2509001265
  • Open Access
  • Review

Spent Battery-Derived Materials for Wastewater Treatment

  • Zhiqian Xu 1,   
  • Zhijie Chen 1, *,   
  • Zhiliang Wu 2,   
  • Xiang-Yang Lou 3,   
  • Xuran Liu 1,   
  • Bing-Jie Ni 1, *

Received: 15 Jul 2025 | Revised: 03 Sep 2025 | Accepted: 04 Sep 2025 | Published: 08 Sep 2025

Abstract

The rapid growth of energy storage technologies has led to a surge in spent battery waste, presenting both environmental challenges and opportunities for resource recovery. Emerging research highlights the potential of repurposing battery-derived components into functional materials for wastewater remediation. This review presents a comprehensive overview of recent advances in synthesizing catalysts and adsorbents from spent batteries, with a particular focus on their application in advanced oxidation processes (AOPs) and pollutant adsorption. Key synthesis methods, catalytic mechanisms, and the roles of material properties—such as surface area, defect structures, and heteroatom doping—are critically examined. By bridging materials science and environmental engineering, this work underscores the potential of battery waste valorization and provides guidance for scaling these technologies toward real-world wastewater treatment applications.

References 

  • 1.
    Njema, G.G.; Ouma, R.B.O.; Kibet, J.K. A review on the recent advances in battery development and energy storage technologies. J. Renew. Energy 2024, 2024, 2329261.
  • 2.
    Gopi, C.V.M.; Alzahmi, S.; Narayanaswamy, V.; et al. Supercapacitors: A promising solution for sustainable energy storage and diverse applications. J. Energy Storage 2025, 114, 115729.
  • 3.
    Zhang, J.; Chen, Z.; Liu, Y.; et al. Removal of emerging contaminants (ECs) from aqueous solutions by modified biochar: A review. Chem. Eng. J. 2024, 479, 147615.
  • 4.
    Chen, Z. Clean Technology for Resource, Energy and Environment: Driving Innovation for a Resilient Future. Clean Technol. Resour. Energy Environ. 2025, 1, 1–4.
  • 5.
    Wu, J.; Xiao, L.; Shen, L.; et al. Recent advancements in hydrometallurgical recycling technologies of spent lithium-ion battery cathode materials. Rare Met. 2024, 43, 879–899.
  • 6.
    Elgarahy, A.M.; Eloffy, M.; Priya, A.; et al. Revitalizing the circular economy: An exploration of e-waste recycling approaches in a technological epoch. Sustain. Chem. Environ. 2024, 7, 100124.
  • 7.
    Amusa, H.K.; Sadiq, M.; Alam, G.; et al. Electric vehicle batteries waste management and recycling challenges: A comprehensive review of green technologies and future prospects. J. Mater. Cycles Waste Manag. 2024, 26, 1959–1978.
  • 8.
    Chen, Z.; Fang, J.; Wei, W.; et al. Emerging adsorbents for micro/nanoplastics removal from contaminated water: Advances and perspectives. J. Clean. Prod. 2022, 371, 133676.
  • 9.
    Chen, Z.; Wei, W.; Ni, B.-J. Prioritizing capture and utilization for microplastic management in water systems. Nat. Rev. Clean Technol. 2025, 1, 525–527.
  • 10.
    Zhang, X.; Zhu, M. Recycling spent lithium-ion battery cathode: An overview. Green Chem. 2024, 26, 7656–7717.
  • 11.
    Ferdous, A.R.; Shah, S.S.; Shah, S.N.A.; et al. Transforming waste into wealth: Advanced carbon-based electrodes derived from refinery and coal by-products for next-generation energy storage. Molecules 2024, 29, 2081.
  • 12.
    Chen, Z.; Zheng, R.; Zou, W.; et al. Integrating high-efficiency oxygen evolution catalysts featuring accelerated surface reconstruction from waste printed circuit boards via a boriding recycling strategy. Appl. Catal. B: Environ. 2021, 298, 120583.
  • 13.
