- 1.
Leonhardt; U.; Philbin, T.G. General relativity in electrical engineering. New J. Phys. 2006, 8, 247.
- 2.
Landau; L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon Press: New York, NY, USA, 1971; Volume 2.
- 3.
Reznik, B. Origin of the thermal radiation in a solid-state analog of a black hole. Phys. Rev. D 2000, 62, 044044.
- 4.
Smolyaninov, I.I. Surface plasmon toy-model of a rotating black hole. New J. Phys. 2003, 5, 147.
- 5.
Cheng; Q.; Cui; T.J.; Jiang; W.X.; et al. An electromagnetic black hole made of metamaterials. arXiv 2009, arXiv:0910.2159.
- 6.
Turimov; B.; Smolyaninov, I.I. Curved spacetime as a dispersive multiferroic medium for an electromagnetic wave: Polarization and magnetization vectors in the Schwarzschild spacetime. Chin. J. Phys. 2023, 85, 186–195.
- 7.
Cai, R.-G.; Yang, R.-Q. Paramagnetism-ferromagnetism phase transition in a dyonic black hole. Phys. Rev. D 2015, 91, 026001.
- 8.
Nguenouho, O.S.B.; Chevalier, A.; Potelon, B.; et al. Dielectric characterization and modelling of aqueous solutions involving sodium chloride and sucrose and application to the design of a bi-parameter RF-sensor. Sci. Rep. 2022, 12, 7209.
- 9.
Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continuous Media; Pergamon Press: New York, NY, USA, 1984; Volume 8.
- 10.
Smolyaninov, I.I. Surface electromagnetic waves near a black hole event horizon and their observational consequences. Astronomy 2022, 1, 49.
- 11.
Smolyaninov, I.I. Surface electromagnetic waves in lossy conductive media: Tutorial. J. Opt. Soc. Am. B 2022, 39, 1894.
- 12.
Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A. Nano-optics of surface plasmon-polaritons. Phys.Rep. 2005, 408, 131–314.
- 13.
Kukushkin, A.V. On the existence and physical meaning of the Zenneck wave. Phys. Uspekhi 2009, 52, 755.
- 14.
Smolyaninov, I.I.; Balzano, Q.; Davis, C.C.; et al. Surface wave-based underwater radio communication. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2503–2507.
- 15.
Smolyaninov, I.I.; Balzano, Q.; Smolyaninova, V.N.; et al. Electromagnetic signal propagation through lossy media via surface electromagnetic waves. Nanophotonics 2024, 13, 1005–1015.
- 16.
Smolyaninov, I.I. Effective photon mass in the presence of gravity gradient emulated by an electromagnetic medium. J. Opt. Soc. Am. B 2024, 41, 1901.
- 17.
de Broglie, L. Problemes de Propagations Guidees des Ondes Electro-Magnetiques; Gauthier-Villars: Paris France, 1941.
- 18.
Witten, E. Search for a realistic Kaluza-Klein theory. Nucl. Phys. B 1981, 186, 412.
- 19.
Emelyanov, S. Effective photon mass from black-hole formation. Nucl. Phys. B 2017, 919, 110.
- 20.
Lin, H.-B.; Huston, A.L.; Justus, B.L.; et al. Some characteristics of a droplet whispering-gallery-mode laser. Opt. Lett. 1986, 11, 614.
- 21.
Strelkov, A.V.; Petrov, G.A.; Gagarski, A.M.; et al. Quantum states of neutrons in the Earth’s gravitational field. Nature 2002, 415, 297.
- 22.
Bessonov, E.G. Grasers based on particle accelerators and on lasers. arXiv 1998, arXiv:physics/9802037.