- 1.
Chong, Y.C.; Staton, D.A.; Mueller, M.A.; Chick, J. An experimental study of rotational pressure loss in rotor-stator gap. Propuls. Power Res. 2017, 6, 147–156.
- 2.
Hu, B.; Yao, Y.; Wang, C.; Chen, X. The effect of rotor roughness on flow and heat transfer in rotor–stator cavities with different axial gap. Appl. Therm. Eng. 2024, 251, 123535.
- 3.
Heins, G.; Thiele, M.; Patterson, D.; Lambert, N. Increase in operating range and efficiency for variable gap axial flux motors. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 5870–5876.
- 4.
Manne VH, B.; Vacca, A.; Merrill, K. A numerical method for evaluating the torque efficiency of hydraulic orbit motors considering deformation effects and frictional losses. Mech. Syst. Signal Process. 2021, 146, 107051.
- 5.
Yang, W.; Court, R. Experimental study on the optimum time for conducting bearing maintenance. Measurement 2013, 46, 2781–2791.
- 6.
Zimroz, R.; Bartelmus, W.; Barszcz, T.; Urbanek, J. Diagnostics of bearings in presence of strong operating conditions non-stationarity—A procedure of load-dependent features processing with application to wind turbine bearings. Mech. Syst. Signal Process. 2014, 46, 16–27.
- 7.
You, K.; Qiu, G.; Gu, Y. Optimizing prior distribution parameters for probabilistic prediction of remaining useful life using deep learning. Reliab. Eng. Syst. Saf. 2024, 242, 109793.
- 8.
You, K.; Qiu, G.; Gu, Y. Remaining useful life prediction of lithium-ion batteries using EM-PF-SSA-SVR with gamma stochastic process. Meas. Sci. Technol. 2023, 35, 015015.
- 9.
You, K.; Qiu, G.; Gu, Y. A 3-D attention-enhanced hybrid neural network for turbofan engine remaining life prediction using CNN and BiLSTM models. IEEE Sens. J. 2023, 24, 21893–21905.
- 10.
You, K.; Wang, P.; Gu, Y. Towards efficient and interpretative rolling bearing fault diagnosis via quadratic neural network With Bi-LSTM. IEEE Internet Things J. 2024, 11, 23002–23019.
- 11.
You, K.; Qiu, G.; Gu, Y. Rolling bearing fault diagnosis using hybrid neural network with principal component analysis. Sensors 2022, 22, 8906.
- 12.
You, K.; Qiu, G.; Gu, Y. An efficient lightweight neural network using BiLSTM-SCN-CBAM with PCA-ICEEMDAN for diagnosing rolling bearing faults. Meas. Sci. Technol. 2023, 34, 094001.
- 13.
You, K.; Wang, P.; Huang, P.; Gu, Y. A sound-vibration physical-information fusion constraint-guided deep learning method for rolling bearing fault diagnosis. Reliab. Eng. Syst. Saf. 2025, 253, 110556.
- 14.
You, K.; Lian, Z.; Chen, R.; Gu, Y. A novel rolling bearing fault diagnosis method based on time-series fusion transformer with interpretability analysis. Nondestruct. Test. Eval. 2024, 1–27.
- 15.
Zhou, Q.; Li, J.; Xu, H. Artificial Intelligence and Its Roles in the R&D of Vehicle Powertrain Products. Int. J. Automot. Manuf. Mater. 2022, 1, 6.
- 16.
Neşe, S.V.; Kılıç, O.; Akıncı, T.Ç. Analysis of wind turbine blade deformation with STFT method. Energy Educ. Sci. Technol. Part A-Energy Sci. Res. 2012, 29, 679–686.
- 17.
Zhou, Y.; Chen, J.; Dong, G.M.; Xiao, W.B.; Wang, Z.Y. Wigner–Ville distribution based on cyclic spectral density and the application in rolling element bearings diagnosis. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011, 225, 2831–2847.
- 18.
Lei, Y.; Lin, J.; He, Z.; Zuo, M.J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 2013, 35, 108–126.
- 19.
Yan, R.; Gao, R.X.; Chen, X. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Process. 2014, 96, 1–15.
- 20.
Kudo, M.; Sklansky, J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognit. 2000, 33, 25–41.
- 21.
Murphy, K.P. Naive bayes classifiers. Univ. Br. Columbia 2006, 18, 1–8.
- 22.
Yan, J.; Lee, J. Degradation assessment and fault modes classification using logistic regression. J. Manuf. Sci. Eng. 2005, 127, 912–914.
- 23.
Yang, Y.; Gao, X.; You, J.; Zhang, D.; Zhang, Z.; Song, Y. A Control System Design for an Intelligent Unmanned Automotive. Int. J. Automot. Manuf. Mater. 2024, 3, 6.
- 24.
Widodo, A.; Yang, B.S. Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process. 2007, 21, 2560–2574.
- 25.
Xie, S.; Li, Z.; Arvin, F.; Ding, Z. A Review of Multi-vehicle Cooperative Control System in Intelligent Transportation. Int. J. Automot. Manuf. Mater. 2023, 2, 5.
- 26.
Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S. Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 2016, 377, 331–345.
- 27.
Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Inman, D.J. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170.
- 28.
Lee, K.B.; Cheon, S.; Kim, C.O. A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 2017, 30, 135–142.
- 29.
Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Meas 2016, 93, 490–502.
- 30.
Kim, T.; Adali, T. Fully complex multi-layer perceptron network for nonlinear signal processing. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2002, 32, 29–43.
- 31.
Malek, S.; Melgani, F.; Bazi, Y. One‐dimensional convolutional neural networks for spectroscopic signal regression. J. Chemom. 2018, 32, e2977.
- 32.
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
- 33.
Case Western Reserve University Bearing Data Center. Available online: https://engineering.case.edu/bearingdatacenter (accessed on 22 October 2024).