2510001643
  • Open Access
  • Review

Black Holes in Asymptotic Safety: A Review of Solutions and Phenomenology

  • Andrea Spina 1, 2

Received: 19 Sep 2025 | Revised: 30 Sep 2025 | Accepted: 09 Oct 2025 | Published: 15 Oct 2025

Abstract

Asymptotic Safety offers a conservative and predictive framework for quantum gravity, based on the existence of a renormalization group fixed point that ensures ultraviolet completeness without introducing new degrees of freedom. Black holes provide a natural arena in which to explore the implications of this scenario, as they probe the strongest gravitational fields and highlight the shortcomings of classical general relativity. In recent years, a variety of quantum-corrected black-hole solutions have been constructed within the Asymptotic Safety approach, either by renormalization-group improvement of classical metrics or through effective actions inspired by the flow of couplings. This review summarizes the current status of these developments. We discuss the structure and properties of the proposed solutions, their thermodynamics and evaporation, and their dynamical aspects such as quasinormal modes and shadows.

References 

  • 1.
    Reuter, M.; Saueressig, F. Quantum Gravity and the Functional Renormalization Group: The Road towards Asymptotic Safety; Cambridge University Press: Cambridge, UK, 2019.
  • 2.
    Reuter, M.; Saueressig, F. Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation. Phys. Rev. D 2002, 65, 065016. https://doi.org/10.1103/PhysRevD.65.065016.
  • 3.
    Weinberg, S. Ultraviolet Divergences in Quantum Theories of Gravitation; Cambridge University Press: Cambridge, UK, 1979; pp. 790–831.
  • 4.
    Koch, B.; Saueressig, F. Black holes within Asymptotic Safety. Int. J. Mod. Phys. A 2014, 29, 1430011.
  • 5.
    Platania, A. Black Holes in Asymptotically Safe Gravity. arXiv 2023, arXiv:gr-qc/2302.04272.
  • 6.
    Saueressig, F.; Alkofer, N.; D’Odorico, G.; et al. Black holes in Asymptotically Safe Gravity. arXiv 2015, arXiv:hep-th/1503.06472.
  • 7.
    Abbott, B.P.; Abbott, R.; Abbott, T.D.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102.
  • 8.
    Akiyama, K.; Alberdi, A.; Alef, W.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1.
  • 9.
    Reuter, M. Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 1998, 57, 971–985.
  • 10.
    Wilson, K.G.; Kogut, J.B. The Renormalization group and the epsilon expansion. Phys. Rept. 1974, 12, 75–199.
  • 11.
    Wetterich, C. Exact evolution equation for the effective potential. Phys. Lett. B 1993, 301, 90–94.
  • 12.
    Wetterich, C. Average Action and the Renormalization Group Equations. Nucl. Phys. B 1991, 352, 529–584.
  • 13.
    de Alwis, S.P. Exact RG Flow Equations and Quantum Gravity. J. High Energy Phys. 2018, 2018, 118.
  • 14.
    Bonanno, A.; Reuter, M. Proper time flow equation for gravity. J. High Energy Phys. 2005, 2005, 035.
  • 15.
    Bonanno, A.; Lippoldt, S.; Percacci, R.; et al. On Exact Proper Time Wilsonian RG Flows. Eur. Phys. J. C 2020, 80, 249.
  • 16.
