- 1.
Kusaka, J.; Okamoto, T.; Daisho, Y.; Kihara, R.; Saito, T. Combustion and exhaust gas emission characteristics of a diesel engine dual-fueled with natural gas. JSAE Rev. 2000, 21, 489–496. https://doi.org/10.1016/S0389-4304(00)00071-0.
- 2.
Zheng, Q.P. Simulation Calculation and Experimental Study of the Combustion Process of Compression-Ignition Natural Gas Engine; Tianjin University: Tianjin, China, 2006.
- 3.
Goto, S.; Lee, D.; Shakal, J. Performance and Emissions of an LPG Lean-Burn Engine for Heavy Duty Vehicles. SAE 1999, 108, 1055–1065. https://doi.org/10.4271/1999-01-1513.
- 4.
Gulcan, H.E.; Ciniviz, M. Experimental study on the effect of piston bowl geometry on the combustion performance and pollutant emissions of methane-diesel common rail dual-fuel engine. Fuel 2023, 345, 128175. https://doi.org/10.1016/j.fuel.2023.128175.
- 5.
Bao, J.; Qu, P.; Wang, H.; Zhou, C.; Zhang, L.; Shi, C. Implementation of various bowl designs in an HPDI natural gas engine focused on performance and pollutant emissions. Chemosphere 2022, 303, 135275. https://doi.org/10.1016/j.chemosphere.2022.135275.
- 6.
Xu, G.; García, A.; Jia, M.; Monsalve-Serrano, J. Computational optimization of the piston bowl geometry for the different combustion regimes of the dual-mode dualfuel (DMDF) concept through an improved genetic algorithm. Energy Convers. Manag. 2021, 246, 114658. https://doi.org/10.1016/j.enconman.2021.114658.
- 7.
Li, W.; Ma, J.; Liu, H.; Wang, H.; Zhang, H.; Qi, T.; Pan, J. Investigations on combustion system optimization of a heavy-duty natural gas engine. Fuel 2023, 331, 125621. https://doi.org/10.1016/j.fuel.2022.125621.
- 8.
Wohlgemuth, S.; Roesler, S.; Wachtmeister, G. Piston design optimization for a twocylinder lean-burn natural gas engine-3D-CFD-simulation and test bed measurements. SAE Tech. Paper 2014. https://doi.org/10.4271/2014-01-1326.
- 9.
Raju, A.; Ramesh, A.; Nagalingam, B. Effect of intensiffed swirl and squish on the performance of a lean burn engine operated on LPG. SAE Tech. Paper 2000. https://doi.org/10.4271/2000-01-1951.
- 10.
Fu, X. Study on the Interaction Mechanism between in-Cylinder Turbulence and Combustion of Natural Gas Engines; Jilin University: Jilin, China, 2022.
- 11.
Zhang, S.; Duan, X.; Liu, Y.; Guo, G.; Zeng, H.; Liu, J.; Yuan, Z. Experimental and numerical study the effect of combustion chamber shapes on combustion and emissions characteristics in a heavy-duty lean burn SI natural gas engine coupled with detail combustion mechanism. Fuel 2019, 258, 14. https://doi.org/10.1016/j. fuel.2019.116130.
- 12.
Wang, S.; Li, Y.; Fu, J.; Liu, J.; Dong, H.; Tong, J. Quantitative investigation of the effects of EGR strategies on performance, cycle-to-cycle variations and emissions characteristics of a higher compression ratio and heavy-duty NGSI engine fueled with 99% methane content. Fuel 2020, 263, 14. https://doi.org/10.1016/j. fuel.2019.116736.
- 13.
Liu, L.D.; Zhang, M.L.; Liu, Z.B. A Review of Development of Natural Gas Engines. Int. J. Automot. Manuf. Mater. 2023, 2, 4. https://doi.org/10.53941/ijamm0201004.
- 14.
Lu, C.; Chen, W.; Zuo, Q.; Zhu, G.; Zhang, Y.; Liu, Z. Review of Combustion Performance Improvement and Nitrogen-Containing Pollutant Control in the Pure Hydrogen Internal Combustion Engine. Int. J. Automot. Manuf. Mater. 2022, 1, 7. https://doi.org/10.53941/ijamm0101007.
- 15.
Gao, Y.; Huang, W.; Pratama, R.H.; Wang, J. Transient Nozzle-Exit Velocity Profile in Diesel Spray and Its Influencing Parameters. Int. J. Automot. Manuf. Mater. 2022, 1, 8. https://doi.org/10.53941/ijamm0101008.
- 16.
Bao, L.; Wang, J.; Shi, L.; Chen, H. Exhaust Gas After-Treatment Systems for Gasoline and Diesel Vehicles. Int. J. Automot. Manuf. Mater. 2022, 1, 9. https://doi.org/10.53941/ijamm0101009.
- 17.
Yu, X.; Jin, Y.; Liu, H.; Rai, A.; Kostin, M.; Chantzis, D.; Politis, D.J.; Wang, L. A Review of Renewable Energy and Storage Technologies for Automotive Applications. Int. J. Automot. Manuf. Mater. 2022, 1, 10. https://doi.org/10.53941/ijamm0101010.