- 1.
Akiyama, K.; Alberdi, A.; Alef, W.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1.
- 2.
Abbott, B.P.; Abbott, R.; Abbott, T.D.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102.
- 3.
Akiyama, K.; Alberdi, A.; Alef, W.; et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett. 2022, 930, L17.
- 4.
Abbott, B.P.; Abbott, R.; Abbott, T.D.; et al. Tests of general relativity with GW150914. Phys. Rev. Lett. 2016, 116, 221101; Erratum in Phys. Rev. Lett. 2018, 121, 129902.
- 5.
Bambi, C. Testing black hole candidates with electromagnetic radiation. Rev. Mod. Phys. 2017, 89, 025001.
- 6.
Goddi, C.; Falcke, H.; Kramer, M.; et al. BlackHoleCam: Fundamental physics of the galactic center. Int. J. Mod. Phys. D 2016, 26, 1730001.
- 7.
Charmousis, C.; Fernandes, P.G.S.; Hassaine, M. Proca theory of four-dimensional regularized Gauss-Bonnet gravity and black holes with primary hair. arXiv 2025, arXiv:gr-qc/2504.13084.
- 8.
Lu, H.; Pang, Y. Horndeski gravity as D → 4 limit of Gauss-Bonnet. Phys. Lett. B 2020, 809, 135717.
- 9.
Kobayashi, T. Effective scalar-tensor description of regularized Lovelock gravity in four dimensions. JCAP 2020, 7, 13.
- 10.
Fernandes, P.G.S.; Carrilho, P.; Clifton, T.; et al. Derivation of Regularized Field Equations for the Einstein-Gauss-Bonnet Theory in Four Dimensions. Phys. Rev. D 2020, 102, 024025.
- 11.
Arnowitt, R.L.; Deser, S.; Misner, C.W. Canonical variables for general relativity. Phys. Rev. 1960, 117, 1595–1602.
- 12.
Synge, J.L. The Escape of Photons from Gravitationally Intense Stars. Mon. Not. R. Astron. Soc. 1966, 131, 463–466.
- 13.
Cornish, N.J.; Levin, J.J. Lyapunov timescales and black hole binaries. Class. Quantum Gravity 2003, 20, 1649–1660.
- 14.
Cardoso, V.; Miranda, A.S.; Berti, E.; et al. Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D 2009, 79, 064016.
- 15.
Jusufi, K. Connection Between the Shadow Radius and Quasinormal Modes in Rotating Spacetimes. Phys. Rev. D 2020, 101, 124063.
- 16.
Konoplya, R.A. Further clarification on quasinormal modes/circular null geodesics correspondence. Phys. Lett. B 2023, 838, 137674.
- 17.
Bolokhov, S.V. Black holes in Starobinsky-Bel-Robinson Gravity and the breakdown of quasinormal modes/null geodesics correspondence. Phys. Lett. B 2024, 856, 138879.
- 18.
Bolokhov, S.V.; Skvortsova, M. Review of analytic results on quasinormal modes of black holes. arXiv 2025, arXiv:gr- qc/2504.05014.
- 19.
Harada, T.; Kimura, M. Collision of an innermost stable circular orbit particle around a Kerr black hole. Phys. Rev. D 2011, 83, 024002.
- 20.
Mondal, M.; Rahaman, F.; Newton Singh, K. Lyapunov exponent ISCO and Kolmogorov Senai entropy for Kerr Kiselev black hole. Eur. Phys. J. C 2021, 81, 84.
- 21.
Schroven, K.; Grunau, S. Innermost stable circular orbit of charged particles in Reissner-Nordström, Kerr-Newman, and Kerr-Sen spacetimes. Phys. Rev. D 2021, 103, 024016.
- 22.
Perlick, V.; Tsupko, O.Y. Calculating black hole shadows: Review of analytical studies. Phys. Rep. 2022, 947, 1–39.
- 23.
Perlick, V.; Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Influence of a plasma on the shadow of a spherically symmetric black hole. Phys. Rev. D 2015, 92, 104031.
- 24.
Jefremov, P.I.; Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Innermost stable circular orbits of spinning test particles in Schwarzschild and Kerr space-times. Phys. Rev. D 2015, 91, 124030.
- 25.
Konoplya, R.A.; Zhidenko, A. Shadows of parametrized axially symmetric black holes allowing for separation of variables. Phys. Rev. D 2021, 103, 104033.
