- 1.
Barsun, S.; Cheah, B.; Shelton, J. Renewable 49 Natural Gas in California; California Energy Commission: Sacramento, CA, USA, 2023.
- 2.
Karim, G.A. Hydrogen as a spark ignition engine fuel. Int. J. Hydrogen Energy 2003, 28, 569–577.
- 3.
Qiang, Y.; Zhao, S.; Su, F.; Wang, F.; Yang, J.; Wang, S.; Ji, C. Experimental and numerical assessment on co-combustion of hydrogen with ammonia in passive pre-chamber engines. Appl. Therm. Eng. 2025, 259, 124919. https://doi.org/10.1016/j.applthermaleng.2024.124919.
- 4.
Rueda-Vázquez, J.M.; Serrano, J.; Jiménez-Espadafor, F.J.; Dorado, M.P. Experimental analysis of the effect of hydrogen as the main fuel on the performance and emissions of a modified compression ignition engine with water injection and compression ratio reduction. Appl. Therm. Eng. 2024, 238, 121933. https://doi.org/10.1016/j.applthermaleng.2023.121933.
- 5.
Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.I.F.; Bowen, P.J. Ammonia for power. Prog. Energy Combust. Sci. 2018, 69, 63–102. https://doi.org/10.1016/j.pecs.2018.07.001.
- 6.
Nie, X.; Bi, Y.; Shen, L.; Lei, J.; Wan, M.; Wang, Z.; Liu, S.; Huang, F. Combustion and emission characteristics of ammonia-diesel dual fuel engine at different altitudes. Fuel 2024, 371, 132072. https://doi.org/10.1016/j.fuel.2024.132072.
- 7.
Reiter, A.J.; Kong, S.-C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel 2011, 90, 87–97. https://doi.org/10.1016/j.fuel.2010.07.055.
- 8.
Wei, H.; Zhang, R.; Chen, L.; Pan, J.; Wang, X. Effects of high ignition energy on lean combustion characteristics of natural gas using an optical engine with a high compression ratio. Energy 2021, 223, 120053. https://doi.org/10.1016/j.energy.2021.120053.
- 9.
Lee, K.; Bae, C.; Kang, K. The effects of tumble and swirl flows on flame propagation in a four-valve S.I. engine. Appl. Therm. Eng. 2007, 27, 2122–2130. https://doi.org/10.1016/j.applthermaleng.2006.11.011.
- 10.
Kaplan, M. Influence of swirl, tumble and squish flows on combustion characteristics and emissions in internal combustion engine-review. Int. J. Automot. Eng. Technol. 2019, 8, 83–102. https://doi.org/10.18245/ijaet.558258.
- 11.
Jin, L.; Leblanc, S.; Zhang, X.; Bastable, A.; Tjong, J.; Zheng, M. Impact of Discharge Current Profiling on Ignition Characteristics of Hydrogen/Methane Blends. In Proceedings of the ASME (American Society of Mechanical Engineers) 2022 ICE Forward Conference, Indianapolis, IN, USA, 16–19 October 2022; ISBN 978-0-7918-8654-0: V001T03A001. https://doi.org/10.1115/ICEF2022-88393.
- 12.
Yu, X.; Jin, L.; Reader, G.; Wang, M.; Zheng, M. Effective Ignition of Lean Methane/Hydrogen Mixture in a Rapid Compression Machine 2023-01–0255; SAE: Detroit, MI, USA, 2023. https://doi.org/10.4271/2023-01-0255.
- 13.
Han, X.; Yu, X.; Zhu, H.; Wang, L.; Yu, S.; Wang, M.; Zheng, M. Elastic breakdown via multi-core high frequency discharge for lean-burn ignition. Proc. Inst. Mech. Eng. Part. D J. Automob. Eng. 2022, 236, 2661–2680. https://doi.org/10.1177/09544070211062278.
- 14.
Han, X.; Yu, S.; Tjong, J.; Zheng, M. Study of an innovative three-pole igniter to improve efficiency and stability of gasoline combustion under charge dilution conditions. Appl. Energy 2020, 257, 113999. https://doi.org/10.1016/j.apenergy.2019.113999.
- 15.
