018, 69, 63–102. https://doi.org/10.1016/j.pecs.2018.07.001.
  • 6.
    Nie, X.; Bi, Y.; Shen, L.; Lei, J.; Wan, M.; Wang, Z.; Liu, S.; Huang, F. Combustion and emission characteristics of ammonia-diesel dual fuel engine at different altitudes. Fuel 2024, 371, 132072. https://doi.org/10.1016/j.fuel.2024.132072.
  • 7.
    Reiter, A.J.; Kong, S.-C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel 2011, 90, 87–97. https://doi.org/10.1016/j.fuel.2010.07.055.
  • 8.
    Wei, H.; Zhang, R.; Chen, L.; Pan, J.; Wang, X. Effects of high ignition energy on lean combustion characteristics of natural gas using an optical engine with a high compression ratio. Energy 2021, 223, 120053. https://doi.org/10.1016/j.energy.2021.120053.
  • 9.
    Lee, K.; Bae, C.; Kang, K. The effects of tumble and swirl flows on flame propagation in a four-valve S.I. engine. Appl. Therm. Eng. 2007, 27, 2122–2130. https://doi.org/10.1016/j.applthermaleng.2006.11.011.
  • 10.
    Kaplan, M. Influence of swirl, tumble and squish flows on combustion characteristics and emissions in internal combustion engine-review. Int. J. Automot. Eng. Technol. 2019, 8, 83–102. https://doi.org/10.18245/ijaet.558258.
  • 11.
    Jin, L.; Leblanc, S.; Zhang, X.; Bastable, A.; Tjong, J.; Zheng, M. Impact of Discharge Current Profiling on Ignition Characteristics of Hydrogen/Methane Blends. In Proceedings of the ASME (American Society of Mechanical Engineers) 2022 ICE Forward Conference, Indianapolis, IN, USA, 16–19 October 2022; ISBN 978-0-7918-8654-0: V001T03A001. https://doi.org/10.1115/ICEF2022-88393.
  • 12.
    Yu, X.; Jin, L.; Reader, G.; Wang, M.; Zheng, M. Effective Ignition of Lean Methane/Hydrogen Mixture in a Rapid Compression Machine 2023-01–0255; SAE: Detroit, MI, USA, 2023. https://doi.org/10.4271/2023-01-0255.
  • 13.
    Han, X.; Yu, X.; Zhu, H.; Wang, L.; Yu, S.; Wang, M.; Zheng, M. Elastic breakdown via multi-core high frequency discharge for lean-burn ignition. Proc. Inst. Mech. Eng. Part. D J. Automob. Eng. 2022, 236, 2661–2680. https://doi.org/10.1177/09544070211062278.
  • 14.
    Han, X.; Yu, S.; Tjong, J.; Zheng, M. Study of an innovative three-pole igniter to improve efficiency and stability of gasoline combustion under charge dilution conditions. Appl. Energy 2020, 257, 113999. https://doi.org/10.1016/j.apenergy.2019.113999.
  • 15.
    Corrigan, D.J.; Di Blasio, G.; Ianniello, R.; Silvestri, N.; Breda, S.; Fontanesi, S.; Beatrice, C. Engine Knock Detection Methods for Spark Ignition and Prechamber Combustion Systems in a High-Performance Gasoline Direct Injection Engine. SAE Int. J. Engines 2022, 15, 883–897. https://doi.org/10.4271/03-15-06-0047.
  • 16.
    Yu, X.; Wang, L.; Yu, S.; Wang, M.; Zheng, M. Flame kernel development with radiofrequency oscillating plasma ignition. Plasma Sources Sci. Technol. 2022, 31, 055004. https://doi.org/10.1088/1361-6595/ac5f21.
  • 17.
    Tian, J.; Xiong, Y.; Wang, L.; Wang, Y.; Liu, P.; Shi, X.; Wang, N.; Yin, W.; Cheng, Y.; Zhao, Q. Experimental study of the effect of nanosecond pulse discharge parameters on the methane-air mixture combustion. Fuel 2024, 364, 131166. https://doi.org/10.1016/j.fuel.2024.131166.
  • 18.