    Bonanno, A.; Oglialoro, G.; Zappala, D. Gauge and parametrization dependence of quantum Einstein gravity within the proper time flow. Phys. Rev. D 2025, 112, 026002.
  • 17.
    Zholdasbek, A.; Chakrabarty, H.; Malafarina, D.; et al. Emergent cosmological model from running Newton constant. Phys. Rev. D 2025, 111, 103519.
  • 18.
    Bonanno, A. Asymptotic Safety and Cosmology. In Handbook of Quantum Gravity; Springer Nature Singapore: Singapore, 2023.
  • 19.
    Platania, A. From renormalization group flows to cosmology. Front. Phys. 2020, 8, 188.
  • 20.
    Bonanno, A.; Koch, B.; Platania, A. Asymptotically Safe Gravitational Collapse: Kuroda-Papapetrou RG-Improved Model. In Proceedings of the Corfu Summer Institute 2016 “School and Workshops on Elementary Particle Physics and Gravity”, Corfu, Greece, 31 August–23 September 2016.
  • 21.
    Bonanno, A.; Koch, B.; Platania, A. Cosmic Censorship in Quantum Einstein Gravity. Class. Quant. Grav. 2017, 34, 095012.
  • 22.
    Bonanno, A.; Reuter, M. Renormalization group improved black hole space-times. Phys. Rev. D 2000, 62, 043008.
  • 23.
    Held, A.; Gold, R.; Eichhorn, A. Asymptotic safety casts its shadow. J. Cosmol. Astropart. Phys. 2019, 2019, 029.
  • 24.
    Platania, A. Dynamical renormalization of black-hole spacetimes. Eur. Phys. J. C 2019, 79, 470.
  • 25.
    Bonanno, A.; Cadoni, M.; Pitzalis, M.; et al. Effective quantum spacetimes from functional renormalization group. Phys. Rev. D 2025, 111, 064031.
  • 26.
    Bonanno, A.; Malafarina, D.; Panassiti, A. Dust Collapse in Asymptotic Safety: A Path to Regular Black Holes. Phys. Rev. Lett. 2024, 132, 031401.
  • 27.
    Bonanno, A.; Konoplya, R.A.; Oglialoro, G.; et al. Regular Black Holes from Proper-Time flow in Quantum Gravity and their Quasinormal modes, Shadow and Hawking radiation. arXiv 2025, arXiv:gr-qc/2509.12469.
  • 28.
    Bonanno, A.; Reuter, M. Spacetime structure of an evaporating black hole in quantum gravity. Phys. Rev. D 2006, 73, 083005.
  • 29.
    Bonanno, A.; Reuter, M. Quantum gravity effects near the null black hole singularity. Phys. Rev. D 1999, 60, 084011.
  • 30.
    Donoghue, J.F. Leading quantum correction to the Newtonian potential. Phys. Rev. Lett. 1994, 72, 2996–2999.
  • 31.
    Hamber, H.W.; Liu, S. On the quantum corrections to the Newtonian potential. Phys. Lett. B 1995, 357, 51–56.
  • 32.
    Konoplya, R.A.; Zinhailo, A.F.; Kunz, J.; et al. Quasinormal ringing of regular black holes in asymptotically safe gravity: The importance of overtones. J. Cosmol. Astropart. Phys. 2022, 10, 091.
  • 33.
    Hayward, S.A. Formation and evaporation of regular black holes. Phys. Rev. Lett. 2006, 96, 031103.
  • 34.
    Dymnikova, I. Vacuum nonsingular black hole. Gen. Rel. Grav. 1992, 24, 235–242.
  • 35.
    Konoplya, R.A.; Stuchlik, Z.; Zhidenko, A.; et al. Quasinormal modes of renormalization group improved Dymnikova regular black holes. Phys. Rev. D 2023, 107, 104050.
  • 36.
    Oppenheimer, J.R.; Snyder, H. On Continued gravitational contraction. Phys. Rev. 1939, 56, 455–459.
  • 37.

    Datt, B. Über eine Klasse von Lösungen der Gravitationsgleichungen der Relativität. Z. Phys. 1938, 108, 314–321.

