- 1.
Gao, P. Chasing “Emerging” Contaminants: An Endless Journey toward Environmental Health. Environ. Sci. Technol. 2024, 58, 1790–1792. https://doi.org/10.1021/acs.est.3c10630.
- 2.
Liu, Q.; Flores-Alsina, X.; Ramin, E.; et al. Making waves: Power-to-X for the Water Resource Recovery Facilities of the future. Water Res. 2024, 257, 121691. https://doi.org/10.1016/j.watres.2024.121691.
- 3.
Fu, G.; Savic, D.; Butler, D. Making Waves: Towards data-centric water engineering. Water Res. 2024, 256, 121585. https://doi.org/10.1016/j.watres.2024.121585.
- 4.
Li, K.; Duan, H.; Liu, L.; et al. An Integrated First Principal and Deep Learning Approach for Modeling Nitrous Oxide Emissions from Wastewater Treatment Plants. Environ. Sci. Technol. 2022, 56, 2816–2826. https://doi.org/10.1021/acs.est.1c05020.
- 5.
Zhu, J.J.; Yang, M.Q.; Ren, Z.J. Machine Learning in Environmental Research: Common Pitfalls and Best Practices. Environ. Sci. Technol. 2023, 57, 17671–17689. https://doi.org/10.1021/acs.est.3c00026.
- 6.
Schneider, M.Y.; Quaghebeur, W.; Borzooei, S.; et al. Hybrid modelling of water resource recovery facilities: Status and opportunities. Water Sci. Technol. 2022, 85, 2503–2524. https://doi.org/10.2166/wst.2022.115.
- 7.
Wu, X.; Zheng, Z.; Wang, L.; et al. Coupling process-based modeling with machine learning for long-term simulation of wastewater treatment plant operations. J. Environ. Manag. 2023, 341, 118116. https://doi.org/10.1016/j.jenvman.2023.118116.
- 8.
Xu, R.-Z.; Cao, J.-S.; Luo, J.-Y.; et al. Integrating mechanistic and deep learning models for accurately predicting the enrichment of polyhydroxyalkanoates accumulating bacteria in mixed microbial cultures. Bioresour. Technol. 2021, 344, 126276. https://doi.org/10.1016/j.biortech.2021.126276.
- 9.
Huang, R.; Ma, C.; Ma, J.; et al. Machine learning in natural and engineered water systems. Water Res. 2021, 205, 117666. https://doi.org/10.1016/j.watres.2021.117666.
- 10.
Shi, K.; Liang, B.; Cheng, H.Y.; et al. Regulating microbial redox reactions towards enhanced removal of refractory organic nitrogen from wastewater. Water Res. 2024, 258, 121778. https://doi.org/10.1016/j.watres.2024.121778.
- 11.
Chang, H.; Zhao, Y.; Bisinella, V.; et al. Climate change impacts of conventional sewage sludge treatment and disposal. Water Res. 2023, 240, 120109. https://doi.org/10.1016/j.watres.2023.120109.
- 12.
Xu, R.-Z.; Cao, J.-S.; Ye, T.; et al. Automated machine learning-based prediction of microplastics induced impacts on methane production in anaerobic digestion. Water Res. 2022, 223, 118975–118975. https://doi.org/10.1016/j.watres.2022.118975.
- 13.
Xu, R.-Z.; Cao, J.-S.; Wu, Y.; et al. An integrated approach based on virtual data augmentation and deep neural networks modeling for VFA production prediction in anaerobic fermentation process. Water Res. 2020, 184, 116103. https://doi.org/10.1016/j.watres.2020.116103.
- 14.
Stiegler, A.N.; Cecchetti, A.R.; Scholes, R.C.; et al. Persistent Trace Organic Contaminants Are Transformed Rapidly under Sulfate- and Fe(III)-Reducing Conditions in a Nature-Based Subsurface Water Treatment System. Environ. Sci. Technol. 2023, 57, 16616–16627. https://doi.org/10.1021/acs.est.3c03719.
- 15.
Emaminejad, S.A.; Sparks, J.; Cusick, R.D. Integrating Bio-Electrochemical Sensors and Machine Learning to Predict the Efficacy of Biological Nutrient Removal Processes at Water Resource Recovery Facilities. Environ. Sci. Technol. 2023, 57, 18372–18381. https://doi.org/10.1021/acs.est.3c00352.
- 16.
Samuelsson, O.; Lindblom, E.U.; Bjork, A.; et al. To calibrate or not to calibrate, that is the question. Water Res. 2023, 229, 119338. https://doi.org/10.1016/j.watres.2022.119338.
- 17.
Thibeault, V.; Allard, A.; Desrosiers, P. The low-rank hypothesis of complex systems. Nat. Phys. 2024, 20, 294–302. https://doi.org/10.1038/s41567-023-02303-0.