    Merotto, L.; Balmelli, M.; Vera-Tudela, W.; Soltic, P. Comparison of ignition and early flame propagation in methane/air mixtures using nanosecond repetitively pulsed discharge and inductive ignition in a pre-chamber setup under engine relevant conditions. Combust. Flame 2022, 237, 111851. https://doi.org/10.1016/j.combustflame.2021.111851.
  • 19.
    Cathey, C.D.; Tang, T.; Shiraishi, T.; Urushihara, T.; Kuthi, A.; Gundersen, M.A. Nanosecond Plasma Ignition for Improved Performance of an Internal Combustion Engine. IEEE Trans. Plasma Sci. 2007, 35, 1664–1668. https://doi.org/10.1109/TPS.2007.907901.
  • 20.
    Alvarez, C.E.C.; Couto, G.E.; Roso, V.R.; Thiriet, A.B.; Valle, R.M. A review of prechamber ignition systems as lean combustion technology for SI engines. Appl. Therm. Eng. 2018, 128, 107–120. https://doi.org/10.1016/j.applthermaleng.2017.08.118.
  • 21.
    Tanoue, K.; Kimura, T.; Jimoto, T.; Hashimoto, J.; Moriyoshi, Y. Study of prechamber combustion characteristics in a rapid compression and expansion machine. Appl. Therm. Eng. 2017, 115, 64–71. https://doi.org/10.1016/j.applthermaleng.2016.12.079.
  • 22.
    Kendall, J. Mahle Liebherr Develop Active Pre Chamber Hydrogen Engine. 2021. Available online: https://www.sae.org/news/2021/11/mahle-liebherr-develop-active-pre-chamber-hydrogen-engine (accessed on 15 April 2025).
  • 23.
    Biswas, S.; Qiao, L. Prechamber Hot Jet Ignition of Ultra-Lean H 2 /Air Mixtures: Effect of Supersonic Jets and Combustion Instability. SAE Int. J. Engines 2016, 9, 1584–1592. https://doi.org/10.4271/2016-01-0795.
  • 24.
    Biswas, S.; Tanvir, S.; Wang, H.; Qiao, L. On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion. Appl. Therm. Eng. 2016, 106, 925–937. https://doi.org/10.1016/j.applthermaleng.2016.06.070.
  • 25.
    Tang, Q.; Sampath, R.; Sharma, P.; Marquez, M.E.; Cenker, E.; Magnotti, G. Study on the effects of narrow-throat pre-chamber geometry on the pre-chamber jet velocity using dual formaldehyde PLIF imaging. Combust. Flame 2022, 240, 111987. https://doi.org/10.1016/j.combustflame.2022.111987.
  • 26.
    Guo, X.; Li, T.; Chen, R.; Huang, S.; Zhou, X.; Wang, N.; Li, S. Effects of the nozzle design parameters on turbulent jet development of active pre-chamber. Energy 2024, 306, 132568. https://doi.org/10.1016/j.energy.2024.132568.
  • 27.
    Braun, E.; Lu, F.; Sagov, M.; Wilson, D.; Grubyi, P. Proof-of-Principle Detonation Driven, Linear Electric Generator Facility. In Proceedings of the 8th Annual International Energy Conversion Engineering Conference, American Institute of Aeronautics and Astronautics, Nashville, TN, USA, 25–28 July 2010; ISBN 978-1-62410-156-4. https://doi.org/10.2514/6.2010-6767.
  • 28.
    Lee, J.H.S. The Detonation Phenomenon; Cambridge University Press: Cambridge, UK, 2008.
  • 29.
    Bussing, T.; Pappas, G. An introduction to pulse detonation engines. In Proceedings of the 32nd Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, NV, USA, 10–13 January 1994. https://doi.org/10.2514/6.1994-263.
  • 30.
    Kailasanath, K. Applications of detonations to propulsion—A review. In Proceedings of the 37th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, NV, USA, 11–14 January1999. https://doi.org/10.2514/6.1999-1067.
  • 31.
    Razus, D.; Brinzea, V.; Mitu, M.; Oancea, D. Burning Velocity of Liquefied Petroleum Gas (LPG)−Air Mixtures in the Presence of Exhaust Gas. Energy Fuels 2010, 24, 1487–1494. https://doi.org/10.1021/ef901209q.
