2508001183
  • Open Access
  • Article

Grey-Body Factors for Scalar and Dirac Fields in the Euler-Heisenberg Electrodynamics

  • Zainab Malik

Received: 06 Aug 2025 | Revised: 14 Aug 2025 | Accepted: 27 Aug 2025 | Published: 16 Sep 2025

Abstract

We study grey-body factors of neutral scalar and Dirac fields in the background of charged black holes arising in the Einstein–Euler–Heisenberg (EEH) theory. The Euler–Heisenberg corrections, which represent nonlinear electrody- namical effects due to vacuum polarization, modify the effective potential barrier surrounding the black hole and thereby affect the transmission probabilities for Hawking quanta. Using the sixth-order WKB method, and verifying our results against the recently proposed correspondence between grey-body factors and quasi- normal modes, we compute the frequency-dependent grey-body spectra for various values of the black hole charge and EEH coupling. We find that the nonlinear cou- pling systematically lowers the effective potential barrier, enhancing the transmission probability. This work represents the first step toward incorporating nonlinear QED effects into the study of Hawking evaporation, focusing here on neutral test fields.

References 

  • 1.
    Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220; Erratum in Commun. Math. Phys. 1976, 46, 206.
  • 2.
    Page, D.N. Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole. Phys. Rev. D 1976, 13, 198–206.
  • 3.
    Page, D.N. Particle Emission Rates from a Black Hole. 2. Massless Particles from a Rotating Hole. Phys. Rev. D 1976, 14, 3260–3273.
  • 4.
    Kanti, P. Black holes in theories with large extra dimensions: A Review. Int. J. Mod. Phys. A 2004, 19, 4899–4951.
  • 5.
    Heisenberg, W.; Euler, H. Consequences of Dirac’s theory of positrons. Z. Phys. 1936, 98, 714–732.
  • 6.
    Karplus, R.; Neuman, M. The scattering of light by light. Phys. Rev. 1951, 83, 776–784.
  • 7.
    d’Enterria, D.; da Silveira, G.G. Observing light-by-light scattering at the Large Hadron Collider. Phys. Rev. Lett. 2013, 111, 080405.
  • 8.
    Tumasyan, A.; Adam, W.; Bergauer, T.; et al. First Search for Exclusive Diphoton Production at High Mass with Tagged Protons in Proton-Proton Collisions at √s = 13 TeV. Phys. Rev. Lett. 2022, 129, 011801.
  • 9.
    Bolokhov, S.V. Late time decay of scalar and Dirac fields around an asymptotically de Sitter black hole in the Eu- ler–Heisenberg electrodynamics. Eur. Phys. J. C 2024, 84, 634.
  • 10.
    Nomura, K.; Yoshida, D. Quasinormal modes of charged black holes with corrections from nonlinear electrodynamics. Phys. Rev. D 2022, 105, 044006.
  • 11.
    Bretn, N.; Lpez, L.A. Birefringence and quasinormal modes of the Einstein-Euler-Heisenberg black hole. Phys. Rev. D 2021, 104, 024064.
  • 12.
    Breton, N.; Lopez, L.A. Quasinormal modes of nonlinear electromagnetic black holes from unstable null geodesics. Phys. Rev. D 2016, 94, 104008.
  • 13.
    Magos, D.; Bretn, N. Thermodynamics of the Euler-Heisenberg-AdS black hole. Phys. Rev. D 2020, 102, 084011.
  • 14.
    Schutz, B.F.; Will, C.M. Black hole normal modes: A semianalytic approach. Astrophys. J. Lett. 1985, 291, L33–L36.
  • 15.
    Iyer, S.; Will, C.M. Black Hole Normal Modes: A WKB Approach. 1. Foundations and Application of a Higher Order WKB Analysis of Potential Barrier Scattering. Phys. Rev. D 1987, 35, 3621.
  • 16.
    Konoplya, R.A. Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach. Phys. Rev. D 2003, 68, 024018.
  • 17.
    Matyjasek, J.; Opala, M. Quasinormal modes of black holes. The improved semianalytic approach. Phys. Rev. D 2017, 96, 024011.
  • 18.
    Konoplya, R.A.; Zhidenko, A.; Zinhailo, A.F. Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations. Class. Quant. Grav. 2019, 36, 155002.
  • 19.
    Matyjasek, J. Accurate quasinormal modes of the five-dimensional Schwarzschild-Tangherlini black holes. Phys. Rev. D 2021, 104, 084066.
  • 20.
    Malik, Z. Quasinormal Modes of the Bumblebee Black Holes with a Global Monopole. Int. J. Theor. Phys. 2024, 63, 199.
  • 21.
    Bolokhov, S.V. Black holes in Starobinsky-Bel-Robinson Gravity and the breakdown of quasinormal modes/null geodesics correspondence. Phys. Lett. B 2024, 856, 138879.
  • 22.
    Skvortsova, M. Quasinormal Spectrum of (2+1)-Dimensional Asymptotically Flat, dS and AdS Black Holes. Fortsch. Phys. 2024, 72, 2400036.
  • 23.
    Malik, Z. Perturbations and quasinormal modes of the Dirac field in Effective Quantum Gravity. Ann. Phys. 2025, 479, 170046.
  • 24.
    Konoplya, R.A.; Zhidenko, A. Correspondence between grey-body factors and quasinormal modes. JCAP 2024, 09, 068.
  • 25.
    Malik, Z. Correspondence between quasinormal modes and grey-body factors for massive fields in Schwarzschild-de Sitter spacetime. JCAP 2025, 04, 042.
  • 26.
    Skvortsova, M. Quantum corrected black holes: testing the correspondence between grey-body factors and quasinormal modes. arXiv 2024, arXiv:gr-qc/2411.06007.
  • 27.
    Dubinsky, A. Grey-body factors for gravitational and electromagnetic perturbations around Gibbons-Maeda-Garfinkle- Horovits-Strominger black holes. arXiv 2024, arXiv:gr-qc/2412.00625.
  • 28.
    Ltfolu, B.C. Black Holes in Proca-Gauss-Bonnet Gravity with Primary Hair: Particle Motion, Shadows, and Grey-Body Factors. Int. J. Gravit. Theor. Phys. 2025, 1, 4.
  • 29.
    Ltfolu, B.C. Quasinormal Modes and Gray-Body Factors for Gravitational Perturbations in Asymptotically Safe Gravity. arXiv 2025, arXiv:gr-qc/2505.06966.
  • 30.
    Ltfolu, B.C. Non-minimal Einstein–Yang–Mills black holes: fundamental quasinormal mode and grey-body factors versus outburst of overtones. Eur. Phys. J. C 2025, 85, 630.
  • 31.
    Konoplya, R.A.; Zhidenko, A. Correspondence between grey-body factors and quasinormal frequencies for rotating black holes. Phys. Lett. B 2025, 861, 139288.
  • 32.
    Bolokhov, S.V.; Skvortsova, M. Correspondence between quasinormal modes and grey-body factors of spherically symmetric traversable wormholes. JCAP 2025, 04, 025.
  • 33.
    Konoplya, R.A.; Zhidenko, A. Analytic expressions for quasinormal modes and grey-body factors in the eikonal limit and beyond. Class. Quant. Grav. 2023, 40, 245005.
Share this article:
How to Cite
Malik, Z. Grey-Body Factors for Scalar and Dirac Fields in the Euler-Heisenberg Electrodynamics. International Journal of Gravitation and Theoretical Physics 2025, 1 (1), 6. https://doi.org/10.53941/ijgtp.2025.100006.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.