Corrigan, D.J.; Di Blasio, G.; Ianniello, R.; Silvestri, N.; Breda, S.; Fontanesi, S.; Beatrice, C. Engine Knock Detection Methods for Spark Ignition and Prechamber Combustion Systems in a High-Performance Gasoline Direct Injection Engine. SAE Int. J. Engines 2022, 15, 883–897. https://doi.org/10.4271/03-15-06-0047.
- 16.
Yu, X.; Wang, L.; Yu, S.; Wang, M.; Zheng, M. Flame kernel development with radiofrequency oscillating plasma ignition. Plasma Sources Sci. Technol. 2022, 31, 055004. https://doi.org/10.1088/1361-6595/ac5f21.
- 17.
Tian, J.; Xiong, Y.; Wang, L.; Wang, Y.; Liu, P.; Shi, X.; Wang, N.; Yin, W.; Cheng, Y.; Zhao, Q. Experimental study of the effect of nanosecond pulse discharge parameters on the methane-air mixture combustion. Fuel 2024, 364, 131166. https://doi.org/10.1016/j.fuel.2024.131166.
- 18.
Merotto, L.; Balmelli, M.; Vera-Tudela, W.; Soltic, P. Comparison of ignition and early flame propagation in methane/air mixtures using nanosecond repetitively pulsed discharge and inductive ignition in a pre-chamber setup under engine relevant conditions. Combust. Flame 2022, 237, 111851. https://doi.org/10.1016/j.combustflame.2021.111851.
- 19.
Cathey, C.D.; Tang, T.; Shiraishi, T.; Urushihara, T.; Kuthi, A.; Gundersen, M.A. Nanosecond Plasma Ignition for Improved Performance of an Internal Combustion Engine. IEEE Trans. Plasma Sci. 2007, 35, 1664–1668. https://doi.org/10.1109/TPS.2007.907901.
- 20.
Alvarez, C.E.C.; Couto, G.E.; Roso, V.R.; Thiriet, A.B.; Valle, R.M. A review of prechamber ignition systems as lean combustion technology for SI engines. Appl. Therm. Eng. 2018, 128, 107–120. https://doi.org/10.1016/j.applthermaleng.2017.08.118.
- 21.
Tanoue, K.; Kimura, T.; Jimoto, T.; Hashimoto, J.; Moriyoshi, Y. Study of prechamber combustion characteristics in a rapid compression and expansion machine. Appl. Therm. Eng. 2017, 115, 64–71. https://doi.org/10.1016/j.applthermaleng.2016.12.079.
- 22.
Kendall, J. Mahle Liebherr Develop Active Pre Chamber Hydrogen Engine. 2021. Available online: https://www.sae.org/news/2021/11/mahle-liebherr-develop-active-pre-chamber-hydrogen-engine (accessed on 15 April 2025).
- 23.
Biswas, S.; Qiao, L. Prechamber Hot Jet Ignition of Ultra-Lean H 2 /Air Mixtures: Effect of Supersonic Jets and Combustion Instability. SAE Int. J. Engines 2016, 9, 1584–1592. https://doi.org/10.4271/2016-01-0795.
- 24.
Biswas, S.; Tanvir, S.; Wang, H.; Qiao, L. On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion. Appl. Therm. Eng. 2016, 106, 925–937. https://doi.org/10.1016/j.applthermaleng.2016.06.070.
- 25.
Tang, Q.; Sampath, R.; Sharma, P.; Marquez, M.E.; Cenker, E.; Magnotti, G. Study on the effects of narrow-throat pre-chamber geometry on the pre-chamber jet velocity using dual formaldehyde PLIF imaging. Combust. Flame 2022, 240, 111987. https://doi.org/10.1016/j.combustflame.2022.111987.
- 26.
Guo, X.; Li, T.; Chen, R.; Huang, S.; Zhou, X.; Wang, N.; Li, S. Effects of the nozzle design parameters on turbulent jet development of active pre-chamber. Energy 2024, 306, 132568. https://doi.org/10.1016/j.energy.2024.132568.
- 27.
Braun, E.; Lu, F.; Sagov, M.; Wilson, D.; Grubyi, P. Proof-of-Principle Detonation Driven, Linear Electric Generator Facility. In Proceedings of the 8th Annual International Energy Conversion Engineering Conference, American Institute of Aeronautics and Astronautics, Nashville, TN, USA, 25–28 July 2010; ISBN 978-1-62410-156-4. https://doi.org/10.2514/6.2010-6767.