  • 32.
    Schefer, R.W.; White, C.; Keller, J.; Ca, L. Chapter 8—Lean Hydrogen Combustion. In Lean Combustion; Academic Press: Cambridge, MA, USA, 2008.
  • 33.
    Jacobs, S.; Döntgen, M.; Alquaity, A.B.S.; Kopp, W.A.; Kröger, L.C.; Burke, U.; Pitsch, H.; Leonhard, K.; Curran, H.J.; Heufer, K.A. Detailed kinetic modeling of dimethoxymethane. Part II: Experimental and theoretical study of the kinetics and reaction mechanism. Combust. Flame 2019, 205, 522–533. https://doi.org/10.1016/j.combustflame.2018.12.026.
  • 34.
    Goswami, M.; Bastiaans, R.J.M.; De Goey, L.P.H.; Konnov, A.A. Experimental and modelling study of the effect of elevated pressure on ethane and propane flames. Fuel 2016, 166, 410–418. https://doi.org/10.1016/j.fuel.2015.11.013.
  • 35.
    Luo, C.; Yu, Z.; Wang, Y.; Ai, Y. Experimental Investigation of Lean Methane–Air Laminar Premixed Flames at Engine-Relevant Temperatures. ACS Omega 2021, 6, 17977–17987. https://doi.org/10.1021/acsomega.1c01692.
  • 36.
    Sileghem, L.; Alekseev, V.A.; Vancoillie, J.; Nilsson, E.J.K.; Verhelst, S.; Konnov, A.A. Laminar burning velocities of primary reference fuels and simple alcohols. Fuel 2014, 115, 32–40. https://doi.org/10.1016/j.fuel.2013.07.004.
  • 37.
    Huzayyin, A.S.; Moneib, H.A.; Shehatta, M.S.; Attia, A.M.A. Laminar burning velocity and explosion index of LPG–air and propane–air mixtures. Fuel 2008, 87, 39–57. https://doi.org/10.1016/j.fuel.2007.04.001.
  • 38.
    Dirrenberger, P.; Glaude, P.A.; Bounaceur, R.; Le Gall, H.; Da Cruz, A.P.; Konnov, A.A.; Battin-Leclerc, F. Laminar burning velocity of gasolines with addition of ethanol. Fuel 2014, 115, 162–169. https://doi.org/10.1016/j.fuel.2013.07.015.
  • 39.
    De Vries, J.; Lowry, W.B.; Serinyel, Z.; Curran, H.J.; Petersen, E.L. Laminar flame speed measurements of dimethyl ether in air at pressures up to 10 atm. Fuel 2011, 90, 331–338. https://doi.org/10.1016/j.fuel.2010.07.040.
  • 40.
    Adusumilli, S.; Seitzman, J. Laminar flame speed measurements of ethylene at high preheat temperatures and for diluted oxidizers. Combust. Flame 2021, 233, 111564. https://doi.org/10.1016/j.combustflame.2021.111564.
  • 41.
    Rokni, E.; Moghaddas, A.; Askari, O.; Metghalchi, H. Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures. J. Energy Resour. Technol. 2015, 137, 012204. https://doi.org/10.1115/1.4028363.
  • 42.
    Gillespie, F.; Metcalfe, W.K.; Dirrenberger, P.; Herbinet, O.; Glaude, P.-A.; Battin-Leclerc, F.; Curran, H.J. Measurements of flat-flame velocities of diethyl ether in air. Energy 2012, 43, 140–145. https://doi.org/10.1016/j.energy.2012.01.021.
  • 43.
    Dirrenberger, P.; Le Gall, H.; Bounaceur, R.; Glaude, P.-A.; Battin-Leclerc, F. Measurements of Laminar Burning Velocities above Atmospheric Pressure Using the Heat Flux Method—Application to the Case of n-Pentane. Energy Fuels 2015, 29, 398–404. https://doi.org/10.1021/ef502036j.
  • 44.
    Kindracki, J. Study of detonation initiation in kerosene–oxidizer mixtures in short tubes. Shock Waves 2014, 24, 603–618. https://doi.org/10.1007/s00193-014-0519-2.
  • 45.