    Guo, F.; Chen, Q.; Liu, Z.; et al. Repurposing mining and metallurgical waste as electroactive materials for advanced energy applications: Advances and perspectives. Catalysts 2023, 13, 1241.
  • 14.
    Zheng, H.; Chen, Q.; Chen, Z. Carbon-based adsorbents for micro/nano-plastics removal: Current advances and perspectives. Water Emerg. Contam. Nanoplastics 2024, 3, 11.
  • 15.
    Li, Y.-Y.; Deng, L.-J.; Cao, Y.-J.; et al. A critical review on the direct regeneration technologies of cathode materials from spent lithium iron phosphate batteries: Y.-Y. Li et al. Rare Met. 2025. https://doi.org/10.1007/s12598-025-03547-w.
  • 16.
    Gong, H.-Q.; Wang, X.-Y.; Ye, L.; et al. Recycling of spent lithium-ion batteries to resynthesize high-performance cathode materials for sodium-ion storage. Tungsten 2024, 6, 574–584.
  • 17.
    Meng, W. Recycling technologies of spent lithium-ion batteries and future directions: A review. Trans. Nonferrous Met. Soc. China 2025, 35, 271–295.
  • 18.
    Yang, J.; Zhou, Y.; Zhang, Z.; et al. Effect of electric field on leaching valuable metals from spent lithium-ion batteries. Trans. Nonferrous Met. Soc. China 2023, 33, 641.
  • 19.
    Ishmael, A.; Nasser, M.; Abdel-Nasser, M.; et al. Eco-friendly and cost-effective recycling of batteries for utilizing transition metals as catalytic materials for purifying tannery wastewater through Advanced Oxidation Techniques: A critical review. Nanotechnol. Appl. Sci. J. 2025, 1, 1–28.
  • 20.
    Wen, G.; Yuan, S.; Dong, Z.; et al. Recycling of spent lithium iron phosphate battery cathode materials: A review. J. Clean. Prod. 2024, 474, 143625. https://doi.org/10.1016/j.jclepro.2024.143625.
  • 21.
    Chen, Y.; Zhang, H.; Xiong, Z.; et al. Lithium cobalt oxide with excellent electron mobility: An efficient activator of peroxymonosulfate for the degradation of sulfamethoxazole. Chem. Eng. J. 2022, 445, 136702.
  • 22.
    Huang, M.; Wang, M.; Yang, L.; et al. Direct regeneration of spent lithium-ion battery cathodes: From theoretical study to production practice. Nano-Micro Lett. 2024, 16, 207.
  • 23.
    Anh Nguyen, T.-H.; Oh, S.-Y. Anode carbonaceous material recovered from spent lithium-ion batteries in electric vehicles for environmental application. Waste Manag. 2021, 120, 755–761. https://doi.org/10.1016/j.wasman.2020.10.044.
  • 24.
    Stefan, M.; Kocabas, B.; Güngör, A.; et al. Manganese-doped Zinc Oxide recycled from spent alkaline batteries for photocatalysis and supercapacitor applications. J. Energy Storage 2024, 99, 113419. https://doi.org/10.1016/j.est.2024.113419.
  • 25.
    Wink, K.; Hartmann, I. Recent progress in turning waste into catalysts for green syntheses. Sustain. Chem. 2024, 5, 27–39.
  • 26.
    Moreira, T.F.M.; Santana, I.L.; Moura, M.N.; et al. Recycling of negative electrodes from spent Ni-Cd batteries as CdO with nanoparticle sizes and its application in remediation of azo dye. Mater. Chem. Phys. 2017, 195, 19–27. https://doi.org/10.1016/j.matchemphys.2017.04.009.
  • 27.
    Huang, H.; Liang, W.; Li, R.; et al. Converting spent battery anode waste into a porous biocomposite with high Pb(II) ion capture capacity from solution. J. Clean. Prod. 2018, 184, 622–631. https://doi.org/10.1016/j.jclepro.2018.03.017.
  • 28.
    Tan, W.; Ren, W.; Wang, C.; et al. Peroxymonosulfate activated with waste battery-based Mn-Fe oxides for pollutant removal: Electron transfer mechanism, selective oxidation and LFER analysis. Chem. Eng. J. 2020, 394, 124864. https://doi.org/10.1016/j.cej.2020.124864.
