2506000753
  • Open Access
  • Article
Black Holes Immersed in Galactic Dark Matter Halo
  • Alexey Dubinsky

Received: 26 May 2025 | Revised: 26 May 2025 | Accepted: 06 Jun 2025 | Published: 17 Jun 2025

Abstract

We analyze the quasinormal modes (QNMs) of scalar, electromagnetic, and Dirac test fields in the background of a black hole immersed in a galactic dark matter halo. The analytic black hole solution considered here is sourced by a physically motivated halo density profile that leads to a flat galactic rotation curve. Using the sixth-order WKB method with Padé approximants, we compute the QNM spectra for various field spins and parameter values, and provide numerical data in tabulated form. In addition to the numerical analysis, we derive analytic expressions for the quasinormal frequencies in the eikonal limit and beyond, by means of an expansion in inverse powers of the multipole number. We also calculate the Unruh temperature perceived by a static observer in the halo-modified spacetime. Our results demonstrate that the presence of the dark matter halo leads to observable modifications in the QNM spectra only if the density or compactness of the galactic halo is extraordinary high, so that quasinormal ringing a reliable observable for testing the black hole geometry, even in the presence of galactic environments.

References 

  • 1.
    Kokkotas, K.D.; Schmidt, B.G. Quasinormal modes of stars and black holes. Living Rev. Rel. 1999, 2, 1–72. https://doi.org/10.12942/lrr-1999-2.
  • 2.
    Nollert, H.-P. TOPICAL REVIEW: Quasinormal modes: The characteristic ‘sound’ of black holes and neutron stars. Class. Quant. Grav. 1999, 16, R159–R216. https://doi.org/10.1088/0264-9381/16/12/201.
  • 3.
    Bolokhov, S.V.; Skvortsova, M. Review of analytic results on quasinormal modes of black holes. arXiv 2025, arXiv:2504.05014.
  • 4.
    Pezzella, L.; Destounis, K.; Maselli, A.; et al. Quasinormal modes of black holes embedded in halos of matter. Phys. Rev. D2025, 111, 064026. https://doi.org/10.1103/PhysRevD.111.064026.
  • 5.
    Liu, D.; Yang, Y.; Long, Z. Probing the black holes in a dark matter halo of M87 using gravitational wave echoes. Eur. Phys. J. C 2024, 84, 871. https://doi.org/10.1140/epjc/s10052-024-13255-x.
  • 6.
    Liu, Y.; Mu, B.; Tao, J.; et al. Quasinormal modes of Schwarzschild-like black hole surrounded by the pseudo-isothermal dark matter halo. Nucl. Phys. B 2025, 1010, 116787. https://doi.org/10.1016/j.nuclphysb.2024.116787.
  • 7.
    Mollicone, A.; Destounis, K. Superradiance of charged black holes embedded in dark matter halos. Phys. Rev. D 2025, 111, 024017. https://doi.org/10.1103/PhysRevD.111.024017.
  • 8.
    Chen, Ru.; Javed, F.; Mustafa, D.G.; et al. Dual effect of string cloud and dark matter halos on particle motions, shadows and epicyclic oscillations around Schwarzschild black holes. JHEAp 2024, 44, 172–186. https://doi.org/10.1016/j.jheap.2024.09.010.
  • 9.
    Jha, S.K. Shadow, ISCO, quasinormal modes, Hawking spectrum, weak gravitational lensing, and parameter estimation of a Schwarzschild black hole surrounded by a Dehnen type dark matter halo. JCAP 2025, 3, 54. https://doi.org/10.1088/14757516/2025/03/054.
  • 10.
    B´ecar, R.; Gonz´alez, P.A.; Papantonopoulos, E.; et al. Massive scalar field perturbations of black holes immersed in Chaplygin-like dark fluid. JCAP 2024, 6, 61. https://doi.org/10.1088/1475-7516/2024/06/061.
  • 11.
    Liu, D.; Yang, Y.; Long, Z. Probing black holes in a dark matter spike of M87 using quasinormal modes. Eur. Phys. J. C 2024, 84, 731. https://doi.org/10.1140/epjc/s10052-024-13096-8.
  • 12.
    Hamil, B.; Al-Badawi, A.; L¨ utf¨ uo˘ glu, B.C. Geodesics and scalar perturbations of Schwarzschild black holes embedded in a Dehnen-type dark matter halo with quintessence. arXiv 2025, arXiv: 2505.18611.
  • 13.
    Lobo, F.S.N.; Ramos, J.A.A.; Rodrigues, M.E. Supermassive black hole in NGC 4649 (M60) with a dark matter halo: Impact on shadow measurements and thermodynamic properties. arXiv 2025, arXiv:2505.03661.
  • 14.
