2508001109
  • Open Access
  • Article

Laminar Burning Velocity of NH3/CH4/H2/CO2/Air Premixed Flames under Elevated Temperatures and Pressures: An Experimental and Kinetic Study

  • Wenchao Zhu 1,   
  • Xiangyu Meng 1, *,   
  • Zechuan Cui 2,   
  • Jiangping Tian 2,   
  • Wuqiang Long 2

Received: 08 Jul 2025 | Revised: 05 Aug 2025 | Accepted: 12 Aug 2025 | Published: 14 Aug 2025

Abstract

Blending with methane (CH4) considerably enhances the reactivity of pure ammonia (NH3) during co-firing. The partial cracking of NH3 produces hydrogen (H2), which further improves combustion efficiency. Additionally, the addition of carbon dioxide (CO2) helps significantly reduce nitrogen oxide (NOx) emissions. However, fundamental experimental data on the laminar combustion characteristics of NH3/CH4/H2/CO2/air flames are scarce, especially under elevated temperatures and pressures. In this work, laminar burning velocities (LBV) of NH3/CH4/H2/CO2/air premixed flames were measured in a constant volume combustion chamber (CVCC) at different CO2 additions (XCO2 = 0%, 10% and 30%), fuel compositions (40/40/20 and 30/30/40 NH3/CH4/H2) at 500 K and 5 atm. The results indicated that CO2 dilution suppresses the formation of surface wrinkles on the flame, whereas excessive dilution leads to an upward shift of the flame center. The inhibitory effect of CO2 on the LBV is primarily attributed to the dilution-induced reduction in the concentrations of O, H, and OH radicals, followed by thermal effects. As the CO2 dilution ratio and equivalence ratio increase, the reverse direction of reaction R21 (CO + OH = CO2 + H) is significantly enhanced. This reaction competes with R1 (H + O2 = O + OH) for H radicals, thereby effectively suppressing flame propagation. Moreover, when the CO2 dilution ratio increases from 0% to 50%, NO emissions decrease significantly. The proportion of thermal + prompt NO decreases from approximately 10% to below 2%, mainly due to the substantial decrease in adiabatic flame temperature.