    Guirao, C.M.; Knystautas, R.; Lee, J.H. A Summary of Hydrogen Air Detonation Experiments; U.S. Nuclear Regulatory Commission: Washington, DC, USA, 1989.
  • 46.
    Kuznetsov, M.; Alekseev, V.; Matsukov, I.; Dorofeev, S. DDT in a smooth tube filled with a hydrogen–oxygen mixture. Shock Waves 2005, 14, 205–215. https://doi.org/10.1007/s00193-005-0265-6.
  • 47.
    United States Nuclear Regulatiory Commission. Three Mile Island Accident. Available online: https://www.nrc.gov/docs/ML0825/ML082560250.pdf (accessed on 15 April 2025).
  • 48.
    Manzhalei, V.I.; Mitrofanov, V.V.; Subbotin, V.A. Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures. Combust. Explos. Shock Waves 1974, 10, 89–95. https://doi.org/10.1007/BF01463793.
  • 49.
    Shen, X.; Fu, W.; Liang, W.; Wen, J.X.; Liu, H.; Law, C.K. Strong flame acceleration and detonation limit of hydrogen-oxygen mixture at cryogenic temperature. Proc. Combust. Inst. 2023, 39, 2967–2977. https://doi.org/10.1016/j.proci.2022.07.005.
  • 50.
    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Tagawa, H.; Malliakos, A. Hydrogen Detonation and Detonation Transition Data from The High-Temperature Combustion Facility; Brookhaven National Lab. (BNL): Upton, NY, USA, 1995.
  • 51.
    Bangalore Venkatesh, P.; Graziano, T.; Bane, S.P.; Meyer, S.; Grubelich, M.C. Deflagration-to-Detonation Transition in Nitrous Oxide-Ethylene Mixtures and its Application to Pulsed Propulsion Systems. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Grapevine, TX, USA, 9–13 January 2017; ISBN 978-1-62410-447-3. https://doi.org/10.2514/6.2017-0372.
  • 52.
    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.; Berman, M. Detonability of H2 Air Diluent Mixtures; U.S. Nuclear Regulatory Commission: Washington, DC, USA, 1987.
  • 53.
    Wu, M.; Burke, M.P.; Son, S.F.; Yetter, R.A. Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes. Proc. Combust. Inst. 2007, 31, 2429–2436. https://doi.org/10.1016/j.proci.2006.08.098.
  • 54.
    Li, J.; Pan, J.; Jiang, C.; Ni, J.; Pan, Z.; Otchere, P. Effect of hydrogen addition on the detonation performances of methane/oxygen at different equivalence ratios. Int. J. Hydrogen Energy 2019, 44, 27974–27983. https://doi.org/10.1016/j.ijhydene.2019.09.016.
  • 55.
    Kuznetsov, M.; Ciccarelli, G.; Dorofeev, S.; Alekseev, V.; Yankin Yu Kim, T.H. DDT in methane-air mixtures. Shock Waves 2002, 12, 215–220. https://doi.org/10.1007/s00193-002-0155-0.
  • 56.
    Saif, M.; Wang, W.; Pekalski, A.; Levin, M.; Radulescu, M.I. Chapman Jouguet deflagrations and their transition to detonation. Proc. Combust. Inst. 2017, 36, 2771–2779. https://doi.org/10.1016/j.proci.2016.07.122.
  • 57.
    Litchfield, E.L.; Hay, M.H.; Forshey, D.R. Direct electrical initiation of freely expanding gaseous detonation waves. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1963.
  • 58.
    Zitoun, R.; Desbordes, D.; Guerraud, C.; Deshaies, B. Direct initiation of detonation in cryogenic gaseous H2-O2 mixtures. Shock Waves 1995, 4, 331–337
  • 59.
    Matsui, H.; Lee, J.H. On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures. Symp. Combust. 1979, 17, 1269–1280. https://doi.org/10.1016/S0082-0784(79)80120-4.
  • 60.
    Desbordes, D. Aspects Stationnaires et Transitoires de la Détonation dans les gaz: Relation Avec la Structure Cellulaire du Front. Ph.D. Thesis, University of Poitiers, Poitiers, France, 1990.
  • 61.
