- 1.
Li, H.; Zheng, B.; Ciais, P.; Boersma, K.F.; Riess, T.C.V.; Martin, R.V.; Broquet, G.; van der A, R.; Li, H.; Hong, C. Satellite reveals a steep decline in China’s CO2 emissions in early 2022. Sci. Adv. 2023, 9, eadg7429. https://doi.org/10.1126/sciadv.adg7429.
- 2.
van der Zwaan, B.; Fattahi, A.; Longa, F.D.; Dekker, M.; van Vuuren, D.; Pietzcker, R.; Rodrigues, R.; Schreyer, F.; Huppmann, D.; Emmerling, J.; et al. Electricity- and hydrogen-driven energy system sector-coupling in net-zero CO2 emission pathways. Nat. Commun. 2025, 16, 1368. https://doi.org/10.1038/s41467-025-56365-0.
- 3.
Li, Z.; Wang, K.; Liang, H.; Wang, Y.; Ma, R.; Cao, J.; Huang, L. Marine alternative fuels for shipping decarbonization: Technologies, applications and challenges. Energy Convers. Manag. 2025, 329, 119641. https://doi.org/10.1016/j.enconman.2025.119641.
- 4.
IMO. 2023 IMO Strategy on Reduction of GHG Emissions from Ships, Resolution MEPC; IMO: London, UK, 2023.
- 5.
Zhou, S.; Zhong, W.; Pachiannan, T.; Liu, Q.; Yan, F.; Chen, J.; He, Z.; Wang, Q. Optical Study on Soot Formation of Ethanol/hydrogenated Catalytic Biodiesel/octanol Blends. Int. J. Automot. Manuf. Mater. 2023, 2, 3. https://doi.org/10.53941/ijamm.2023.100015.
- 6.
Souppez, J.-B.R.; Guttinger, M. Effect of Inlet Diameter on the Temperature of Hydrogen Fuel Tanks for Automotive Applications. Int. J. Automot. Manuf. Mater. 2024, 3, 1–12. https://doi.org/10.53941/ijamm.2024.100013.
- 7.
LeBlanc, S.; Cong, B.; Sandhu, N.; Jin, L.; Yu, X.; Zheng, M. Combustion Management of Neat Dimethyl Ether Combustion for Enabling High Efficiency and Low NOx Production. Int. J. Automot. Manuf. Mater. 2024, 3, 2. https://doi.org/10.53941/ijamm.2024.100020.
- 8.
Zhang, J.; Elbanna, A.M.; Zhu, J.; Qian, Y.; Lu, X. Research on the state-of-the-art of efficient and ultra-clean ammonia combustion: From combustion kinetics to engine applications. Appl. Energy. 2025, 391, 125886. https://doi.org/10.1016/j.apenergy.2025.125886.
- 9.
Kumar, L.; Sleiti, A.K. Systematic review on ammonia as a sustainable fuel for combustion. Renew. Sustain. Energy Rev. 2024, 202, 114699. https://doi.org/10.1016/j.rser.2024.114699.
- 10.
Zhu, D.; Shu, B. Recent progress on combustion characteristics of ammonia-based fuel blends and their potential in internal combustion engines. Int. J. Automot. Manuf. Mater. 2023, 2, 1. https://doi.org/10.53941/ijamm0201001.
- 11.
Erfani, N.; Baharudin, L.; Watson, M. Recent advances and intensifications in Haber-Bosch ammonia synthesis process. Chem. Eng. Process.-Process Intensif. 2024, 204, 109962. https://doi.org/10.1016/j.cep.2024.109962.
- 12.
Liu, L.; Zhang, M.; Liu, Z. A review of development of natural gas engines. Int. J. Automot. Manuf. Mater. 2023, 2, 4. https://doi.org/10.53941/ijamm0201004.
- 13.
Okafor, E.C.; Naito, Y.; Colson, S.; Ichikawa, A.; Kudo, T.; Hayakawa, A.; Kobayashi, H. Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combust. Flame 2019, 204, 162–175. https://doi.org/10.1016/j.combustflame.2019.03.008.
- 14.
Yao, A.; Yao, C. Study of diesel/methanol dual fuel combustion in CI engines and its practice in China. Int. J. Automot. Manuf. Mater. 2023, 2, 2. https://doi.org/10.53941/ijamm0201002.
- 15.
Lu, M.; Long, W.; Wang, Y.; Wei, F.; Dong, P.; Cong, L.; Tian, H.; Dong, D.; Wang, P.; Wang, Q.; et al. Laminar burning characteristics of ammonia/ methanol mixtures and reaction kinetics analysis at high pressures. Energy 2025, 315, 134300. https://doi.org/10.1016/j.energy.2024.134300.
- 16.
Xiao, H.; Li, H. Experimental and kinetic modeling study of the laminar burning velocity of NH3/DME/air premixed flames. Combust. Flame 2022, 245, 112372. https://doi.org/10.1016/j.combustflame.2022.112372.
