2507001007
  • Open Access
  • Article
Convergence of Higher-Curvature Expansions Near the Horizon: Hawking Radiation from Regular Black Holes
  • Roman A. Konoplya 1, *,   
  • Alexander Zhidenko 1, 2

Received: 14 May 2025 | Revised: 10 Jul 2025 | Accepted: 23 Jul 2025 | Published: 25 Jul 2025

Abstract

A recently proposed model incorporating a series of higher-curvature corrections allows for analytic black-hole solutions at each order of the expansion, with a fully regular black hole emerging in the limit of infinite number of terms. An important question that arises within this framework is how rapidly the series converges. For those classical observables, which are primarily determined by the geometry near the peak of the effective potential, it has been previously shown that the series converges remarkably fast, often within the first two orders. However, this rapid convergence does not extend to quantities such as Hawking radiation, which are highly sensitive to the geometry near the event horizon. Although each successive order yields a result that is significantly closer to that of the full infinite series, several terms are typically required to obtain a sufficiently accurate approximation of the regular black hole in this context.

References 

  • 1.
    Oliva, J.; Ray, S. A new cubic theory of gravity in five dimensions: Black hole, Birkhoff’s theorem and C-function. Class. Quant. Grav. 2010, 27, 225002.
  • 2.
    Myers, R.C.; Robinson, B. Black Holes in Quasi-topological Gravity. JHEP 2010, 8, 67.
  • 3.
    Dehghani, M.H.; Bazrafshan, A.; Mann, R.B.; et al. Black Holes in Quartic Quasitopological Gravity. Phys. Rev. D 2012, 85, 104009.
  • 4.
    Ahmed, J.; Hennigar, R.A.; Mann, R.B.; et al. Quintessential Quartic Quasi-topological Quartet. JHEP 2017, 5, 134.
  • 5.
    Cisterna, A.; Guajardo, L.; Hassaine, M.; et al. Quintic quasi-topological gravity. JHEP 2017, 4, 66.
  • 6.
    Bueno, P.; Cano, P.A.; Hennigar, R.A. Regular Black Holes From Pure Gravity. arXiv 2024, arXiv:2403.04827.
  • 7.
    Bueno, P.; Cano, P.A.; Hennigar, R.A.; et al. Dynamical Formation of Regular Black Holes. Phys. Rev. Lett. 2025, 134, 181401.
  • 8.
    Bueno, P.; Cano, P.A.; Hennigar, R.A.; et al. Regular black holes from thin-shell collapse. Phys. Rev. D 2025, 111, 104009.
  • 9.
    Konoplya, R.A.; Zhidenko, A. Infinite tower of higher-curvature corrections: Quasinormal modes and late-time behavior of D-dimensional regular black holes. Phys. Rev. D 2024, 109, 104005.
  • 10.
    Bueno, P.; Cano, P.A.; Hennigar, R.A. (Generalized) quasi-topological gravities at all orders. Class. Quant. Grav. 2020, 37, 015002.
  • 11.
    Tangherlini, F.R. Schwarzschild field in n dimensions and the dimensionality of space problem. Nuovo Cim. 1963, 27, 636–651.
  • 12.
    Kanti, P. Black holes in theories with large extra dimensions: A Review. Int. J. Mod. Phys. A 2004, 19, 4899–4951.
  • 13.
    Antoniadis, I. A Possible new dimension at a few TeV. Phys. Lett. B 1990, 246, 377–384.
  • 14.
    Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 1998, 429, 263–272.
  • 15.
    Randall, L.; Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370–3373.
  • 16.
    Konoplya, R.A.; Zhidenko, A. Long life of Gauss-Bonnet corrected black holes. Phys. Rev. D 2010, 82, 084003.
  • 17.
    Harris, C.M.; Kanti, P. Hawking radiation from a (4 + n)-dimensional black hole: Exact results for the Schwarzschild phase. JHEP 2003, 10, 014.
  • 18.
    Page, D.N. Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole. Phys. Rev. D 1976, 13, 198–206.
  • 19.
    Page, D.N. Particle Emission Rates from a Black Hole. 2. Massless Particles from a Rotating Hole. Phys. Rev. D 1976, 14, 3260–3273.
  • 20.
    Konoplya, R.A.; Zhidenko, A. First few overtones probe the event horizon geometry. arXiv 2022, arXiv:2209.00679.
  • 21.
    Bonanno, A.; Silveravalle, S. Ghost-induced phase transition in the final stages of black hole evaporation. arXiv 2025, arXiv:gr-qc/2505.05027.
  • 22.
    Konoplya, R.A.; Zinhailo, A.F.; Stuchlk, Z. Quasinormal modes, scattering, and Hawking radiation in the vicinity of an Einstein-dilaton-Gauss-Bonnet black hole. Phys. Rev. D 2019, 99, 124042.
  • 23.
    Konoplya, R.A.; Zinhailo, A.F.; Stuchlik, Z. Quasinormal modes and Hawking radiation of black holes in cubic gravity. Phys. Rev. D 2020, 102, 044023.
  • 24.
    Grain, J.; Barrau, A.; Kanti, P. Exact results for evaporating black holes in curvature-squared lovelock gravity: Gauss- Bonnet greybody factors. Phys. Rev. D 2005, 72, 104016.
  • 25.
    Myers, R.C.; Simon, J.Z. Black Hole Thermodynamics in Lovelock Gravity. Phys. Rev. D 1988, 38, 2434–2444.
  • 26.
    Camanho, X.O.; Edelstein, J.D. A Lovelock black hole bestiary. Class. Quant. Grav. 2013, 30, 035009.
  • 27.
    Rizzo, T.G. TeV-scale black hole lifetimes in extra-dimensional Lovelock gravity. Class. Quant. Grav. 2006, 23, 4263–4280.
  • 28.
    Lu, H.; Perkins, A.; Pope, C.N.; et al. Black Holes in Higher-Derivative Gravity. Phys. Rev. Lett. 2015, 114, 171601.
  • 29.
    Konoplya, R.A.; Zhidenko, A. Dymnikova black hole from an infinite tower of higher-curvature corrections. Phys. Lett. B 2024, 856, 138945.
Share this article:
How to Cite
Konoplya, R. A.; Zhidenko, A. Convergence of Higher-Curvature Expansions Near the Horizon: Hawking Radiation from Regular Black Holes. International Journal of Gravitation and Theoretical Physics 2025, 1 (1), 5. https://doi.org/10.53941/ijgtp.2025.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.