References 

  • 1.
    Li, H.; Zheng, B.; Ciais, P.; Boersma, K.F.; Riess, T.C.V.; Martin, R.V.; Broquet, G.; van der A, R.; Li, H.; Hong, C. Satellite reveals a steep decline in China’s CO2 emissions in early 2022. Sci. Adv. 2023, 9, eadg7429. https://doi.org/10.1126/sciadv.adg7429.
  • 2.
    van der Zwaan, B.; Fattahi, A.; Longa, F.D.; Dekker, M.; van Vuuren, D.; Pietzcker, R.; Rodrigues, R.; Schreyer, F.; Huppmann, D.; Emmerling, J.; et al. Electricity- and hydrogen-driven energy system sector-coupling in net-zero CO2 emission pathways. Nat. Commun. 2025, 16, 1368. https://doi.org/10.1038/s41467-025-56365-0.
  • 3.
    Li, Z.; Wang, K.; Liang, H.; Wang, Y.; Ma, R.; Cao, J.; Huang, L. Marine alternative fuels for shipping decarbonization: Technologies, applications and challenges. Energy Convers. Manag. 2025, 329, 119641. https://doi.org/10.1016/j.enconman.2025.119641.
  • 4.
    IMO. 2023 IMO Strategy on Reduction of GHG Emissions from Ships, Resolution MEPC; IMO: London, UK, 2023.
  • 5.
    Zhou, S.; Zhong, W.; Pachiannan, T.; Liu, Q.; Yan, F.; Chen, J.; He, Z.; Wang, Q. Optical Study on Soot Formation of Ethanol/hydrogenated Catalytic Biodiesel/octanol Blends. Int. J. Automot. Manuf. Mater. 2023, 2, 3. https://doi.org/10.53941/ijamm.2023.100015.
  • 6.
    Souppez, J.-B.R.; Guttinger, M. Effect of Inlet Diameter on the Temperature of Hydrogen Fuel Tanks for Automotive Applications. Int. J. Automot. Manuf. Mater. 2024, 3, 1–12. https://doi.org/10.53941/ijamm.2024.100013.
  • 7.
    LeBlanc, S.; Cong, B.; Sandhu, N.; Jin, L.; Yu, X.; Zheng, M. Combustion Management of Neat Dimethyl Ether Combustion for Enabling High Efficiency and Low NOx Production. Int. J. Automot. Manuf. Mater. 2024, 3, 2. https://doi.org/10.53941/ijamm.2024.100020.
  • 8.
    Zhang, J.; Elbanna, A.M.; Zhu, J.; Qian, Y.; Lu, X. Research on the state-of-the-art of efficient and ultra-clean ammonia combustion: From combustion kinetics to engine applications. Appl. Energy. 2025, 391, 125886. https://doi.org/10.1016/j.apenergy.2025.125886.
  • 9.
    Kumar, L.; Sleiti, A.K. Systematic review on ammonia as a sustainable fuel for combustion. Renew. Sustain. Energy Rev. 2024, 202, 114699. https://doi.org/10.1016/j.rser.2024.114699.
  • 10.
    Zhu, D.; Shu, B. Recent progress on combustion characteristics of ammonia-based fuel blends and their potential in internal combustion engines. Int. J. Automot. Manuf. Mater. 2023, 2, 1. https://doi.org/10.53941/ijamm0201001.
  • 11.
    Erfani, N.; Baharudin, L.; Watson, M. Recent advances and intensifications in Haber-Bosch ammonia synthesis process. Chem. Eng. Process.-Process Intensif. 2024, 204, 109962. https://doi.org/10.1016/j.cep.2024.109962.
  • 12.
    Liu, L.; Zhang, M.; Liu, Z. A review of development of natural gas engines. Int. J. Automot. Manuf. Mater. 2023, 2, 4. https://doi.org/10.53941/ijamm0201004.
  • 13.
    Okafor, E.C.; Naito, Y.; Colson, S.; Ichikawa, A.; Kudo, T.; Hayakawa, A.; Kobayashi, H. Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combust. Flame 2019, 204, 162–175. https://doi.org/10.1016/j.combustflame.2019.03.008.
  • 14.
    Yao, A.; Yao, C. Study of diesel/methanol dual fuel combustion in CI engines and its practice in China. Int. J. Automot. Manuf. Mater. 2023, 2, 2. https://doi.org/10.53941/ijamm0201002.
  • 15.
    Lu, M.; Long, W.; Wang, Y.; Wei, F.; Dong, P.; Cong, L.; Tian, H.; Dong, D.; Wang, P.; Wang, Q.; et al. Laminar burning characteristics of ammonia/ methanol mixtures and reaction kinetics analysis at high pressures. Energy 2025, 315, 134300. https://doi.org/10.1016/j.energy.2024.134300.
  • 16.
    Xiao, H.; Li, H. Experimental and kinetic modeling study of the laminar burning velocity of NH3/DME/air premixed flames. Combust. Flame 2022, 245, 112372. https://doi.org/10.1016/j.combustflame.2022.112372.
  • 17.