  • 38.
    Harada, T.; Chen, C.M.; Mandal, R. Singularity resolution and regular black hole formation in gravitational collapse in asymptotically safe gravity. Phys. Rev. D 2025, 111, 126017.
  • 39.
    Markov, M.A.; Mukhanov, V.F. De Sitter-like initial state of the universe as a result of asymptotical disappearance of gravitational interactions of matter. Nuovo Cim. B 1985, 86, 97–102.
  • 40.
    Israel, W. Singular hypersurfaces and thin shells in general relativity. Nuovo Cim. B 1966, 44, 1–14.
  • 41.
    Malafarina, D. Semi-classical dust collapse and regular black holes. arXiv 2022,
  • 42.
    Bonanno, A.; Denz, T.; Pawlowski, J.M.; et al. Reconstructing the graviton. SciPost Phys. 2022, 12, 001.
  • 43.
    Konoplya, R.A.; Zhidenko, A. Quasinormal modes of black holes: From astrophysics to string theory. Rev. Mod. Phys. 2011, 83, 793–836.
  • 44.
    Berti, E.; Cardoso, V.; Starinets, A.O. Quasinormal modes of black holes and black branes. Class. Quant. Grav. 2009, 26, 163001.
  • 45.
    Kokkotas, K.D.; Schmidt, B.G. Quasinormal modes of stars and black holes. Living Rev. Rel. 1999, 2, 2.
  • 46.
    Berti, E.; others. Black hole spectroscopy: from theory to experiment arXiv 2025, arXiv:gr-qc/2505.23895.
  • 47.
    Daghigh, R.G.; Green, M.D.; Kunstatter, G. Scalar Perturbations and Stability of a Loop Quantum Corrected Kruskal Black Hole. Phys. Rev. D 2021, 103, 084031.
  • 48.
    Bolokhov, S.; Bronnikov, K.; Konoplya, R. Overtones’ Outburst and Hawking Evaporation of Kazakov–Solodukhin Quantum Corrected Black Hole. Fortsch. Phys. 2025, 73, 2400187.
  • 49.
    Dubinsky, A. Overtones of black holes via time-domain integration. Mod. Phys. Lett. A 2024, 39, 2450108. arXiv:gr-qc/2404.18004.
  • 50.
    Taylor, K.J.; Ritz, A. Ringdown signatures in the Ernst-Wild geometry: modelling Kerr black holes immersed in a magnetic field. Class. Quant. Grav. 2025, 42, 165013.
  • 51.
    Berti, E.; Cardoso, V.; Kokkotas, K.D.; et al. Highly damped quasinormal modes of Kerr black holes. Phys. Rev. D 2003, 68, 124018,
  • 52.
    Price, R.H. Nonspherical perturbations of relativistic gravitational collapse. 1. Scalar and gravitational perturbations. Phys. Rev. D 1972, 5, 2419–2438.
  • 53.
    Price, R.H. Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer-Spin, Zero-Rest-Mass Fields. Phys. Rev. D 1972, 5, 2439–2454.
  • 54.
    Konoplya, R.A.; Spina, A.; Zhidenko, A. Time evolution of black hole perturbations in quadratic gravity. Phys. Rev. D 2025, 112, 024060.
  • 55.
    Rosato, R.F.; Pani, P. Universality of late-time ringdown tails. Phys. Rev. D 2025, 112, 024080.
  • 56.
    Konoplya, R.A.; Zhidenko, A. Asymptotic tails of massive gravitons in light of pulsar timing array observations. Phys. Lett. B 2024, 853, 138685.
  • 57.
    Koyama, H.; Tomimatsu, A. Asymptotic power law tails of massive scalar fields in Reissner-Nordstrom background. Phys. Rev. D 2001, 63, 064032.
  • 58.
    Leaver, E.W. An Analytic representation for the quasi normal modes of Kerr black holes. Proc. Roy. Soc. Lond. A 1985, 402, 285–298.
  • 59.
    Nollert, H.P. Quasinormal modes of Schwarzschild black holes: The determination of quasinormal frequencies with very large imaginary parts. Phys. Rev. D 1993, 47, 5253–5258.
  • 60.
    Konoplya, R.A.; Zhidenko, A.; Zinhailo, A.F. Higher order WKB formula for quasinormal modes and grey-body factors: Recipes for quick and accurate calculations. Class. Quant. Grav. 2019, 36, 155002.
  • 61.
    Jansen, A. Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes. Eur. Phys. J. Plus 2017, 132, 546.
  • 62.

    Rincón, Á.; Panotopoulos, G. Quasinormal modes of an improved Schwarzschild black hole. Phys. Dark Univ. 2020, 30, 100639.