- 28.
Lee, J.H.S. The Detonation Phenomenon; Cambridge University Press: Cambridge, UK, 2008.
- 29.
Bussing, T.; Pappas, G. An introduction to pulse detonation engines. In Proceedings of the 32nd Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, NV, USA, 10–13 January 1994. https://doi.org/10.2514/6.1994-263.
- 30.
Kailasanath, K. Applications of detonations to propulsion—A review. In Proceedings of the 37th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, NV, USA, 11–14 January1999. https://doi.org/10.2514/6.1999-1067.
- 31.
Razus, D.; Brinzea, V.; Mitu, M.; Oancea, D. Burning Velocity of Liquefied Petroleum Gas (LPG)−Air Mixtures in the Presence of Exhaust Gas. Energy Fuels 2010, 24, 1487–1494. https://doi.org/10.1021/ef901209q.
- 32.
Schefer, R.W.; White, C.; Keller, J.; Ca, L. Chapter 8—Lean Hydrogen Combustion. In Lean Combustion; Academic Press: Cambridge, MA, USA, 2008.
- 33.
Jacobs, S.; Döntgen, M.; Alquaity, A.B.S.; Kopp, W.A.; Kröger, L.C.; Burke, U.; Pitsch, H.; Leonhard, K.; Curran, H.J.; Heufer, K.A. Detailed kinetic modeling of dimethoxymethane. Part II: Experimental and theoretical study of the kinetics and reaction mechanism. Combust. Flame 2019, 205, 522–533. https://doi.org/10.1016/j.combustflame.2018.12.026.
- 34.
Goswami, M.; Bastiaans, R.J.M.; De Goey, L.P.H.; Konnov, A.A. Experimental and modelling study of the effect of elevated pressure on ethane and propane flames. Fuel 2016, 166, 410–418. https://doi.org/10.1016/j.fuel.2015.11.013.
- 35.
Luo, C.; Yu, Z.; Wang, Y.; Ai, Y. Experimental Investigation of Lean Methane–Air Laminar Premixed Flames at Engine-Relevant Temperatures. ACS Omega 2021, 6, 17977–17987. https://doi.org/10.1021/acsomega.1c01692.
- 36.
Sileghem, L.; Alekseev, V.A.; Vancoillie, J.; Nilsson, E.J.K.; Verhelst, S.; Konnov, A.A. Laminar burning velocities of primary reference fuels and simple alcohols. Fuel 2014, 115, 32–40. https://doi.org/10.1016/j.fuel.2013.07.004.
- 37.
Huzayyin, A.S.; Moneib, H.A.; Shehatta, M.S.; Attia, A.M.A. Laminar burning velocity and explosion index of LPG–air and propane–air mixtures. Fuel 2008, 87, 39–57. https://doi.org/10.1016/j.fuel.2007.04.001.
- 38.
Dirrenberger, P.; Glaude, P.A.; Bounaceur, R.; Le Gall, H.; Da Cruz, A.P.; Konnov, A.A.; Battin-Leclerc, F. Laminar burning velocity of gasolines with addition of ethanol. Fuel 2014, 115, 162–169. https://doi.org/10.1016/j.fuel.2013.07.015.
- 39.
De Vries, J.; Lowry, W.B.; Serinyel, Z.; Curran, H.J.; Petersen, E.L. Laminar flame speed measurements of dimethyl ether in air at pressures up to 10 atm. Fuel 2011, 90, 331–338. https://doi.org/10.1016/j.fuel.2010.07.040.
- 40.
Adusumilli, S.; Seitzman, J. Laminar flame speed measurements of ethylene at high preheat temperatures and for diluted oxidizers. Combust. Flame 2021, 233, 111564. https://doi.org/10.1016/j.combustflame.2021.111564.
- 41.
Rokni, E.; Moghaddas, A.; Askari, O.; Metghalchi, H. Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures. J. Energy Resour. Technol. 2015, 137, 012204. https://doi.org/10.1115/1.4028363.
- 42.
Gillespie, F.; Metcalfe, W.K.; Dirrenberger, P.; Herbinet, O.; Glaude, P.-A.; Battin-Leclerc, F.; Curran, H.J. Measurements of flat-flame velocities of diethyl ether in air. Energy 2012, 43, 140–145. https://doi.org/10.1016/j.energy.2012.01.021.
