2507000889
  • Open Access
  • Article
Gravitational Quasinormal Modes and Grey-Body Factors of Bonanno–Reuter Regular Black Holes
  • S. V. Bolokhov *,   
  • Milena Skvortsova

Received: 04 Jun 2025 | Revised: 15 Jun 2025 | Accepted: 16 Jun 2025 | Published: 02 Jul 2025

Abstract

We study gravitational perturbations of the Bonanno--Reuter quantum-corrected black hole arising in the asymptotic safety scenario, focusing on QNMs and grey-body factors. Assuming the RG parameter ω~is fixed to its phenomenologically motivated value, we treat the interpolation parameter γ as free and investigate how it modifies the black hole's response to axial gravitational perturbations. Quasinormal frequencies are computed using the sixth-order WKB method with Padé approximants, and their dependence on γ and the black hole mass M is analyzed. We find that the Schwarzschild limit is rapidly recovered for large M or large γ, while significant deviations arise in the quantum regime. The accuracy of the WKB results is confirmed by time-domain integration of the wave equation. Comparison of grey-body factors computed via both the WKB method and the quasinormal mode correspondence are in a good concordance. Our findings indicate that quantum corrections can leave significant imprints in the ringdown and radiation spectra, while preserving consistency with classical results in the appropriate limit.

