2602003025
  • Open Access
  • Article

Quasinormal Ringing and Unruh-Verlinde Temperature of the Frolov Black Hole

  • Akshat Pathrikar

Received: 10 Oct 2025 | Revised: 28 Jan 2026 | Accepted: 09 Feb 2026 | Published: 11 Feb 2026

Abstract

In this study, we investigate electromagnetic and Dirac test field perturbations of a charged regular black hole arising from quantum gravity effects, commonly referred to as the Frolov black hole, a regular (nonsingular) black hole solution. We derive the master wave equations for massless electromagnetic and Dirac perturbations and solve them using the standard Wentzel-Kramers-Brillouin (WKB) method along with Pade Averaging. From these solutions, we extract the dominant and overtone quasinormal mode (QNM) frequencies along with the associated grey-body factors, highlighting the deviations introduced by quantum gravity corrections compared to the classical case of Reissner–Nordstrom black hole. Furthermore, we analyze the Unruh-Verlinde temperature of this spacetime, providing quantitative estimates of how quantumgravity effects influence both quasinormal ringing and particle emission in nonsingular black hole models.

References 

  • 1.

    Penrose, R. Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett. 1965, 14, 57. https://doi.org/10.1103/PhysRevLett.14.57.

  • 2.

    Hawking, S.W. Singularities in the Universe. Phys. Rev. Lett. 1966, 17, 444. https://doi.org/10.1103/PhysRevLett.17.444.

  • 3.

    Frolov, V.P. Remarks on non-singular black holes. EPJ Web Conf. 2018, 168, 01001. https://doi.org/10.1051/epjconf/201816801001.

  • 4.

    Ayon-Beato, E.; Garcia, A. The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B 2000, 493, 149–152. https://doi.org/10.1016/S0370-2693(00)01125-4.

  • 5.

    Dymnikova, I. Regular electrically charged vacuum structures with de Sitter centre in nonlinear electrodynamics coupled to general relativity. Class. Quantum Gravity 2004, 21, 18. https://doi.org/10.1088/0264-9381/21/18/009.

  • 6.

    Dymnikova, I. Vacuum nonsingular black hole. Gen. Relativ. Gravit. 1992, 24, 235–242. https://doi.org/10.1007/BF00760226.

  • 7.

    Ansoldi, S. Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources. arXiv 2008, arXiv:0802.0330.

  • 8.

    Ovalle, J. Schwarzschild black hole revisited: Before the complete collapse. Phys. Rev. D 2004, 109, 104032. https://doi.org/10.1103/PhysRevD.109.104032.

  • 9.

    Ovalle, J. Interior Dynamics of Regular Schwarzschild Black Holes. arXiv 2025, arXiv:2509.00816.

  • 10.

    Lemos, J.P.S.; Zanchin, V.T. Regular black holes: Electrically charged solutions, Reissner-Nordstr¨om outside a de Sitter core. Phys. Rev. D 2011, 83, 124005. https://doi.org/10.1103/PhysRevD.83.124005.

  • 11.

    Hayward, S.A. Formation and Evaporation of Nonsingular Black Holes. Phys. Rev. Lett. 2006, 96, 031103. https://doi.org/10.1103/PhysRevLett.96.031103.

  • 12.

    Frolov, V.P. Notes on nonsingular models of black holes. Phys. Rev. D 2016, 94, 104056. https://doi.org/10.1103/PhysRevD.94.104056.

  • 13.

    Xiang, L.; Ling, Y.; Shen, Y.G. Singularities and the Finale of Black Hole Evaporation. PInt. J. Mod. Phys. D 2013, 22, 1342016. https://doi.org/10.1142/S0218271813420169.

  • 14.

    Culetu, H. On a regular modified Schwarzschild spacetime. arXiv 2013, arXiv:1305.5964.

  • 15.