    Yu, C.; Guo, L.; Sun, W.; Zhang, H.; Cheng, P.; Yan, Y.; Zhu, G.; Jiang, M.; Guo, Y.; Yue, F. Experimental and chemical kinetic study on effects of H2-DME fusion addition on laminar premixed flame speed and flame instability for ammonia composite combustion. Energy 2024, 310, 133175. https://doi.org/10.1016/j.energy.2024.133175.
  • 18.
    Li, H.; Xiao, H. Effect of H2 addition on laminar burning velocity of NH3/DME blends by experimental and numerical method using a reduced mechanism. Combust. Flame 2023, 257, 113000. https://doi.org/10.1016/j.combustflame.2023.113000.
  • 19.
    Berwal, P.; Shawnam; Kumar, S. Laminar burning velocity measurement of CH4/H2/NH3-air premixed flames at high mixture temperatures. Fuel 2023, 331, 125809. https://doi.org/10.1016/j.fuel.2022.125809.
  • 20.
    Yasiry, A.; Wang, J.; Zhang, L.; Abdulraheem, A.A.A.; Cai, X.; Huang, Z. An experimental study on H2/NH3/CH4-air laminar propagating spherical flames at elevated pressure and oxygen enrichment. Int. J. Hydrogen Energy 2024, 58, 28–39. https://doi.org/10.1016/j.ijhydene.2024.01.138.
  • 21.
    Chu, X.; Li, X.; Gao, P.; Ma, Z.; Xiao, H.; Xie, C.; Zhang, Z.; Wang, X. High-temperature auto-ignition characteristics of NH3-H2-CH4. Fuel 2024, 365, 131228. https://doi.org/10.1016/j.fuel.2024.131228.
  • 22.
    Bao, L.; Wang, J.; Shi, L.; Chen, H. Exhaust Gas After-Treatment Systems for Gasoline and Diesel Vehicles. Int. J. Automot. Manuf. Mater. 2022, 1, 9. https://doi.org/10.53941/ijamm0101009.
  • 23.
    Chen, P.; Wang, H.; Qiao, L.; Gu, M.; Luo, K.; Fan, J. Study of the NO formation characteristics and ammonia-N/coal-N transformation mechanism of ammonia-coal co-combustion in O2/CO2 atmosphere. Combust. Flame 2024, 270, 113756. https://doi.org/10.1016/j.combustflame.2024.113756.
  • 24.
    Czyzewski, P.; Slefarski, R.; Golebiewski, M.; Alnajideen, M.; Valera-Medina, A. Experimental study of CO2/H2/NH3 influence on CH4 flameless combustion process in semi-industrial furnace. Energy 2024, 296, 131014. https://doi.org/10.1016/j.energy.2024.131014.
  • 25.
    Gao, Y.; Li, Y.; Wei, X.; Zheng, Y.; Yang, S.; Yang, Q.; Jiang, H.; Zhang, Y.; Lin, H. A kinetic study of CO2 and H2O addition on NO formation for ammonia-methanol combustion. Fuel 2025, 381, 133283. https://doi.org/10.1016/j.fuel.2024.133283.
  • 26.
    Alzueta, M.U.; Giménez-López, J.; Mercader, V.D.; Bilbao, R. Conversion of NH3 and NH3-NO mixtures in a CO2 atmosphere. A parametric study, Fuel 2022, 327, 125133. https://doi.org/10.1016/j.fuel.2022.125133.
  • 27.
    Berwal, P.; Khandelwal, B.; Kumar, S. Effect of ammonia addition on laminar burning velocity of CH4/H2 premixed flames at high pressure and temperature conditions. Int. J. Hydrogen Energy 2024, 49, 112–125. https://doi.org/10.1016/j.ijhydene.2023.06.326.
  • 28.
    Zhu, W.; Zhang, M.; Zhang, X.; Meng, X.; Long, W.; Bi, M. A comprehensive kinetic modeling study on NH3/H2, NH3/CO and NH3/CH4 blended fuels. Int. J. Hydrogen Energy 2024, 85, 228–241. https://doi.org/10.1016/j.ijhydene.2024.08.282.
  • 29.
    Wu, C.K.; Law, C.K. On the determination of laminar flame speeds from stretched flames. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1985; pp. 1941–1949.
  • 30.
    Frankel, M.; Sivashinsky, G. On quenching of curved flames. Combust. Sci. Technol. 1984, 40, 257–268. https://doi.org/10.1080/00102208408923809.
  • 31.
    Burke, M.P.; Chen, Z.; Ju, Y.; Dryer, F.L. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combust. Flame 2009, 156, 771–779. https://doi.org/10.1016/j.combustflame.2009.01.013.
  • 32.
    Huang, Z.; Zhang, Y.; Zeng, K.; Liu, B.; Wang, Q.; Jiang, D. Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust. Flame 2006, 146, 302–311. https://doi.org/10.1016/j.combustflame.2006.03.003.
  • 33.
    Wang, P.; Wang, Y.; Lu, M.; Long, W.; Dong, P.; Zhao, W.; Tian, H.; Xiao, G.; Cui, J.; Cao, J. Study on combustion characteristics and analysis method optimization of methanol laminar burning under high pressure and high temperature initial conditions. Combust. Flame 2025, 277, 114215. https://doi.org/10.1016/j.combustflame.2025.114215.
  • 34.