    Knystautas, R.; Lee, J.H.; Guirao, C.M. The critical tube diameter for detonation failure in hydrocarbon-air mixtures. Combust. Flame 1982, 48, 63–83. https://doi.org/10.1016/0010-2180(82)90116-X.
  • 62.
    Strehlow, R.A.; Maurer, R.E.; Rajan, S. Transverse waves in detonations. I—Spacing in the hydrogen-oxygen system. AIAA J. 1969, 7, 323–328. https://doi.org/10.2514/3.5093.
  • 63.
    Strehlow, R.A.; Engel, C.D. Transverse waves in detonations. II—Structure and spacing in H2–O2, C2H2–O2, and CH4–O2 systems. AIAA J. 1969, 7, 492–496. https://doi.org/10.2514/3.5134.
  • 64.
    Liberman, M.A.; Ivanov, M.F.; Kiverin, A.D.; Kuznetsov, M.S.; Chukalovsky, A.A.; Rakhimova, T.V. Deflagration-to-detonation transition in highly reactive combustible mixtures. Acta Astronaut. 2010, 67, 688–701. https://doi.org/10.1016/j.actaastro.2010.05.024.
  • 65.
    Lee, J.H.; Matsui, H. A comparison of the critical energies for direct initiation of spherical detonations in acetylene oxygen mixtures. Combust. Flame 1977, 28, 61–66. https://doi.org/10.1016/0010-2180(77)90008-6.
  • 66.
    Voytsekhovskiy, B.V.; Mitrofanov, V.V.; Topchiyan, M.E. The structure of a detonation front in gases. Combust. Explos. Shock. Waves 1969, 5, 267–273.
  • 67.
    Wang, C.; Wu, S.; Zhao, Y.; Addai, E.K. Experimental investigation on explosion flame propagation of H2-O2 in a small scale pipeline. J. Loss Prev. Process Ind. 2017, 49, 612–619. https://doi.org/10.1016/j.jlp.2017.06.004.
  • 68.
    Bykov, V.; Koksharov, A.; Kuznetsov, M.; Zhukov, V.P. Hydrogen-oxygen flame acceleration in narrow open ended channels. Combust. Flame 2022, 238, 111913. https://doi.org/10.1016/j.combustflame.2021.111913.
  • 69.
    Denisov, Y.N.; Troshin, Y.K. The fine structure of spinning detonation. Combust. Flame 1971, 16, 141–145. https://doi.org/10.1016/S0010-2180(71)80079-2.
  • 70.
    Barthel, H.O. Predicted spacings in hydrogen-oxygen-argon detonations. Phys. Fluids 1974, 17, 1547–1553. https://doi.org/10.1063/1.1694932.
  • 71.
    Agafonov, G.L.; Frolov, S.M. Computation of the detonation limits in gaseous hydrogen-containing mixtures. Combust. Explos. Shock Waves 1994, 30, 91–100. https://doi.org/10.1007/BF00787891.
  • 72.
    Benedick, W.B.; Knystautas, R.; Lee, J.H.S. (Eds.) Large Scale Experiments on the Transmission of Fuel Air Detonations from Two Dimensional Channels; AIAA: Reston, VA, USA, 1983. https://doi.org/10.2514/4.865695.
  • 73.
    Ciccarelli, G.; Ginsberg, T.; Boccio, J.L. Detonation Cell Size Measurements in High-Temperature Hydrogen-Air-Steam Mixtures at the BNL High-Temperature Combustion Facility. 1997. Available online: https://www.osti.gov/servlets/purl/563843-ETGbv5/webviewable/ (accessed on 15 April 2025).
  • 74.
    Stamps, D.; Benedick, W.; Tieszen, S. Hydrogen Air Diluent Detonation Study for Nuclear Reactor Safety Analyses. 1991. Available online: https://www.osti.gov/servlets/purl/6119703/ (accessed on 15 April 2025).
  • 75.
    Stamps, D.W.; Tieszen, S.R. The influence of initial pressure and temperature on hydrogen-air-diluent detonations. Combust. Flame 1991, 83, 353–364. https://doi.org/10.1016/0010-2180(91)90082-M.
  • 76.
    Kaneshige, M.J. Gaseous Detonation Initiation and Stabilization by Hypervelocity Projectiles; California Institute of Technology: Pasadena, CA, USA, 1999.