    Culetu, H. On a regular charged black hole with a nonlinear electric source. Int. J. Theor. Phys. 2015, 54, 2855–2863. https://doi.org/10.1007/s10773-015-2521-6.

  • 16.

    Rodrigues, M.E.; Junior, E.L.B.; Marques, G.T.; et al. Regular black holes in f(R) gravity coupled to nonlinear electrodynamics. Phys. Rev. D 2016, 94, 024062. https://doi.org/10.1103/PhysRevD.94.024062.

  • 17.

    Simpson, A.; Visser, M. Regular black holes with asymptotically Minkowski core. Universe 2019, 6, 8. https://doi.org/10.3390/universe6010008.

  • 18.

    Ghosh, S.G. A nonsingular rotating black hole. Eur. Phys. J. C 2015, 75, 532. https://doi.org/10.1140/epjc/s10052-015-3740-y.

  • 19.

    Li, X.; Ling, Y.; Shen, Y.G.; et al. Generalized uncertainty principles, effective Newton constant and the regular black hole. Annals Phys. 2018, 396, 334–350. https://doi.org/10.1016/j.aop.2018.07.021.

  • 20.

    Martinis, M.; Perkovic, N. Is exponential metric a natural space-time metric of Newtonian gravity? arXiv 2010, arXiv:1009.6017.

  • 21.

    Ling, Y.; Wu, M.H. Regular black holes with sub-Planckian curvature. Class. Quant. Grav. 2023, 40, 075009. https://doi.org/10.1088/1361-6382/acc0c9.

  • 22.

    Konoplya, R.A.; Zhidenko, A. Quasinormal modes of black holes: From astrophysics to string theory. Rev. Mod. Phys. 2011, 83, 793. https://doi.org/10.1103/RevModPhys.83.793.

  • 23.

    Berti, E.; Cardoso, V.; Starinets, A.O. Quasinormal modes of black holes and black branes. Class. Quant. Grav. 2009, 26, 163001. https://doi.org/10.1088/0264-9381/26/16/163001.

  • 24.

    Konoplya, R.A.; Zhidenko, A. Correspondence between grey-body factors and quasinormal modes. JCAP 2024, 9, 068. https://doi.org/10.1088/1475-7516/2024/09/068.

  • 25.

    Tang, C.; Ling, Y.; Jiang, Q.Q. Correspondence between grey-body factors and quasinormal modes for regular black holes with sub-Planckian curvature. Chin. Phys. C 2025, 12, 125110. https://inspirehep.net/literature/2905022.

  • 26.

    Bolokhov, S.V.; Skvortsova, M. Correspondence between quasinormal modes and grey-body factors of spherically symmetric traversable wormholes. JCAP 2025, 2025, 025. https://doi.org/10.1088/1475-7516/2025/04/025.

  • 27.

    Dubinsky, A. Black Holes Immersed in Galactic Dark Matter Halo. Int. J. Gravit. Theor. Phys. 2025, 1, 2. https://doi.org/10.53941/ijgtp.2025.100002.

  • 28.

    Konoplya, R.A. Black holes in galactic centers: Quasinormal ringing, grey-body factors and Unruh temperature. Phys. Lett. B 2021, 823, 136734. https://doi.org/10.1016/j.physletb.2021.136734.

  • 29.

    Song, Z.; Gong, H.; Li, H.L.; et al. Quasinormal modes and ringdown waveforms of a Frolov black hole. Commun. Theor. Phys. 2024, 76, 105401. https://doi.org/10.1088/1572-9494/ad5717.

  • 30.

    Lopez, L.A.; Hinojosa, V. Quasinormal modes of Charged Regular Black Hole. Can. J. Phys. 2021, 99, 44–48. https://doi.org/10.1088/1361-6382/acc0c9.

  • 31.

    Arun, K.G.; Belgacem, E.; Benkel, R.; et al. New horizons for fundamental physics with LISA. Living Rev. Relativ. 2022, 25, 4. https://doi.org/10.1007/s41114-022-00036-9.