  • 63.
    Stashko, O. Quasinormal modes and gray-body factors of regular black holes in asymptotically safe gravity. Phys. Rev. D 2024, 110, 084016.
  • 64.
    Spina, A.; Silveravalle, S.; Bonanno, A. Scalar Perturbations of Regular Black Holes derived from a Non-Singular Collapse Model in Asymptotic Safety. In Proceedings of the 17th Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories, Pescara, Italy, 7–12 July 2024.
  • 65.
    Bolokhov, S.V.; Skvortsova, M. Gravitational Quasinormal Modes and Grey-Body Factors of Bonanno-Reuter Regular Black Holes. Int. J. Grav. Theor. Phys. 2025, 1, 3.
  • 66.
    Bolokhov, S.V.; Skvortsova, M. Gravitational quasinormal modes of the Hayward spacetime. arXiv 2025, arXiv:gr-qc/2508.19989.
  • 67.
    Malik, Z. Gravitational perturbations of the Hayward spacetime and testing the correspondence between quasinormal modes and grey-body factors. arXiv 2025, arXiv:gr-qc/2508.19178.
  • 68.

    Lütfüoğlu, B.C. Quasinormal Modes and Gray-Body Factors for Gravitational Perturbations in Asymptotically Safe Gravity. arXiv 2025, arXiv:gr-qc/2505.06966.

  • 69.
    Dubinsky, A. Gravitational perturbations of Dymnikova black holes: grey-body factors and absorption cross-sections. arXiv 2025, arXiv:gr-qc/2509.11017.
  • 70.
    Konoplya, R.A.; Zhidenko, A. First few overtones probe the event horizon geometry. J. High Energy Astrophys. 2024, 44, 419–426.
  • 71.
    Konoplya, R.A. The sound of the event horizon. Int. J. Mod. Phys. D 2023, 32, 2342014.
  • 72.
    Hawking, S.W. Black hole explosions. Nature 1974, 248, 30–31.
  • 73.
    Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220.
  • 74.
    Page, D.N. Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole. Phys. Rev. D 1976, 13, 198–206.
  • 75.
    Page, D.N. Particle Emission Rates from a Black Hole. 2. Massless Particles from a Rotating Hole. Phys. Rev. D 1976, 14, 3260–3273.
  • 76.
    Konoplya, R.A. Hawking Radiation of Renormalization Group Improved Regular Black Holes. Fortsch. Phys. 2025, 73, 2400002.
  • 77.
    Kazunori, A.; Alberdi, A.; Alef, W.; et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12.
  • 78.
    Raine, D.; Thomas, E. Black Holes: An Introduction, 2nd ed.; Imperial College Press: London, UK, 2010.
  • 79.
    Chandrasekhar, S. The Mathematical Theory of Black Holes; Oxford University Press: Oxford, UK, 1985.
  • 80.
    Cardoso, V.; Miranda, A.S.; Berti, E.; et al. Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D 2009, 79, 064016.
  • 81.
    Konoplya, R.A. Shadow of a black hole surrounded by dark matter. Phys. Lett. B 2019, 795, 1–6.
  • 82.
    Lambiase, G.; Pantig, R.C.; Gogoi, D.J.; et al. Investigating the connection between generalized uncertainty principle and asymptotically safe gravity in black hole signatures through shadow and quasinormal modes. Eur. Phys. J. C 2023, 83, 679.
  • 83.
    Vagnozzi, S.; Roy, R.; Tsai, Y.D.; et al. Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A. Class. Quant. Grav. 2023, 40, 165007.
  • 84.
    Kocherlakota, P.; Rezzolla, L.; Falcke, H.; et al. Constraints on black-hole charges with the 2017 EHT observations of M87*. Phys. Rev. D 2021, 103, 104047.
  • 85.
    Del Porro, F.; Pfeiffer, J.; Platania, A.; et al. Charting GLOBs in Asymptotically Safe Gravity. arXiv 2025, arXiv:gr-qc/2509.14309.
Share this article:
How to Cite
Spina, A. Black Holes in Asymptotic Safety: A Review of Solutions and Phenomenology. International Journal of Gravitation and Theoretical Physics 2025, 1 (1), 8. https://doi.org/10.53941/ijgtp.2025.100008.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.