- 18.
Zhao, J.; Shang, C.; Yin, R. Developing a hybrid model for predicting the reaction kinetics between chlorine and micropollutants in water. Water Res. 2023, 247, 120794. https://doi.org/10.1016/j.watres.2023.120794.
- 19.
Pan, Y.; Dagnew, M. A new approach to estimating oxygen off-gas fraction and dynamic alpha factor in aeration systems using hybrid machine learning and mechanistic models. J. Water Process. Eng. 2022, 48, 102924. https://doi.org/10.1016/j.jwpe.2022.102924.
- 20.
Fang, F.; Ni, B.-J.; Xie, W.-M.; et al. An integrated dynamic model for simulating a full-scale municipal wastewater treatment plant under fluctuating conditions. Chem. Eng. J. 2010, 160, 522–529. https://doi.org/10.1016/j.cej.2010.03.063.
- 21.
Cong, Q.-m.; Bo, G.-h.; Shi, H.-y. Integrated soft sensor of COD for WWTP based on ASP model and RBF neural network. Meas. Control 2023, 56, 295–303. https://doi.org/10.1177/00202940221089272.
- 22.
Cheng, X.; Guo, Z.; Shen, Y.; et al. Knowledge and data-driven hybrid system for modeling fuzzy wastewater treatment process. Neural Comput. Appl. 2023, 35, 7185–7206. https://doi.org/10.1007/s00521-021-06499-1.
- 23.
Chen, Z.; Zhang, J.; Chu, Q.; et al. Study on hybrid modeling of urban wastewater treatment process. In Proceedings of the 34th Chinese Control and Decision Conference (CCDC), Hefei, China, 15–17 August 2022; pp. 792–797.
- 24.
Kumar, B.S.; Venkateswarlu, C. Estimating biofilm reaction kinetics using hybrid mechanistic-neural network rate function model. Bioresour. Technol. 2012, 103, 300–308. https://doi.org/10.1016/j.biortech.2011.10.006.
- 25.
Xu, R.-Z.; Cao, J.-S.; Luo, J.-Y.; et al. Data-driven neural networks for biological wastewater resource recovery: Development and challenges. J. Clean. Prod. 2024, 476, 143781. https://doi.org/10.1016/j.jclepro.2024.143781.
- 26.
Ye, J.; Do, N.C.; Zeng, W.; et al. Physics-informed neural networks for hydraulic transient analysis in pipeline systems. Water Res. 2022, 221, 118828. https://doi.org/10.1016/j.watres.2022.118828.
- 27.
Novikov, I.S.; Gubaev, K.; Podryabinkin, E.V.; et al. The MLIP package: Moment tensor potentials with MPI and active learning. Mach. Learn. Sci. Technol. 2021, 2, 025002. https://doi.org/10.1088/2632-2153/abc9fe.
- 28.
Koksal, E.; Asrav, T.; Esenboga, E.; et al. Physics-informed and data-driven modeling of an industrial wastewater treatment plant with actual validation. Comput. Chem. Eng. 2024, 189, 108801. https://doi.org/10.1016/j.compchemeng.2024.108801.
- 29.
Koksal, E.; Aydin, E. A hybrid approach of transfer learning and physics-informed modelling: Improving dissolved oxygen concentration prediction in an industrial wastewater treatment plant. Chem. Eng. Sci. 2025, 304, 121088 https://doi.org/10.1016/j.ces.2024.121088.
- 30.
Guo, Z.; Zhang, Q.Q.; Cai, Y.Y.; et al. Hybrid Physical Mechanism and Artificial Intelligence-Based Model for Evaluating Nonpoint Source Pesticide Pollution at a Megacity Scale. Environ. Sci. Technol. 2025, 59, 11083–11094. https://doi.org/10.1021/acs.est.4c14075.
- 31.
Shen, C.; Appling, A.P.; Gentine, P.; et al. Differentiable modelling to unify machine learning and physical models for geosciences. Nat. Rev. Earth Environ. 2023, 4, 552–567. https://doi.org/10.1038/s43017-023-00450-9.
- 32.
Zou, X.; Guo, H.; Jiang, C.; et al. Physics-informed neural network-based serial hybrid model capturing the hidden kinetics for sulfur-driven autotrophic denitrification process. Water Res. 2023, 243, 120331. https://doi.org/10.1016/j.watres.2023.120331.
- 33.
Quaghebeur, W.; Torfs, E.; De Baets, B.; et al. Hybrid differential equations: Integrating mechanistic and data-driven techniques for modelling of water systems. Water Res. 2022, 213, 118166. https://doi.org/10.1016/j.watres.2022.118166.