  • 29.
    Lin, H.; Li, S.; Deng, B.; et al. Degradation of bisphenol A by activating peroxymonosulfate with Mn0.6Zn0.4Fe2O4 fabricated from spent Zn-Mn alkaline batteries. Chem. Eng. J. 2019, 364, 541–551. https://doi.org/10.1016/j.cej.2019.01.189.
  • 30.
    Tang, H.; Li, R.; Fan, X.; et al. A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant. J. Environ. Chem. Eng. 2022, 10, 107797. https://doi.org/10.1016/j.jece.2022.107797.
  • 31.
    Zou, W.; Feng, X.; Wei, W.; et al. Converting spent LiFePO4 battery into zeolitic phosphate for highly efficient heavy metal adsorption. Inorg. Chem. 2021, 60, 9496–9503.
  • 32.
    Moretti, A.C.L.; dos Santos, M.G.G.; Soares, M.E.; et al. Degradation of municipal solid waste landfill leachate using ferrites from spent batteries as heterogeneous solar photo-Fenton catalyst. Int. J. Environ. Res. 2023, 17, 33.
  • 33.
    Jabbar, W.A.; Jabbar, M.F.A. Modification Graphite of Waste Batteries by Phosphotungstic Acid and Using as Photocatalyst for Methylene Blue Degradation. Ecol. Eng. Environ. Technol. 2024, 25, 297–307.
  • 34.
    Fan, M.; Zhang, K.; Gu, X.; et al. Single-Layer Mos2 Engineered with Recycled Cobalt for Enhanced Activation of Peroxymonosulfate. Chem. Eng. J. 2025, 521, 166654.
  • 35.
    Chen, Z.; Zou, W.; Zheng, R.; et al. Synergistic recycling and conversion of spent Li-ion battery leachate into highly efficient oxygen evolution catalysts. Green Chem. 2021, 23, 6538–6547.
  • 36.
    Pražanová, A.; Knap, V.; Stroe, D.-I. Literature review, recycling of lithium-ion batteries from electric vehicles, part II: Environmental and economic perspective. Energies 2022, 15, 7356.
  • 37.
    Chen, Z.; Wei, W.; Chen, H.; et al. Recent advances in waste-derived functional materials for wastewater remediation. Eco-Environ. Health 2022, 1, 86–104. https://doi.org/10.1016/j.eehl.2022.05.001.
  • 38.
    Yu, H.; Yang, H.; Chen, K.; et al. Non–closed–loop recycling strategies for spent lithium–ion batteries: Current status and future prospects. Energy Storage Mater. 2024, 67, 103288. https://doi.org/10.1016/j.ensm.2024.103288.
  • 39.
    Chen, Z.; Yun, S.; Wu, L.; et al. Waste-derived catalysts for water electrolysis: Circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 2023, 15, 4.
  • 40.
    Chen, Z.; Wei, W.; Ni, B.-J.; et al. Plastic wastes derived carbon materials for green energy and sustainable environmental applications. Environ. Funct. Mater. 2022, 1, 34–48.
  • 41.
    Chen, Z.; Zheng, R.; Wei, W.; et al. Recycling spent water treatment adsorbents for efficient electrocatalytic water oxidation reaction. Resour. Conserv. Recycl. 2022, 178, 106037.
  • 42.
    Wu, X.; Ji, G.; Wang, J.; et al. Toward Sustainable All Solid‐State Li–Metal Batteries: Perspectives on Battery Technology and Recycling Processes. Adv. Mater. 2023, 35, 2301540.
  • 43.
    Gao, T.; Dai, T.; Fan, N.; et al. Comprehensive review and comparison on pretreatment of spent lithium-ion battery. J. Environ. Manag. 2024, 363, 121314.
  • 44.
    Jin, S.; Mu, D.; Lu, Z.; et al. A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances. J. Clean. Prod. 2022, 340, 130535.
  • 45.
    Xu, Z.; Zhiyuan, L.; Wenjun, M.; et al. Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review. J. Energy Storage 2023, 72, 108691.