  • 32.

    Barausse, E.; Berti, E.; Hertog, T.; et al. Prospects for Fundamental Physics with LISA. Gen. Rel. Grav. 2020, 52, 81. https://doi.org/10.1007/s10714-020-02691-1.

  • 33.

    DeWitt, C.; DeWitt, B.S. Black Holes (Les Astres Occlus). In Proceedings of the Ecole d’Et´e de Physique Theorique, Les Houches, France, August 1972; Gordon and Breachm Publisher: New York, NY, USA, 1973.

  • 34.

    Li, J.; Hong, M.; Lin, K. Dirac quasinormal modes in spherically symmetric regular black holes. Phys. Rev. D 2013, 88, 064001. https://doi.org/10.1103/PhysRevD.88.064001.

  • 35.

    Kokkotas, K.D.; Schmidt, B.G. Quasinormal modes of stars and black holes. Living Rev. Rel. 1999, 2, 2. https://doi.org/10.12942/lrr-1999-2.

  • 36.

    Schutz, B.F.; Will, C.M. Black hole normal modes—A semianalytic approach. APJL 1985, 291, L33–L36. https://doi.org/10.1086/184453.

  • 37.

    Iyer, S.; Will, C.M. Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. Phys. Rev. D 1987, 35, 3621–3631. https://doi.org/10.1103/PhysRevD.35.3621.

  • 38.

    Konoplya, R.A. Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach. Phys. Rev. D 2003, 68, 024018. https://doi.org/10.1103/PhysRevD.68.024018.

  • 39.

    Matyjasek, J.; Opala, M. Quasinormal modes of black holes. The improved semianalytic approach. Phys. Rev. D 2017, 96, 024011. https://doi.org/10.1103/PhysRevD.96.024011.

  • 40.

    Hatsuda, Y. Quasinormal modes of black holes and Borel summation. Phys. Rev. D 2020, 101, 024008. https://doi.org/10.1103/PhysRevD.101.024008.

  • 41.

    Konoplya, R.A.; Zhidenko, A.; Zinhailo, A.F. Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations. Class. Quant. Grav. 2019, 36, 155002. https://doi.org/10.1088/1361-6382/ab2e25.

  • 42.

    Matyjasek, J.; Telecka, M. Quasinormal modes of black holes. II. Pad´e summation of the higher-order WKB terms. Living Rev. Rel. 2019, 100, 124006. https://doi.org/10.1103/PhysRevD.100.124006.

  • 43.

    Konoplya, R. Mathematica R Package for QNM and Grey-Body Factor Calculations. Available online: https://goo.gl/nykYGL (accessed on 30 September 2025).

  • 44.

    Page, D.N. Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole. Phys. Rev. D 1976, 13, 198–206. https://doi.org/10.1103/PhysRevD.13.198.

  • 45.

    Konoplya, R.A.; Zinhailo, A.F. Hawking radiation of non-Schwarzschild black holes in higher derivative gravity: a crucial role of grey-body factors. Phys. Rev. D 2019, 99, 104060. https://doi.org/10.1103/PhysRevD.99.104060.

  • 46.

    Verlinde, E.P. On the Origin of Gravity and the Laws of Newton. J. High Energy Phys. 2011, 2011, 29. https://doi.org/10.1007/JHEP04(2011)029.

  • 47.

    Konoplya, R.A. Entropic force, holography and thermodynamics for static space-times. Eur. Phys. J. C 2010, 69, 555–562. https://doi.org/10.1140/epjc/s10052-010-1424-1.

  • 48.

    Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870. https://doi.org/10.1103/PhysRevD.14.870.

Share this article:
How to Cite
Pathrikar, A. Quasinormal Ringing and Unruh-Verlinde Temperature of the Frolov Black Hole. International Journal of Gravitation and Theoretical Physics 2026, 1 (1), 1. https://doi.org/10.53941/ijgtp.2026.100001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.