- 43.
Dirrenberger, P.; Le Gall, H.; Bounaceur, R.; Glaude, P.-A.; Battin-Leclerc, F. Measurements of Laminar Burning Velocities above Atmospheric Pressure Using the Heat Flux Method—Application to the Case of n-Pentane. Energy Fuels 2015, 29, 398–404. https://doi.org/10.1021/ef502036j.
- 44.
Kindracki, J. Study of detonation initiation in kerosene–oxidizer mixtures in short tubes. Shock Waves 2014, 24, 603–618. https://doi.org/10.1007/s00193-014-0519-2.
- 45.
Guirao, C.M.; Knystautas, R.; Lee, J.H. A Summary of Hydrogen Air Detonation Experiments; U.S. Nuclear Regulatory Commission: Washington, DC, USA, 1989.
- 46.
Kuznetsov, M.; Alekseev, V.; Matsukov, I.; Dorofeev, S. DDT in a smooth tube filled with a hydrogen–oxygen mixture. Shock Waves 2005, 14, 205–215. https://doi.org/10.1007/s00193-005-0265-6.
- 47.
United States Nuclear Regulatiory Commission. Three Mile Island Accident. Available online: https://www.nrc.gov/docs/ML0825/ML082560250.pdf (accessed on 15 April 2025).
- 48.
Manzhalei, V.I.; Mitrofanov, V.V.; Subbotin, V.A. Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures. Combust. Explos. Shock Waves 1974, 10, 89–95. https://doi.org/10.1007/BF01463793.
- 49.
Shen, X.; Fu, W.; Liang, W.; Wen, J.X.; Liu, H.; Law, C.K. Strong flame acceleration and detonation limit of hydrogen-oxygen mixture at cryogenic temperature. Proc. Combust. Inst. 2023, 39, 2967–2977. https://doi.org/10.1016/j.proci.2022.07.005.
- 50.
Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Tagawa, H.; Malliakos, A. Hydrogen Detonation and Detonation Transition Data from The High-Temperature Combustion Facility; Brookhaven National Lab. (BNL): Upton, NY, USA, 1995.
- 51.
Bangalore Venkatesh, P.; Graziano, T.; Bane, S.P.; Meyer, S.; Grubelich, M.C. Deflagration-to-Detonation Transition in Nitrous Oxide-Ethylene Mixtures and its Application to Pulsed Propulsion Systems. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Grapevine, TX, USA, 9–13 January 2017; ISBN 978-1-62410-447-3. https://doi.org/10.2514/6.2017-0372.
- 52.
Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.; Berman, M. Detonability of H2 Air Diluent Mixtures; U.S. Nuclear Regulatory Commission: Washington, DC, USA, 1987.
- 53.
Wu, M.; Burke, M.P.; Son, S.F.; Yetter, R.A. Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes. Proc. Combust. Inst. 2007, 31, 2429–2436. https://doi.org/10.1016/j.proci.2006.08.098.
- 54.
Li, J.; Pan, J.; Jiang, C.; Ni, J.; Pan, Z.; Otchere, P. Effect of hydrogen addition on the detonation performances of methane/oxygen at different equivalence ratios. Int. J. Hydrogen Energy 2019, 44, 27974–27983. https://doi.org/10.1016/j.ijhydene.2019.09.016.
- 55.
Kuznetsov, M.; Ciccarelli, G.; Dorofeev, S.; Alekseev, V.; Yankin Yu Kim, T.H. DDT in methane-air mixtures. Shock Waves 2002, 12, 215–220. https://doi.org/10.1007/s00193-002-0155-0.
- 56.
Saif, M.; Wang, W.; Pekalski, A.; Levin, M.; Radulescu, M.I. Chapman Jouguet deflagrations and their transition to detonation. Proc. Combust. Inst. 2017, 36, 2771–2779. https://doi.org/10.1016/j.proci.2016.07.122.
- 57.
Litchfield, E.L.; Hay, M.H.; Forshey, D.R. Direct electrical initiation of freely expanding gaseous detonation waves. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1963.
- 58.