  • 46.
    Wu, X.; Ma, J.; Wang, J.; et al. Progress, key issues, and future prospects for li‐ion battery recycling. Glob. Chall. 2022, 6, 2200067.
  • 47.
    Li, Y.; Lv, W.; Huang, H.; et al. Recycling of spent lithium-ion batteries in view of green chemistry. Green Chem. 2021, 23, 6139–6171.
  • 48.
    Kaya, M.; Delavandani, H. State-of-the-Art Lithium-Ion Battery Pretreatment Methods for the Recovery of Critical Metals. Minerals 2025, 15, 546.
  • 49.
    Khodadadmahmoudi, G.; Javdan Tabar, K.; Homayouni, A.H.; et al. Recycling spent lithium batteries–an overview of pretreatment flowsheet development based on metallurgical factors. Environ. Technol. Rev. 2023, 12, 2248559.
  • 50.
    Fang, Z.; Duan, Q.; Peng, Q.; et al. Comparative study of chemical discharge strategy to pretreat spent lithium-ion batteries for safe, efficient, and environmentally friendly recycling. J. Clean. Prod. 2022, 359, 132116.
  • 51.
    Zhang, H.; Zhao, H.; Khan, M.A.; et al. Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J. Mater. Chem. A 2018, 6, 20564–20620.
  • 52.
    Kim, S.; Bang, J.; Yoo, J.; et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling. J. Clean. Prod. 2021, 294, 126329.
  • 53.
    Xiao, J.; Guo, J.; Zhan, L.; et al. A cleaner approach to the discharge process of spent lithium ion batteries in different solutions. J. Clean. Prod. 2020, 255, 120064.
  • 54.
    Rouhi, H.; Karola, E.; Serna-Guerrero, R.; et al. Voltage behavior in lithium-ion batteries after electrochemical discharge and its implications on the safety of recycling processes. J. Energy Storage 2021, 35, 102323.
  • 55.
    Nembhard, N. Safe, Sustainable Discharge of Electric Vehicle Batteries as a Pre-Treatment Step to Crushing in the Recycling Process. Master’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2020.
  • 56.
    Wang, H.; Qu, G.; Yang, J.; et al. An effective and cleaner discharge method of spent lithium batteries. J. Energy Storage 2022, 54, 105383.
  • 57.
    Ali, H.; Khan, H.A.; Pecht, M. Preprocessing of spent lithium-ion batteries for recycling: Need, methods, and trends. Renew. Sustain. Energy Rev. 2022, 168, 112809.
  • 58.
    Harper, G.; Sommerville, R.; Kendrick, E.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86.
  • 59.
    Ali, H.; Khan, H.A.; Pecht, M.G. Circular economy of Li Batteries: Technologies and trends. J. Energy Storage 2021, 40, 102690.
  • 60.
    Ji, Y.; Kpodzro, E.E.; Jafvert, C.T.; et al. Direct recycling technologies of cathode in spent lithium-ion batteries. Clean Technol. Recycl. 2021, 1, 124–151.
  • 61.
    Glöser-Chahoud, S.; Huster, S.; Rosenberg, S.; et al. Industrial disassembling as a key enabler of circular economy solutions for obsolete electric vehicle battery systems. Resour. Conserv. Recycl. 2021, 174, 105735.
  • 62.
    Shi, M.; Ren, Y.; Cao, J.; et al. Current Situation and Development Prospects of Discharge Pretreatment during Recycling of Lithium‐ion Batteries: A Review. Batter. Supercaps 2024, 7, e202300477.
  • 63.
    Ye, L.; Wang, C.; Cao, L.; et al. Effective regeneration of high-performance anode material recycled from the whole electrodes in spent lithium-ion batteries via a simplified approach. Green Energy Environ. 2021, 6, 725–733.
  • 64.
    Piątek, J.; Afyon, S.; Budnyak, T.M.; et al. Sustainable Li‐ion batteries: Chemistry and recycling. Adv. Energy Mater. 2021, 11, 2003456.
  • 65.
