In this study, we investigate electromagnetic and Dirac test field perturbations of a charged regular black hole arising from quantum gravity effects, commonly referred to as the Frolov black hole, a regular (nonsingular) black hole solution. We derive the master wave equations for massless electromagnetic and Dirac perturbations and solve them using the standard Wentzel-Kramers-Brillouin (WKB) method along with Pade Averaging. From these solutions, we extract the dominant and overtone quasinormal mode (QNM) frequencies along with the associated grey-body factors, highlighting the deviations introduced by quantum gravity corrections compared to the classical case of Reissner–Nordstrom black hole. Furthermore, we analyze the Unruh-Verlinde temperature of this spacetime, providing quantitative estimates of how quantumgravity effects influence both quasinormal ringing and particle emission in nonsingular black hole models.



