2507000929
  • Open Access
  • Article
Black Holes in Proca-Gauss-Bonnet Gravity with Primary Hair:  Particle Motion, Shadows, and Grey-Body Factors
  • Bekir Can Lütfüoğlu

Received: 20 May 2025 | Revised: 20 Jun 2025 | Accepted: 04 Jul 2025 | Published: 08 Jul 2025

Abstract

We investigate classical and semiclassical signatures of black holes in a recently proposed Proca–Gauss–Bonnet gravity model that admits asymptotically flat solutions with primary hair. Two distinct classes of spherically symmetric metrics arise from different relations between the coupling constants of scalar–tensor and vector–tensor Gauss–Bonnet interactions. For each geometry, we examine the range of parameters permitting horizon formation and analyze the motion of test particles and light rays. We compute characteristic observables including the shadow radius, Lyapunov exponent, innermost stable circular orbit (ISCO) frequency, and binding energy. Additionally, we study scalar and Dirac field perturbations, derive the corresponding effective potentials, and calculate the grey-body factors (GBFs) using both the sixth-order Wentzel–Kramers–Brillouin (WKB) method and their correspondence with quasinormal modes (QNMs). Our results show that the QNM-based approximation of GBFs is accurate for sufficiently large multipole numbers and that deviations from Schwarzschild geometry become pronounced for large values of the Proca hair and Gauss–Bonnet couplings.