References 

  • 1.
    Kokkotas, K.D.; Schmidt, B.G. Quasinormal modes of stars and black holes. Living Rev. Rel. 1999, 2, 2.
  • 2.
    Berti, E.; Cardoso, V.; Starinets, A.O. Quasinormal modes of black holes and black branes. Class. Quant. Grav. 2009, 26, 163001,
  • 3.
    Konoplya, R.A.; Zhidenko, A. Quasinormal modes of black holes: From astrophysics to string theory. Rev. Mod. Phys. 2011, 83, 793–836.
  • 4.
    Bolokhov, S.V.; Skvortsova, M. Review of analytic results on quasinormal modes of black holes. arXiv 2025, arXiv:2504.05014.
  • 5.
    Page, D.N. Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole. Phys. Rev. D 1976, 13, 198–206.
  • 6.
    Kanti, P. Black holes in theories with large extra dimensions: A Review. Int. J. Mod. Phys. A 2004, 19, 4899–4951.
  • 7.
    Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220. Erratum: Commun. Math. Phys. 1976, 46, 206.
  • 8.
    Niedermaier, M.; Reuter, M. The Asymptotic Safety Scenario in Quantum Gravity. Living Rev. Rel. 2006, 9, 5–173.
  • 9.
    Bonanno, A.; Reuter, M. Renormalization group improved black hole space-times. Phys. Rev. D 2000, 62, 043008.
  • 10.
    Konoplya, R.A.; Zinhailo, A.F.; Kunz, J.; et al. Quasinormal ringing of regular black holes in asymptotically safe gravity: the importance of overtones. JCAP 2022, 10, 91.
  • 11.
    Rincón, A.; Panotopoulos, G. Quasinormal modes of an improved Schwarzschild black hole. Phys. Dark Univ. 2020, 30, 100639.
  • 12.
    Liu, D.J.; Yang, B.; Zhai, Y.J.; et al. Quasinormal modes for asymptotic safe black holes. Class. Quant. Grav. 2012, 29, 145009.
  • 13.
    Li, J.; Zhong, Y. Quasinormal Modes for Electromagnetic Field Perturbation of the Asymptotic Safe Black Hole. Int. J. Theor. Phys. 2013, 52, 1583–1587.
  • 14.
    Bouhmadi-López, M.; Brahma, S.; Chen, C.Y.; et al. A consistent model of non-singular Schwarzschild black hole in loop quantum gravity and its quasinormal modes. JCAP 2020, 7, 66.
  • 15.
    Regge, T.; Wheeler, J.A. Stability of a Schwarzschild singularity. Phys. Rev. 1957, 108, 1063–1069.
  • 16.
    Konoplya, R.A.; Stashko, O.S. Probing the effective quantum gravity via quasinormal modes and shadows of black holes. Phys. Rev. D 2025, 111, 104055.
  • 17.
    Schutz, B.F.; Will, C.M. Black hole normal modes: A semianalytic approach. Astrophys. J. Lett. 1985, 291, L33–L36.
  • 18.
    Iyer, S.; Will, C.M. Black Hole Normal Modes: A WKB Approach. 1. Foundations and Application of a Higher Order WKB Analysis of Potential Barrier Scattering. Phys. Rev. D 1987, 35, 3621.
  • 19.
    Konoplya, R.A. Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach. Phys. Rev. D 2003, 68, 024018.
  • 20.
    Matyjasek, J.; Opala, M. Quasinormal modes of black holes. The improved semianalytic approach. Phys. Rev. D 2017, 96, 024011.
  • 21.
    Bolokhov, S.V. Long-lived quasinormal modes and oscillatory tails of the Bardeen spacetime. Phys. Rev. D 2024, 109, 064017.
  • 22.
    Bolokhov, S.V. Late time decay of scalar and Dirac fields around an asymptotically de Sitter black hole in the Eu- ler–Heisenberg electrodynamics. Eur. Phys. J. C 2024, 84, 634.
  • 23.
    Skvortsova, M. Ringing of Extreme Regular Black Holes. Grav. Cosmol. 2024, 30, 279–288.
  • 24.
    Skvortsova, M. Quasinormal Spectrum of (2+1)-Dimensional Asymptotically Flat, dS and AdS Black Holes. Fortsch. Phys. 2024, 72, 2400036.
  • 25.
    Gundlach, C.; Price, R.H.; Pullin, J. Late time behavior of stellar collapse and explosions: 1. Linearized perturbations. Phys. Rev. D 1994, 49, 883–889.
  • 26.
    Konoplya, R.A.; Zhidenko, A.; Zinhailo, A.F. Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations. Class. Quant. Grav. 2019, 36, 155002.
  • 27.
    Konoplya, R.A.; Zhidenko, A. Correspondence between grey-body factors and quasinormal modes. JCAP 2024, 09, 068.
  • 28.
    Bolokhov, S.V.; Skvortsova, M. Correspondence between quasinormal modes and grey-body factors of spherically symmetric traversable wormholes. JCAP 2025, 4, 25.
  • 29.
    Skvortsova, M. Quantum corrected black holes: testing the correspondence between grey-body factors and quasinormal modes. arXiv 2024, arXiv:2411.06007.
  • 30.
    Dubinsky, A. Grey-body factors for gravitational and electromagnetic perturbations around Gibbons-Maeda-Garfinkle- Horovits-Strominger black holes. arXiv 2024, arXiv:2412.00625.
  • 31.
    Malik, Z. Correspondence between quasinormal modes and grey-body factors for massive fields in Schwarzschild-de Sitter spacetime. JCAP 2025, 4, 42.
  • 32.
    Lütfüolu, B.C. Quasinormal Modes and Gray-Body Factors for Gravitational Perturbations in Asymptotically Safe Gravity. arXiv 2025, arXiv:2505.06966.
  • 33.
    Lütfüolu, B.C. Non-minimal Einstein–Yang–Mills black holes: fundamental quasinormal mode and grey-body factors versus outburst of overtones. Eur. Phys. J. C 2025, 85, 630.
  • 34.
    Lütfüolu, B.C. Long-lived quasinormal modes and gray-body factors of black holes and wormholes in dark matter inspired Weyl gravity. Eur. Phys. J. C 2025, 85, 486.
  • 35.
    Konoplya, R.A.; Stuchlik, Z.; Zhidenko, A.; Zinhailo, A.F. Quasinormal modes of renormalization group improved Dymnikova regular black holes. Phys. Rev. D 2023, 107, 104050.
  • 36.
    Zinhailo, A.F. Quasinormal spectrum in the asymptotically safe gravity. arXiv 2023, arXiv:2311.05380.
  • 37.
    Stashko, O. Quasinormal modes and gray-body factors of regular black holes in asymptotically safe gravity. Phys. Rev. D 2024, 110, 084016.
Share this article:
How to Cite
Bolokhov, S. V.; Skvortsova, M. Gravitational Quasinormal Modes and Grey-Body Factors of Bonanno–Reuter Regular Black Holes. International Journal of Gravitation and Theoretical Physics 2025, 1 (1), 3. https://doi.org/10.53941/ijgtp.2025.100003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.