2507000893
  • Open Access
  • Article
The Effects of Ignition Delay and Fuel Injection Duration on Sparked-Spray Combustion Using Gasoline and Methanol in the Atmospheric Environment
  • Zikang Wang 1,   
  • Minglong Li 1,   
  • Wangchao Yu 1,   
  • Zongjie Hu 2, *,   
  • Liguang Li 1

Received: 20 Nov 2024 | Revised: 20 May 2025 | Accepted: 06 Jun 2025 | Published: 01 Jul 2025

Abstract

The sparked-spray method represents a novel combustion approach that employs an electrical spark to directly ignite fuel spray through cooperative control of fuel injection and spark ignition timing, forming an intense flame kernel for enhanced combustion performance. This method offers potential advantages in combustion efficiency and flame propagation characteristics compared to conventional ignition strategies. This paper investigated the effects of ignition delay and fuel injection duration on sparked-spray combustion characteristics using gasoline and methanol as test fuels in an atmospheric environment through high-speed photography. The study systematically examined the relationship between ignition timing parameters and combustion performance by analyzing projected flame area as a quantitative measure of flame intensity. Experimental results demonstrate that optimal ignition occurs when the ignition delay is 1.2 ms or 1.5 ms, where the spray is more readily ignited and produces larger projected flame areas under identical injection duration conditions. Furthermore, regardless of injection duration variations, methanol spray consistently exhibits superior combustion characteristics, generating larger projected flame areas and longer flame survival duration compared to gasoline spray.

References 

  • 1.
    Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.I.; Bowen, P.J. Ammonia for power. Prog. Energy Combust. Sci. 2018, 69, 63–102.
  • 2.
    Cardoso, J.S.; Silva, V.; Rocha, R.C.; Hall, M.J.; Costa, M.; Eusébio, D. Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines. J. Clean. Prod. 2021, 296, 126562.
  • 3.
    Wang, D.; Ji, C.; Wang, Z.; Wang, S.; Zhang, T.; Yang, J. Measurement of oxy-ammonia laminar burning velocity at normal and elevated temperatures. Fuel 2020, 279, 118425.
  • 4.
    Hu, Z.; Li, M.; Yu, W.; Wang, Z.; Li, L. Spark ignition and stable flame of premixed methanol-ammonia gaseous jet at atmospheric surrounding. Int. J. Hydrogen Energy 2024, 90, 1325–1332.
  • 5.
    Miao, X.; Xu, B.; Deng, J.; Li, L. Key Technologies to 50% Brake Thermal Efficiency for Gasoline Engine of Passenger Car. Int. J. Automot. Manuf. Mater. 2025, 4, 1.
  • 6.
    Isobe, R.; Endo, K.; Sueoka, M. New-Generation Gasoline Engine ‘SKYACTIV-X’. Maz. Tech. Rev. 2019, 36, 16–23.
  • 7.
    Hu, Z.; Zhang, J.; Sjöberg, M.; Zeng, W. The Use of Partial Fuel Stratification to Enable Stable Ultra-Lean Deflagration-Based Spark-Ignition Engine Operation with Controlled End-Gas Autoignition of Gasoline and E85. Int. J. Engine Res. 2020, 21, 1678–1695.
  • 8.
    Long, Q.; Li, M.; Zhou, Y.; Hu, Z.; Li, L. Simulation Research on Ultra-Lean Constant-Volume Combustion Initiated by Spark-Ignited Micro-Fuel-Jet. SAE Tech. Pap. 2022. https://doi.org/10.4271/2022-01-0432.
  • 9.
    Kimura, K.; Sakai, H.; Omura, T.; Takahashi, D. Development of 50% thermal efficiency SI engine to contribute realization of carbon neutrality. SAE Tech. Pap. 2023. https://doi.org/10.4271/2023-01-0241.
  • 10.
    Yu, W.; Li, M.; Long, Q.; Qin, X.; Dong, G.; Hu, Z.; Li, Y. Combustion of Premixed Ammonia and Air Initiated by Spark-ignited Micro-gasoline-jet in a Constant Volume Combustible Vessel. SAE Tech. Pap. 2023. https://doi.org/10.4271/2023-32-0066.
  • 11.
    Liu, Z. Alternative fuels in automotive vehicles. Int. J. Automot. Manuf. Mater. 2023, 2, 7.
  • 12.
    Ghadikolaei, M.A.; Wong, P.K.; Cheung, C.S.; Ning, Z.; Yung, K.F.; Zhao, J.; Berenjestanaki, A.V. Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review. Renew. Sustain. Energy Rev. 2021, 143, 110970.
  • 13.
    Raida, M.B.; Hoetmer, G.J.; Konnov, A.A.; Van Oijen, J.A.; De Goey, L.P.H. Laminar burning velocity measurements of ethanol+ air and methanol+ air flames at atmospheric and elevated pressures using a new Heat Flux setup. Combust. Flame 2021, 230, 111435.
  • 14.
    Huang, W.; Koichi, K.; Yohko, A.; Mitsuharu, O.; Kotaro, T. Investigation on Fuel Properties of Synthetic Gasoline-like Fuels. Int. J. Automot. Manuf. Mater. 2024, 3, 5.
  • 15.
    Huang, W.; Oguma, M.; Kinoshita, K.; Abe, Y.; Tanaka, K. Investigating Spray Characteristics of Synthetic Fuels: Comparative Analysis with Gasoline. Int. J. Automot. Manuf. Mater. 2024, 3, 2.
  • 16.
    Wang, B.; Wang, H.; Yang, C.; Hu, D.; Duan, B.; Wang, Y. Effect of different ammonia/methanol ratios on engine combustion and emission performance. Appl. Therm. Eng. 2023, 236, 121519.
  • 17.
    Xu, H.; Wang, J.; Zhang, C.; Dai, L.; He, Z.; Wang, Q. Numerical study on laminar burning velocity of ammonia flame with methanol addition. Int. J. Hydrogen Energy 2022, 47, 28152–28164.
Share this article:
How to Cite
Wang, Z.; Li, M.; Yu, W.; Hu, Z.; Li, L. The Effects of Ignition Delay and Fuel Injection Duration on Sparked-Spray Combustion Using Gasoline and Methanol in the Atmospheric Environment. International Journal of Automotive Manufacturing and Materials 2025, 4 (3), 2. https://doi.org/10.53941/ijamm.2025.100014.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.