- 17.
Yu, C.; Guo, L.; Sun, W.; Zhang, H.; Cheng, P.; Yan, Y.; Zhu, G.; Jiang, M.; Guo, Y.; Yue, F. Experimental and chemical kinetic study on effects of H2-DME fusion addition on laminar premixed flame speed and flame instability for ammonia composite combustion. Energy 2024, 310, 133175. https://doi.org/10.1016/j.energy.2024.133175.
- 18.
Li, H.; Xiao, H. Effect of H2 addition on laminar burning velocity of NH3/DME blends by experimental and numerical method using a reduced mechanism. Combust. Flame 2023, 257, 113000. https://doi.org/10.1016/j.combustflame.2023.113000.
- 19.
Berwal, P.; Shawnam; Kumar, S. Laminar burning velocity measurement of CH4/H2/NH3-air premixed flames at high mixture temperatures. Fuel 2023, 331, 125809. https://doi.org/10.1016/j.fuel.2022.125809.
- 20.
Yasiry, A.; Wang, J.; Zhang, L.; Abdulraheem, A.A.A.; Cai, X.; Huang, Z. An experimental study on H2/NH3/CH4-air laminar propagating spherical flames at elevated pressure and oxygen enrichment. Int. J. Hydrogen Energy 2024, 58, 28–39. https://doi.org/10.1016/j.ijhydene.2024.01.138.
- 21.
Chu, X.; Li, X.; Gao, P.; Ma, Z.; Xiao, H.; Xie, C.; Zhang, Z.; Wang, X. High-temperature auto-ignition characteristics of NH3-H2-CH4. Fuel 2024, 365, 131228. https://doi.org/10.1016/j.fuel.2024.131228.
- 22.
Bao, L.; Wang, J.; Shi, L.; Chen, H. Exhaust Gas After-Treatment Systems for Gasoline and Diesel Vehicles. Int. J. Automot. Manuf. Mater. 2022, 1, 9. https://doi.org/10.53941/ijamm0101009.
- 23.
Chen, P.; Wang, H.; Qiao, L.; Gu, M.; Luo, K.; Fan, J. Study of the NO formation characteristics and ammonia-N/coal-N transformation mechanism of ammonia-coal co-combustion in O2/CO2 atmosphere. Combust. Flame 2024, 270, 113756. https://doi.org/10.1016/j.combustflame.2024.113756.
- 24.
Czyzewski, P.; Slefarski, R.; Golebiewski, M.; Alnajideen, M.; Valera-Medina, A. Experimental study of CO2/H2/NH3 influence on CH4 flameless combustion process in semi-industrial furnace. Energy 2024, 296, 131014. https://doi.org/10.1016/j.energy.2024.131014.
- 25.
Gao, Y.; Li, Y.; Wei, X.; Zheng, Y.; Yang, S.; Yang, Q.; Jiang, H.; Zhang, Y.; Lin, H. A kinetic study of CO2 and H2O addition on NO formation for ammonia-methanol combustion. Fuel 2025, 381, 133283. https://doi.org/10.1016/j.fuel.2024.133283.
- 26.
Alzueta, M.U.; Giménez-López, J.; Mercader, V.D.; Bilbao, R. Conversion of NH3 and NH3-NO mixtures in a CO2 atmosphere. A parametric study, Fuel 2022, 327, 125133. https://doi.org/10.1016/j.fuel.2022.125133.
- 27.
Berwal, P.; Khandelwal, B.; Kumar, S. Effect of ammonia addition on laminar burning velocity of CH4/H2 premixed flames at high pressure and temperature conditions. Int. J. Hydrogen Energy 2024, 49, 112–125. https://doi.org/10.1016/j.ijhydene.2023.06.326.
- 28.
Zhu, W.; Zhang, M.; Zhang, X.; Meng, X.; Long, W.; Bi, M. A comprehensive kinetic modeling study on NH3/H2, NH3/CO and NH3/CH4 blended fuels. Int. J. Hydrogen Energy 2024, 85, 228–241. https://doi.org/10.1016/j.ijhydene.2024.08.282.
- 29.
Wu, C.K.; Law, C.K. On the determination of laminar flame speeds from stretched flames. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1985; pp. 1941–1949.
- 30.
Frankel, M.; Sivashinsky, G. On quenching of curved flames. Combust. Sci. Technol. 1984, 40, 257–268. https://doi.org/10.1080/00102208408923809.
- 31.
Burke, M.P.; Chen, Z.; Ju, Y.; Dryer, F.L. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combust. Flame 2009, 156, 771–779. https://doi.org/10.1016/j.combustflame.2009.01.013.
- 32.
Huang, Z.; Zhang, Y.; Zeng, K.; Liu, B.; Wang, Q.; Jiang, D. Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust. Flame 2006, 146, 302–311. https://doi.org/10.1016/j.combustflame.2006.03.003.
- 33.