    Ma, S.; Wang, R.; Deng, Ji.; et al. Euler–Heisenberg black hole surrounded by perfect fluid dark matter. Eur. Phys. J. C 2024, 84, 595. https://doi.org/10.1140/epjc/s10052-024-12914-3.
  • 15.
    Shen, J.; Gebhardt, K. The Supermassive Black Hole and Dark Matter Halo of NGC 4649 (M60). Astrophys. J. 2010, 711, 484–494. https://doi.org/10.1088/0004-637X/711/1/484.
  • 16.
    Schutz, B.F.; Will, C.M. Black hole normal modes: A semianalytic approach. Astrophys. J. Lett. 1985, 291, L33–L36. https://doi.org/10.1086/184453.
  • 17.
    Iyer, S.; Will, C.M. Black Hole Normal Modes: A WKB Approach. 1. Foundations and Application of a Higher Order WKBAnalysis of Potential Barrier Scattering. Phys. Rev. D 1987, 35, 3621. https://doi.org/10.1103/PhysRevD.35.3621.
  • 18.
    Konoplya, R.A. Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach. Phys. Rev. D 2003, 68, 24018. https://doi.org/10.1103/PhysRevD.68.024018.
  • 19.
    Matyjasek, J.; Opala, M. Quasinormal modes of black holes. The improved semianalytic approach. Phys. Rev. D 2017, 96, 024011. https://doi.org/10.1103/PhysRevD.96.024011.
  • 20.
    Cardoso, V.; Miranda, A.S.; Berti, E.; et al. Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D 2009, 79, 064016. https://doi.org/10.1103/PhysRevD.79.064016.
  • 21.
    Khanna, G.; Price, R.H. Black Hole Ringing, Quasinormal Modes, and Light Rings. Phys. Rev. D 2017, 95, 081501. https://doi.org/10.1103/PhysRevD.95.081501.
  • 22.
    Konoplya, R.A. Further clarification on quasinormal modes/circular null geodesics correspondence. Phys. Lett. B 2023, 838, 137674. https://doi.org/10.1016/j.physletb.2023.137674.
  • 23.
    Bolokhov, S.V. Black holes in Starobinsky-Bel-Robinson Gravity and the breakdown of quasinormal modes/null geodesics correspondence. Phys. Lett. B 2024, 856, 138879. https://doi.org/10.1016/j.physletb.2024.138879.
  • 24.
    Konoplya, R.A. Black holes in galactic centers: Quasinormal ringing, grey-body factors and Unruh temperature. Phys. Lett. B 2021, 823, 136734. https://doi.org/10.1016/j.physletb.2021.136734.
  • 25.
    Konoplya, R.A.; Zhidenko, A. Solutions of the Einstein Equations for a Black Hole Surrounded by a Galactic Halo. Astrophys. J. 2022, 933, 166. https://doi.org/10.3847/1538-4357/ac76bc.
  • 26.
    Konoplya, R.A.; Zhidenko, A. Analytic expressions for quasinormal modes and grey-body factors in the eikonal limit and beyond. Class. Quant. Grav. 2023, 40, 245005. https://doi.org/10.1088/1361-6382/ad0a52.
  • 27.
    Bolokhov, S.V. Long-lived quasinormal modes and overtones’ behavior of holonomy-corrected black holes. Phys. Rev. D 2024, 110, 024010. https://doi.org/10.1103/PhysRevD.110.024010.
  • 28.
    Dubinsky, A. Analytic expressions for quasinormal modes of the general parametrized spherically symmetric black holes and the Hod’s proposal. Phys. Lett. B 2025, 861, 139251. https://doi.org/10.1016/j.physletb.2025.139251.
  • 29.
    Malik, Z. Analytical QNMs of fields of various spin in the Hayward spacetime. EPL 2024, 147, 69001. https://doi.org/10.1209/0295-5075/ad7885.
  • 30.
    Malik, Z. Quasinormal Modes of Dilaton Black Holes: Analytic Approximations. Int. J. Theor. Phys. 2024, 63, 128. https://doi.org/10.1007/s10773-024-05660-5.
  • 31.
    Dubinsky, A.; Zinhailo, A.F. Analytic expressions for grey-body factors of the general parametrized spherically symmetric black holes. EPL 2025, 149, 69004. https://doi.org/10.1209/0295-5075/adbc17.
  • 32.
    Verlinde, E.P. On the Origin of Gravity and the Laws of Newton. https://doi.org/10.1007/JHEP04(2011)029. JHEP 2011, 4, 029.
  • 33.
    Konoplya, R.A. Entropic force, holography and thermodynamics for static space-times. Eur. Phys. J. C 2010, 69, 555–562. https://doi.org/10.1140/epjc/s10052-010-1424-1.
  • 34.
    Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870. https://doi.org/10.1103/PhysRevD.14.870.
Share this article:
How to Cite
Dubinsky, A. Black Holes Immersed in Galactic Dark Matter Halo. International Journal of Gravitation and Theoretical Physics 2025, 1 (1), 2. https://doi.org/10.53941/ijgtp.2025.100002.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.