    Lei, C.; Aldous, I.; Hartley, J.M.; et al. Lithium ion battery recycling using high-intensity ultrasonication. Green Chem. 2021, 23, 4710–4715.
  • 66.
    Thompson, D.; Hyde, C.; Hartley, J.M.; et al. To shred or not to shred: A comparative techno-economic assessment of lithium ion battery hydrometallurgical recycling retaining value and improving circularity in LIB supply chains. Resour. Conserv. Recycl. 2021, 175, 105741.
  • 67.
    Liu, C.; Qiu, X.; Liu, Y.; et al. Research status and prospects of physical separation technology of spent lithium-ion batteries. Chin J Rare Met 2021, 45, 493.
  • 68.
    Zhang, Y.; Zhao, M. Cloud-based in-situ battery life prediction and classification using machine learning. Energy Storage Mater. 2023, 57, 346–359.
  • 69.
    Dolotko, O.; Hlova, I.Z.; Mudryk, Y.; et al. Mechanochemical recovery of Co and Li from LCO cathode of lithium-ion battery. J. Alloys Compd. 2020, 824, 153876.
  • 70.
    Al-Shammari, H.; Farhad, S. Heavy liquids for rapid separation of cathode and anode active materials from recycled lithium-ion batteries. Resour. Conserv. Recycl. 2021, 174, 105749.
  • 71.
    Verdugo, L.; Zhang, L.; Saito, K.; et al. Flotation behavior of the most common electrode materials in lithium ion batteries. Sep. Purif. Technol. 2022, 301, 121885.
  • 72.
    Zhu, X.; Zhang, C.; Feng, P.; et al. A novel pulsated pneumatic separation with variable-diameter structure and its application in the recycling spent lithium-ion batteries. Waste Manag. 2021, 131, 20–30.
  • 73.
    Cao, Y.; Wang, Z.; Wang, J.; et al. Multi-stage electrostatic separation for recovering of aluminum from fine granules of black dross. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2019, 34, 925–931.
  • 74.
    Silveira, A.; Santana, M.; Tanabe, E.; et al. Recovery of valuable materials from spent lithium ion batteries using electrostatic separation. Int. J. Miner. Process. 2017, 169, 91–98.
  • 75.
    Fan, M.-C.; Zhao, Y.; Kang, Y.-Q.; et al. Room-temperature extraction of individual elements from charged spent LiFePO4 batteries. Rare Met. 2022, 41, 1595–1604.
  • 76.
    Zhu, X.; Nie, C.; Wang, S.; et al. Cleaner approach to the recycling of metals in waste printed circuit boards by magnetic and gravity separation. J. Clean. Prod. 2020, 248, 119235.
  • 77.
    Zhu, X.; Nie, C.; Zhang, H.; et al. Recovery of metals in waste printed circuit boards by flotation technology with soap collector prepared by waste oil through saponification. Waste Manag. 2019, 89, 21–26.
  • 78.
    Vanderbruggen, A.; Salces, A.; Ferreira, A.; et al. Improving separation efficiency in end-of-life lithium-ion batteries flotation using attrition pre-treatment. Minerals 2022, 12, 72.
  • 79.
    Zhang, G.; Yuan, X.; He, Y.; et al. Recent advances in pretreating technology for recycling valuable metals from spent lithium-ion batteries. J. Hazard. Mater. 2021, 406, 124332.
  • 80.
    Bi, H.; Zhu, H.; Zu, L.; et al. A new model of trajectory in eddy current separation for recovering spent lithium iron phosphate batteries. Waste Manag. 2019, 100, 1–9.
  • 81.
    Huang, Z.; Zhu, J.; Wu, X.; et al. Eddy current separation can be used in separation of non-ferrous particles from crushed waste printed circuit boards. J. Clean. Prod. 2021, 312, 127755.
  • 82.
    Smith, Y.R.; Nagel, J.R.; Rajamani, R.K. Eddy current separation for recovery of non-ferrous metallic particles: A comprehensive review. Miner. Eng. 2019, 133, 149–159.
  • 83.