Zitoun, R.; Desbordes, D.; Guerraud, C.; Deshaies, B. Direct initiation of detonation in cryogenic gaseous H2-O2 mixtures. Shock Waves 1995, 4, 331–337
- 59.
Matsui, H.; Lee, J.H. On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures. Symp. Combust. 1979, 17, 1269–1280. https://doi.org/10.1016/S0082-0784(79)80120-4.
- 60.
Desbordes, D. Aspects Stationnaires et Transitoires de la Détonation dans les gaz: Relation Avec la Structure Cellulaire du Front. Ph.D. Thesis, University of Poitiers, Poitiers, France, 1990.
- 61.
Knystautas, R.; Lee, J.H.; Guirao, C.M. The critical tube diameter for detonation failure in hydrocarbon-air mixtures. Combust. Flame 1982, 48, 63–83. https://doi.org/10.1016/0010-2180(82)90116-X.
- 62.
Strehlow, R.A.; Maurer, R.E.; Rajan, S. Transverse waves in detonations. I—Spacing in the hydrogen-oxygen system. AIAA J. 1969, 7, 323–328. https://doi.org/10.2514/3.5093.
- 63.
Strehlow, R.A.; Engel, C.D. Transverse waves in detonations. II—Structure and spacing in H2–O2, C2H2–O2, and CH4–O2 systems. AIAA J. 1969, 7, 492–496. https://doi.org/10.2514/3.5134.
- 64.
Liberman, M.A.; Ivanov, M.F.; Kiverin, A.D.; Kuznetsov, M.S.; Chukalovsky, A.A.; Rakhimova, T.V. Deflagration-to-detonation transition in highly reactive combustible mixtures. Acta Astronaut. 2010, 67, 688–701. https://doi.org/10.1016/j.actaastro.2010.05.024.
- 65.
Lee, J.H.; Matsui, H. A comparison of the critical energies for direct initiation of spherical detonations in acetylene oxygen mixtures. Combust. Flame 1977, 28, 61–66. https://doi.org/10.1016/0010-2180(77)90008-6.
- 66.
Voytsekhovskiy, B.V.; Mitrofanov, V.V.; Topchiyan, M.E. The structure of a detonation front in gases. Combust. Explos. Shock. Waves 1969, 5, 267–273.
- 67.
Wang, C.; Wu, S.; Zhao, Y.; Addai, E.K. Experimental investigation on explosion flame propagation of H2-O2 in a small scale pipeline. J. Loss Prev. Process Ind. 2017, 49, 612–619. https://doi.org/10.1016/j.jlp.2017.06.004.
- 68.
Bykov, V.; Koksharov, A.; Kuznetsov, M.; Zhukov, V.P. Hydrogen-oxygen flame acceleration in narrow open ended channels. Combust. Flame 2022, 238, 111913. https://doi.org/10.1016/j.combustflame.2021.111913.
- 69.
Denisov, Y.N.; Troshin, Y.K. The fine structure of spinning detonation. Combust. Flame 1971, 16, 141–145. https://doi.org/10.1016/S0010-2180(71)80079-2.
- 70.
Barthel, H.O. Predicted spacings in hydrogen-oxygen-argon detonations. Phys. Fluids 1974, 17, 1547–1553. https://doi.org/10.1063/1.1694932.
- 71.
Agafonov, G.L.; Frolov, S.M. Computation of the detonation limits in gaseous hydrogen-containing mixtures. Combust. Explos. Shock Waves 1994, 30, 91–100. https://doi.org/10.1007/BF00787891.
- 72.
Benedick, W.B.; Knystautas, R.; Lee, J.H.S. (Eds.) Large Scale Experiments on the Transmission of Fuel Air Detonations from Two Dimensional Channels; AIAA: Reston, VA, USA, 1983. https://doi.org/10.2514/4.865695.
- 73.
Ciccarelli, G.; Ginsberg, T.; Boccio, J.L. Detonation Cell Size Measurements in High-Temperature Hydrogen-Air-Steam Mixtures at the BNL High-Temperature Combustion Facility. 1997. Available online: https://www.osti.gov/servlets/purl/563843-ETGbv5/webviewable/ (accessed on 15 April 2025).
- 74.