- 26.
Stuchlík, Z.; Schee, J. Shadow of the regular Bardeen black holes and comparison of the motion of photons and neutrinos. Eur. Phys. J. C 2019, 79, 44.
- 27.
Tsukamoto, N.; Li, Z.; Bambi, C. Constraining the spin and the deformation parameters from the black hole shadow. JCAP 2014, 6, 43.
- 28.
Esteban, E.P.; Ramos, E. Rotating black hole in an external electromagnetic field. Phys. Rev. D 1988, 38, 2963–2971.
- 29.
Konoplya, R.A.; Stuchlík, Z.; Zhidenko, A. Axisymmetric black holes allowing for separation of variables in the Klein- Gordon and Hamilton-Jacobi equations. Phys. Rev. D 2018, 97, 084044.
- 30.
Konoplya, R.A.; Zhidenko, A. General parametrization of black holes: The only parameters that matter. Phys. Rev. D 2020, 101, 124004.
- 31.
Schutz, B.F.; Will, C.M. Black Hole Normal Modes: A Semianalytic Approach. Astrophys. J. Lett. 1985, 291, L33–L36.
- 32.
Iyer, S.; Will, C.M. Black Hole Normal Modes: A WKB Approach. 1. Foundations and Application of a Higher Order WKB Analysis of Potential Barrier Scattering. Phys. Rev. D 1987, 35, 3621.
- 33.
Konoplya, R.A. Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach. Phys. Rev. D 2003, 68, 024018.
- 34.
Matyjasek, J.; Opala, M. Quasinormal modes of black holes. The improved semianalytic approach. Phys. Rev. D 2017, 96, 024011.
- 35.
Lütfüolu, B.C. Quasinormal Spectra of Primary Hair Black Holes in Proca–Gauss–Bonnet Gravity. 2025, Work in Preparation.
- 36.
Konoplya, R.A.; Zhidenko, A. Correspondence between grey-body factors and quasinormal modes. JCAP 2024, 9, 68.
- 37.
Malik, Z. Correspondence between quasinormal modes and grey-body factors for massive fields in Schwarzschild-de Sitter spacetime. JCAP 2025, 4, 42.
- 38.
Bolokhov, S.V.; Skvortsova, M. Correspondence between quasinormal modes and grey-body factors of spherically symmetric traversable wormholes. JCAP 2025, 4, 25.
- 39.
Pedrotti, D.; Calzà, M. The Trinity of black hole correspondences: Shadows-quasinormal modes-graybody factors and cautionary remarks. arXiv 2025, arXiv:gr-qc/2504.01909.
- 40.
Hamil, B.; Lütfüolu, B.C. Nonlinear Magnetically Charged Black Holes with Phantom Global Monopoles: Thermodynam- ics, Geodesics, Gravitational Lensing, Quasinormal Modes, and Grey-Body Factors. arXiv 2025, arXiv:gr-qc/2503.17474.
- 41.
Lütfüolu, B.C. Non-minimal Einstein–Yang–Mills black holes: fundamental quasinormal mode and grey-body factors versus outburst of overtones. Eur. Phys. J. C 2025, 85, 630.
- 42.
Dubinsky, A. Grey-body factors for gravitational and electromagnetic perturbations around Gibbons-Maeda-Garfinkle- Horovits-Strominger black holes. arXiv 2024, arXiv:gr-qc/2412.00625.
- 43.
Skvortsova, M. Quantum corrected black holes: testing the correspondence between grey-body factors and quasinormal modes. arXiv 2024, arXiv:gr-qc/2411.06007.
- 44.
Tang, C.; Ling, Y.; Jiang, Q.Q. Correspondence between grey-body factors and quasinormal modes for regular black holes with sub-Planckian curvature. arXiv 2025, arXiv:gr-qc/2503.21597.
- 45.
Lütfüolu, B.C. Quasinormal Modes and Gray-Body Factors for Gravitational Perturbations in Asymptotically Safe Gravity. arXiv 2025, arXiv:gr-qc/2505.06966.
- 46.
Akiyama, K.; Alberdi, A.; Alef, W.; et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett. 2019, 875, L6.
- 47.
Vagnozzi, S.; Roy, R.; Tsai, Y.D.; et al. Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A. Class. Quant. Grav. 2023, 40, 165007.