Wang, P.; Wang, Y.; Lu, M.; Long, W.; Dong, P.; Zhao, W.; Tian, H.; Xiao, G.; Cui, J.; Cao, J. Study on combustion characteristics and analysis method optimization of methanol laminar burning under high pressure and high temperature initial conditions. Combust. Flame 2025, 277, 114215. https://doi.org/10.1016/j.combustflame.2025.114215.
- 34.
Zhang, Q.; Chen, G.; Deng, H.; Wen, X.; Wang, F.; Zhang, A.; Sheng, W. Experimental and numerical study of the effects of oxygen-enriched air on the laminar burning characteristics of biomass-derived syngas. Fuel 2021, 285, 119183. https://doi.org/10.1016/j.fuel.2020.119183.
- 35.
Liu, B.; Hu, E.; Yin, G.; Huang, Z. Experimental and kinetic study on laminar burning velocities of ammonia/ethylene/air premixed flames under high temperature and elevated pressure. Combust. Flame 2023, 251, 112707. https://doi.org/10.1016/j.combustflame.2023.112707.
- 36.
Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. https://doi.org/10.1016/0894-1777(88)90043-X.
- 37.
Yu, H.; Han, W.; Santner, J.; Gou, X.; Sohn, C.H.; Ju, Y.; Chen, Z. Radiation-induced uncertainty in laminar flame speed measured from propagating spherical flames. Combust. Flame 2014, 161, 2815–2824. https://doi.org/10.1016/j.combustflame.2014.05.012.
- 38.
Shrestha, K.P.; Lhuillier, C.; Barbosa, A.A.; Brequigny, P.; Contino, F.; Mounaïm-Rousselle, C.; Seidel, L.; Mauss, F. An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature. Proc. Combust. Inst. 2021, 38, 2163–2174. https://doi.org/10.1016/j.proci.2020.06.197.
- 39.
Zhou, S.; Cui, B.; Yang, W.; Tan, H.; Wang, J.; Dai, H.; Li, L.; Rahman, Z.U.; Wang, X.; Deng, S.; et al. An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature. Combust. Flame 2023, 248, 112536. https://doi.org/10.1016/j.combustflame.2022.112536.
- 40.
Wang, Z.; Han, X.; He, Y.; Zhu, R.; Zhu, Y.; Zhou, Z.; Cen, K. Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames. Combust. Flame 2021, 229, 111392. https://doi.org/10.1016/j.combustflame.2021.02.038.
- 41.
Shi, X.; Li, W.; Zhang, J.; Fang, Q.; Zhang, Y.; Xi, Z.; Li, Y. Exploration of NH3 and NH3/DME laminar flame propagation in O2/CO2 atmosphere: Insights into NH3/CO2 interactions. Combust. Flame 2024, 260, 113245. https://doi.org/10.1016/j.combustflame.2023.113245.
- 42.
Meng, X.; Liu, L.; Qin, M.; Zhu, W.; Long, W.; Bi, M. Modeling and chemical kinetic analysis of methanol and reformed gas (H2/CO2) blending with ammonia under lean-burn condition. Int. J. Hydrogen Energy 2024, 58, 190–199. https://doi.org/10.1016/j.ijhydene.2024.01.150.
- 43.
Zhu, W.; Zhang, X.; Miao, M.; Meng, X.; Bi, M. Chemical kinetic study of methane blended with ammonia cracked gas at elevated temperature and pressure. Chem. Eng. J. 2024, 498, 155401. https://doi.org/10.1016/j.cej.2024.155401.
- 44.
Li, S.; Si, J.; Liu, X.; Guo, Y.; Wang, G.; Xu, E.; Zou, J.; Zhang, Q.; Xu, M.; Mi, J. A refined method of identifying NO formation by NH3 and N2 for ammonia combustion. Int. J. Hydrogen Energy 2025, 138, 1004–1016. https://doi.org/10.1016/j.ijhydene.2025.05.206.
- 45.
Alvarez, L.F.; Shaffer, J.; Dumitrescu, C.E.; Askari, O. Laminar burning velocity of Ammonia/Air mixtures at high pressures. Fuel 2024, 363, 130986. https://doi.org/10.1016/j.fuel.2024.130986.
- 46.
Chen, C.; Wang, Z.; Yu, Z.; Han, X.; He, Y.; Zhu, Y.; Konnov, A.A. Experimental and kinetic modeling study of laminar burning velocity enhancement by ozone additive in NH3 + O2 + N2 and NH3 + CH4/C2H6/C3H8 + air flames. Proc. Combust. Inst. 2023, 39, 4237–4246. https://doi.org/10.1016/j.proci.2022.07.025.
- 47.
Xie, M.; Fu, J.; Zhang, Y.; Shu, J.; Ma, Y.; Liu, J.; Zeng, D. Numerical analysis on the effects of CO2 dilution on the laminar burning velocity of premixed methane/air flame with elevated initial temperature and pressure. Fuel 2020, 264, 116858. https://doi.org/10.1016/j.fuel.2019.116858.