  • 77.
    Guirao, C.M.; Knystautas, R.; Lee, J.H.; Benedick, W.; Berman, M. Hydrogen air detonations. Symp. Combust. 1982, 19, 583–590. https://doi.org/10.1016/S0082-0784(82)80232-4.
  • 78.
    Wang, B.L.; Olivier, H.; Grönig, H. Ignition of shock-heated H2-air-steam mixtures. Combust. Flame 2003, 133, 93–106. https://doi.org/10.1016/S0010-2180(02)00552-7.
  • 79.
    Cross, M.; Ciccarelli, G. DDT and detonation propagation limits in an obstacle filled tube. J. Loss Prev. Process Ind. 2015, 36, 380–386. https://doi.org/10.1016/j.jlp.2014.11.020.
  • 80.
    Bull, D.C.; Elsworth, J.E.; Shuff, P.J.; Metcalfe, E. Detonation cell structures in fuel/air mixtures. Combust. Flame 1982, 45, 7–22. https://doi.org/10.1016/0010-2180(82)90028-1.
  • 81.
    Atkinson, R.; Bull, D.C.; Shuff, P.J. Initiation of spherical detonation in hydrogenair. Combust. Flame 1980, 39, 287–300. https://doi.org/10.1016/0010-2180(80)90025-5.
  • 82.
    Dorofeev, S.B.; Sidorov, V.P.; Kuznetsov, M.S.; Matsukov, I.D.; Alekseev, V.I. Effect of scale on the onset of detonations. Shock Waves 2000, 10, 137–149. https://doi.org/10.1007/s001930050187.
  • 83.
    Makeev, V.I.; Gostintsev, Y.A.; Strogonov, V.V.; Bokhon, Y.A.; Chernushkin, Y.N.; Kulikov, V.N. Combustion and detonation of hydrogen air mixtures in free spaces. Combust. Explos. Shock Waves 1983, 19, 548–550. https://doi.org/10.1007/BF00750415.
  • 84.
    Kumar, R.K. Detonation cell widths in hydrogen oxygen diluent mixtures. Combust. Flame 1990, 80, 157–169. https://doi.org/10.1016/0010-2180(90)90124-A.
  • 85.
    Anderson, T.J.; Dabora, E.K. Measurements of normal detonation wave structure using Rayleigh imaging. Symp. Combust. 1992, 24, 1853–1860. https://doi.org/10.1016/S0082-0784(06)80217-1.
  • 86.
    Liu, Y.K.; Lee, J.H.; Knystautas, R. Effect of Geometry on the Transmimion of Detonation through an Orifice. Combust. Flame 1984, 56, 215–225.
  • 87.
    Jin, L. Experimental Improvements of a Rapid Compression Machine. Master’s Thesis, University of Windsor, Windsor, ON, Canada, 2022.
  • 88.
    Jin, L.; Yu, X.; Wang, M.; Reader, G.; Zheng, M. Effect of spark assisted compression ignition on the end-gas autoignition with DME-air mixtures in a rapid compression machine. SAE: Detroit, MI, USA, 2024. https://doi.org/10.4271/2024-01-2822.
  • 89.
    Gavrikov, A.I.; Efimenko, A.A.; Dorofeev, S.B. A model for detonation cell size prediction from chemical kinetics. Combust. Flame 2000, 120, 19–33. https://doi.org/10.1016/S0010-2180(99)00076-0.
  • 90.
    Ng, H.; Ju, Y.; Lee, J. Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis. Int. J. Hydrogen Energy 2007, 32, 93–99. https://doi.org/10.1016/j.ijhydene.2006.03.012.
  • 91.
    Shchelkin, K.I.; Troshin, Y.K. Gasdynamics of Combustion; Mono Book Corp.: Baltimore, MD, USA, 1965.
Share this article:
How to Cite
Yu, X.; Jin, L.; Wang, L.; Sandhu, N.; Zheng, M. Experimental Study on the Deflagration to Detonation Transition of Hydrogen Mixture under Elevated Pressure and Temperature Conditions. International Journal of Automotive Manufacturing and Materials 2025, 4 (2), 3. https://doi.org/10.53941/ijamm.2025.100009.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.