Stamps, D.; Benedick, W.; Tieszen, S. Hydrogen Air Diluent Detonation Study for Nuclear Reactor Safety Analyses. 1991. Available online: https://www.osti.gov/servlets/purl/6119703/ (accessed on 15 April 2025).
- 75.
Stamps, D.W.; Tieszen, S.R. The influence of initial pressure and temperature on hydrogen-air-diluent detonations. Combust. Flame 1991, 83, 353–364. https://doi.org/10.1016/0010-2180(91)90082-M.
- 76.
Kaneshige, M.J. Gaseous Detonation Initiation and Stabilization by Hypervelocity Projectiles; California Institute of Technology: Pasadena, CA, USA, 1999.
- 77.
Guirao, C.M.; Knystautas, R.; Lee, J.H.; Benedick, W.; Berman, M. Hydrogen air detonations. Symp. Combust. 1982, 19, 583–590. https://doi.org/10.1016/S0082-0784(82)80232-4.
- 78.
Wang, B.L.; Olivier, H.; Grönig, H. Ignition of shock-heated H2-air-steam mixtures. Combust. Flame 2003, 133, 93–106. https://doi.org/10.1016/S0010-2180(02)00552-7.
- 79.
Cross, M.; Ciccarelli, G. DDT and detonation propagation limits in an obstacle filled tube. J. Loss Prev. Process Ind. 2015, 36, 380–386. https://doi.org/10.1016/j.jlp.2014.11.020.
- 80.
Bull, D.C.; Elsworth, J.E.; Shuff, P.J.; Metcalfe, E. Detonation cell structures in fuel/air mixtures. Combust. Flame 1982, 45, 7–22. https://doi.org/10.1016/0010-2180(82)90028-1.
- 81.
Atkinson, R.; Bull, D.C.; Shuff, P.J. Initiation of spherical detonation in hydrogenair. Combust. Flame 1980, 39, 287–300. https://doi.org/10.1016/0010-2180(80)90025-5.
- 82.
Dorofeev, S.B.; Sidorov, V.P.; Kuznetsov, M.S.; Matsukov, I.D.; Alekseev, V.I. Effect of scale on the onset of detonations. Shock Waves 2000, 10, 137–149. https://doi.org/10.1007/s001930050187.
- 83.
Makeev, V.I.; Gostintsev, Y.A.; Strogonov, V.V.; Bokhon, Y.A.; Chernushkin, Y.N.; Kulikov, V.N. Combustion and detonation of hydrogen air mixtures in free spaces. Combust. Explos. Shock Waves 1983, 19, 548–550. https://doi.org/10.1007/BF00750415.
- 84.
Kumar, R.K. Detonation cell widths in hydrogen oxygen diluent mixtures. Combust. Flame 1990, 80, 157–169. https://doi.org/10.1016/0010-2180(90)90124-A.
- 85.
Anderson, T.J.; Dabora, E.K. Measurements of normal detonation wave structure using Rayleigh imaging. Symp. Combust. 1992, 24, 1853–1860. https://doi.org/10.1016/S0082-0784(06)80217-1.
- 86.
Liu, Y.K.; Lee, J.H.; Knystautas, R. Effect of Geometry on the Transmimion of Detonation through an Orifice. Combust. Flame 1984, 56, 215–225.
- 87.
Jin, L. Experimental Improvements of a Rapid Compression Machine. Master’s Thesis, University of Windsor, Windsor, ON, Canada, 2022.
- 88.
Jin, L.; Yu, X.; Wang, M.; Reader, G.; Zheng, M. Effect of spark assisted compression ignition on the end-gas autoignition with DME-air mixtures in a rapid compression machine. SAE: Detroit, MI, USA, 2024. https://doi.org/10.4271/2024-01-2822.
- 89.
Gavrikov, A.I.; Efimenko, A.A.; Dorofeev, S.B. A model for detonation cell size prediction from chemical kinetics. Combust. Flame 2000, 120, 19–33. https://doi.org/10.1016/S0010-2180(99)00076-0.
- 90.
Ng, H.; Ju, Y.; Lee, J. Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis. Int. J. Hydrogen Energy 2007, 32, 93–99. https://doi.org/10.1016/j.ijhydene.2006.03.012.
- 91.
Shchelkin, K.I.; Troshin, Y.K. Gasdynamics of Combustion; Mono Book Corp.: Baltimore, MD, USA, 1965.