References 

  • 1.
    Akiyama, K.; Alberdi, A.; Alef, W.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1.
  • 2.
    Abbott, B.P.; Abbott, R.; Abbott, T.D.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102.
  • 3.
    Akiyama, K.; Alberdi, A.; Alef, W.; et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett. 2022, 930, L17.
  • 4.
    Abbott, B.P.; Abbott, R.; Abbott, T.D.; et al. Tests of general relativity with GW150914. Phys. Rev. Lett. 2016, 116, 221101; Erratum in Phys. Rev. Lett. 2018, 121, 129902.
  • 5.
    Bambi, C. Testing black hole candidates with electromagnetic radiation. Rev. Mod. Phys. 2017, 89, 025001.
  • 6.
    Goddi, C.; Falcke, H.; Kramer, M.; et al. BlackHoleCam: Fundamental physics of the galactic center. Int. J. Mod. Phys. D 2016, 26, 1730001.
  • 7.
    Charmousis, C.; Fernandes, P.G.S.; Hassaine, M. Proca theory of four-dimensional regularized Gauss-Bonnet gravity and black holes with primary hair. arXiv 2025, arXiv:gr-qc/2504.13084.
  • 8.
    Lu, H.; Pang, Y. Horndeski gravity as D → 4 limit of Gauss-Bonnet. Phys. Lett. B 2020, 809, 135717.
  • 9.
    Kobayashi, T. Effective scalar-tensor description of regularized Lovelock gravity in four dimensions. JCAP 2020, 7, 13.
  • 10.
    Fernandes, P.G.S.; Carrilho, P.; Clifton, T.; et al. Derivation of Regularized Field Equations for the Einstein-Gauss-Bonnet Theory in Four Dimensions. Phys. Rev. D 2020, 102, 024025.
  • 11.
    Arnowitt, R.L.; Deser, S.; Misner, C.W. Canonical variables for general relativity. Phys. Rev. 1960, 117, 1595–1602.
  • 12.
    Synge, J.L. The Escape of Photons from Gravitationally Intense Stars. Mon. Not. R. Astron. Soc. 1966, 131, 463–466.
  • 13.
    Cornish, N.J.; Levin, J.J. Lyapunov timescales and black hole binaries. Class. Quantum Gravity 2003, 20, 1649–1660.
  • 14.
    Cardoso, V.; Miranda, A.S.; Berti, E.; et al. Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D 2009, 79, 064016.
  • 15.
    Jusufi, K. Connection Between the Shadow Radius and Quasinormal Modes in Rotating Spacetimes. Phys. Rev. D 2020, 101, 124063.
  • 16.
    Konoplya, R.A. Further clarification on quasinormal modes/circular null geodesics correspondence. Phys. Lett. B 2023, 838, 137674.
  • 17.
    Bolokhov, S.V. Black holes in Starobinsky-Bel-Robinson Gravity and the breakdown of quasinormal modes/null geodesics correspondence. Phys. Lett. B 2024, 856, 138879.
  • 18.
    Bolokhov, S.V.; Skvortsova, M. Review of analytic results on quasinormal modes of black holes. arXiv 2025, arXiv:gr- qc/2504.05014.
  • 19.
    Harada, T.; Kimura, M. Collision of an innermost stable circular orbit particle around a Kerr black hole. Phys. Rev. D 2011, 83, 024002.
  • 20.
    Mondal, M.; Rahaman, F.; Newton Singh, K. Lyapunov exponent ISCO and Kolmogorov Senai entropy for Kerr Kiselev black hole. Eur. Phys. J. C 2021, 81, 84.
  • 21.
    Schroven, K.; Grunau, S. Innermost stable circular orbit of charged particles in Reissner-Nordström, Kerr-Newman, and Kerr-Sen spacetimes. Phys. Rev. D 2021, 103, 024016.
  • 22.
    Perlick, V.; Tsupko, O.Y. Calculating black hole shadows: Review of analytical studies. Phys. Rep. 2022, 947, 1–39.
  • 23.
    Perlick, V.; Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Influence of a plasma on the shadow of a spherically symmetric black hole. Phys. Rev. D 2015, 92, 104031.
  • 24.
    Jefremov, P.I.; Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Innermost stable circular orbits of spinning test particles in Schwarzschild and Kerr space-times. Phys. Rev. D 2015, 91, 124030.
  • 25.
    Konoplya, R.A.; Zhidenko, A. Shadows of parametrized axially symmetric black holes allowing for separation of variables. Phys. Rev. D 2021, 103, 104033.
  • 26.
    Stuchlík, Z.; Schee, J. Shadow of the regular Bardeen black holes and comparison of the motion of photons and neutrinos. Eur. Phys. J. C 2019, 79, 44.
  • 27.
    Tsukamoto, N.; Li, Z.; Bambi, C. Constraining the spin and the deformation parameters from the black hole shadow. JCAP 2014, 6, 43.
  • 28.
    Esteban, E.P.; Ramos, E. Rotating black hole in an external electromagnetic field. Phys. Rev. D 1988, 38, 2963–2971.
  • 29.
    Konoplya, R.A.; Stuchlík, Z.; Zhidenko, A. Axisymmetric black holes allowing for separation of variables in the Klein- Gordon and Hamilton-Jacobi equations. Phys. Rev. D 2018, 97, 084044.
  • 30.
    Konoplya, R.A.; Zhidenko, A. General parametrization of black holes: The only parameters that matter. Phys. Rev. D 2020, 101, 124004.
  • 31.
    Schutz, B.F.; Will, C.M. Black Hole Normal Modes: A Semianalytic Approach. Astrophys. J. Lett. 1985, 291, L33–L36.
  • 32.
    Iyer, S.; Will, C.M. Black Hole Normal Modes: A WKB Approach. 1. Foundations and Application of a Higher Order WKB Analysis of Potential Barrier Scattering. Phys. Rev. D 1987, 35, 3621.
  • 33.
    Konoplya, R.A. Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach. Phys. Rev. D 2003, 68, 024018.
  • 34.
    Matyjasek, J.; Opala, M. Quasinormal modes of black holes. The improved semianalytic approach. Phys. Rev. D 2017, 96, 024011.
  • 35.
    Lütfüolu, B.C. Quasinormal Spectra of Primary Hair Black Holes in Proca–Gauss–Bonnet Gravity. 2025, Work in Preparation.
  • 36.
    Konoplya, R.A.; Zhidenko, A. Correspondence between grey-body factors and quasinormal modes. JCAP 2024, 9, 68.
  • 37.
    Malik, Z. Correspondence between quasinormal modes and grey-body factors for massive fields in Schwarzschild-de Sitter spacetime. JCAP 2025, 4, 42.
  • 38.
    Bolokhov, S.V.; Skvortsova, M. Correspondence between quasinormal modes and grey-body factors of spherically symmetric traversable wormholes. JCAP 2025, 4, 25.
  • 39.
    Pedrotti, D.; Calzà, M. The Trinity of black hole correspondences: Shadows-quasinormal modes-graybody factors and cautionary remarks. arXiv 2025, arXiv:gr-qc/2504.01909.
  • 40.
    Hamil, B.; Lütfüolu, B.C. Nonlinear Magnetically Charged Black Holes with Phantom Global Monopoles: Thermodynam- ics, Geodesics, Gravitational Lensing, Quasinormal Modes, and Grey-Body Factors. arXiv 2025, arXiv:gr-qc/2503.17474.
  • 41.
    Lütfüolu, B.C. Non-minimal Einstein–Yang–Mills black holes: fundamental quasinormal mode and grey-body factors versus outburst of overtones. Eur. Phys. J. C 2025, 85, 630.
  • 42.
    Dubinsky, A. Grey-body factors for gravitational and electromagnetic perturbations around Gibbons-Maeda-Garfinkle- Horovits-Strominger black holes. arXiv 2024, arXiv:gr-qc/2412.00625.
  • 43.
    Skvortsova, M. Quantum corrected black holes: testing the correspondence between grey-body factors and quasinormal modes. arXiv 2024, arXiv:gr-qc/2411.06007.
  • 44.
    Tang, C.; Ling, Y.; Jiang, Q.Q. Correspondence between grey-body factors and quasinormal modes for regular black holes with sub-Planckian curvature. arXiv 2025, arXiv:gr-qc/2503.21597.
  • 45.
    Lütfüolu, B.C. Quasinormal Modes and Gray-Body Factors for Gravitational Perturbations in Asymptotically Safe Gravity. arXiv 2025, arXiv:gr-qc/2505.06966.
  • 46.
    Akiyama, K.; Alberdi, A.; Alef, W.; et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett. 2019, 875, L6.
  • 47.
    Vagnozzi, S.; Roy, R.; Tsai, Y.D.; et al. Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A. Class. Quant. Grav. 2023, 40, 165007.
Share this article:
How to Cite
Lütfüoğlu, B. C. Black Holes in Proca-Gauss-Bonnet Gravity with Primary Hair:  Particle Motion, Shadows, and Grey-Body Factors. International Journal of Gravitation and Theoretical Physics 2025, 1 (1), 4. https://doi.org/10.53941/ijgtp.2025.100004.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.