    Zhang, Q.; Chen, G.; Deng, H.; Wen, X.; Wang, F.; Zhang, A.; Sheng, W. Experimental and numerical study of the effects of oxygen-enriched air on the laminar burning characteristics of biomass-derived syngas. Fuel 2021, 285, 119183. https://doi.org/10.1016/j.fuel.2020.119183.
  • 35.
    Liu, B.; Hu, E.; Yin, G.; Huang, Z. Experimental and kinetic study on laminar burning velocities of ammonia/ethylene/air premixed flames under high temperature and elevated pressure. Combust. Flame 2023, 251, 112707. https://doi.org/10.1016/j.combustflame.2023.112707.
  • 36.
    Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. https://doi.org/10.1016/0894-1777(88)90043-X.
  • 37.
    Yu, H.; Han, W.; Santner, J.; Gou, X.; Sohn, C.H.; Ju, Y.; Chen, Z. Radiation-induced uncertainty in laminar flame speed measured from propagating spherical flames. Combust. Flame 2014, 161, 2815–2824. https://doi.org/10.1016/j.combustflame.2014.05.012.
  • 38.
    Shrestha, K.P.; Lhuillier, C.; Barbosa, A.A.; Brequigny, P.; Contino, F.; Mounaïm-Rousselle, C.; Seidel, L.; Mauss, F. An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature. Proc. Combust. Inst. 2021, 38, 2163–2174. https://doi.org/10.1016/j.proci.2020.06.197.
  • 39.
    Zhou, S.; Cui, B.; Yang, W.; Tan, H.; Wang, J.; Dai, H.; Li, L.; Rahman, Z.U.; Wang, X.; Deng, S.; et al. An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature. Combust. Flame 2023, 248, 112536. https://doi.org/10.1016/j.combustflame.2022.112536.
  • 40.
    Wang, Z.; Han, X.; He, Y.; Zhu, R.; Zhu, Y.; Zhou, Z.; Cen, K. Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames. Combust. Flame 2021, 229, 111392. https://doi.org/10.1016/j.combustflame.2021.02.038.
  • 41.
    Shi, X.; Li, W.; Zhang, J.; Fang, Q.; Zhang, Y.; Xi, Z.; Li, Y. Exploration of NH3 and NH3/DME laminar flame propagation in O2/CO2 atmosphere: Insights into NH3/CO2 interactions. Combust. Flame 2024, 260, 113245. https://doi.org/10.1016/j.combustflame.2023.113245.
  • 42.
    Meng, X.; Liu, L.; Qin, M.; Zhu, W.; Long, W.; Bi, M. Modeling and chemical kinetic analysis of methanol and reformed gas (H2/CO2) blending with ammonia under lean-burn condition. Int. J. Hydrogen Energy 2024, 58, 190–199. https://doi.org/10.1016/j.ijhydene.2024.01.150.
  • 43.
    Zhu, W.; Zhang, X.; Miao, M.; Meng, X.; Bi, M. Chemical kinetic study of methane blended with ammonia cracked gas at elevated temperature and pressure. Chem. Eng. J. 2024, 498, 155401. https://doi.org/10.1016/j.cej.2024.155401.
  • 44.
    Li, S.; Si, J.; Liu, X.; Guo, Y.; Wang, G.; Xu, E.; Zou, J.; Zhang, Q.; Xu, M.; Mi, J. A refined method of identifying NO formation by NH3 and N2 for ammonia combustion. Int. J. Hydrogen Energy 2025, 138, 1004–1016. https://doi.org/10.1016/j.ijhydene.2025.05.206.
  • 45.
    Alvarez, L.F.; Shaffer, J.; Dumitrescu, C.E.; Askari, O. Laminar burning velocity of Ammonia/Air mixtures at high pressures. Fuel 2024, 363, 130986. https://doi.org/10.1016/j.fuel.2024.130986.
  • 46.
    Chen, C.; Wang, Z.; Yu, Z.; Han, X.; He, Y.; Zhu, Y.; Konnov, A.A. Experimental and kinetic modeling study of laminar burning velocity enhancement by ozone additive in NH3 + O2 + N2 and NH3 + CH4/C2H6/C3H8 + air flames. Proc. Combust. Inst. 2023, 39, 4237–4246. https://doi.org/10.1016/j.proci.2022.07.025.
  • 47.
    Xie, M.; Fu, J.; Zhang, Y.; Shu, J.; Ma, Y.; Liu, J.; Zeng, D. Numerical analysis on the effects of CO2 dilution on the laminar burning velocity of premixed methane/air flame with elevated initial temperature and pressure. Fuel 2020, 264, 116858. https://doi.org/10.1016/j.fuel.2019.116858.
Share this article:
How to Cite
Zhu, W.; Meng, X.; Cui, Z.; Tian, J.; Long, W. Laminar Burning Velocity of NH3/CH4/H2/CO2/Air Premixed Flames under Elevated Temperatures and Pressures: An Experimental and Kinetic Study. International Journal of Automotive Manufacturing and Materials 2025, 4 (3), 6. https://doi.org/10.53941/ijamm.2025.100018.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.