    Kong, L.; Liu, F.; Hu, X.; et al. An improved pretreatment method for recovering cathode materials from lithium-ion battery: Ultrasonic-assisted NaOH-enhanced dissolving. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 877–887.
  • 84.
    Yang, F.; Chen, X.; Qu, G.; et al. Electrode separation via water electrolysis for sustainable battery recycling. Nat. Sustain. 2025, 8, 520–529.
  • 85.
    Lv, X.; Deng, F.; Liu, H.; et al. Recycling different crystal forms of MnO2 from spent Li-ion batteries cathodes for SDZ degradation. J. Environ. Chem. Eng. 2024, 12, 111622. https://doi.org/10.1016/j.jece.2023.111622.
  • 86.
    Mylarappa, M.; Lakshmi, V.V.; Mahesh, K.V.; et al. A facile hydrothermal recovery of nano sealed MnO2 particle from waste batteries: An advanced material for electrochemical and environmental applications. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012178.
  • 87.
    Zou, W.; Li, J.; Wang, R.; et al. Hydroxylamine mediated Fenton-like interfacial reaction dynamics on sea urchin-like catalyst derived from spent LiFePO4 battery. J. Hazard. Mater. 2022, 431, 128590. https://doi.org/10.1016/j.jhazmat.2022.128590.
  • 88.
    Xu, L.; Chen, C.; Huo, J.-B.; et al. Iron hydroxyphosphate composites derived from waste lithium-ion batteries for lead adsorption and Fenton-like catalytic degradation of methylene blue. Environ. Technol. Innov. 2019, 16, 100504.
  • 89.
    Niu, Z.; Tao, X.; Huang, H.; et al. Green synthesis of magnetically recyclable Mn0.6Zn0.4Fe2O4@Zn1-xMnxS composites from spent batteries for visible light photocatalytic degradation of phenol. Chemosphere 2022, 287, 132238. https://doi.org/10.1016/j.chemosphere.2021.132238.
  • 90.
    Chen, X.; Deng, F.; Liu, X.; et al. Hydrothermal synthesis of MnO2/Fe(0) composites from Li-ion battery cathodes for destructing sulfadiazine by photo-Fenton process. Sci. Total Environ. 2021, 774, 145776. https://doi.org/10.1016/j.scitotenv.2021.145776.
  • 91.
    Yan, S.; Chen, X.; Yang, Y.; et al. Peroxymonosulfate activation by N-doped 3D graphene from spent lithium-ion batteries for organic pollutants degradation: An insight into the degradation mechanism. Chem. Eng. J. 2024, 484, 149379. https://doi.org/10.1016/j.cej.2024.149379.
  • 92.
    Wu, N.; Zhang, X.; Zhang, X.; et al. Simultaneous degradation of trace antibiotics in water by adsorption and catalytic oxidation induced by N-doped reduced graphene oxide (N-rGO): Synergistic mechanism. Mater. Res. Express 2022, 9, 065601.
  • 93.
    Kumar, K.Y.; Prashanth, M.K.; Shanavaz, H.; et al. Spent Li-ion batteries derived synthesis of boron doped RGO-Bi2WO6 for photocatalytic degradation of antibiotics. Appl. Surf. Sci. Adv. 2024, 19, 100569. https://doi.org/10.1016/j.apsadv.2023.100569.
  • 94.
    Annamalai, K.; Annamalai, A.; Ravichandran, R.; et al. Recyclable waste dry-cell batteries derived carbon dots (CDs) for detection of two-fold metal ions and degradation of BTB dye. Waste Manag. 2023, 163, 61–72. https://doi.org/10.1016/j.wasman.2023.03.032.
  • 95.
    Li, R.; Hu, H.; Ma, Y.; et al. Persulfate enhanced photocatalytic degradation of bisphenol A over wasted batteries-derived ZnFe2O4 under visible light. J. Clean. Prod. 2020, 276, 124246. https://doi.org/10.1016/j.jclepro.2020.124246.
  • 96.
    Ribeiro, J.; Moreira, T.; Santana, I.; et al. Sol-gel synthesis, characterization, and catalytic properties of Ni, Cd, Co, and Fe oxides recycled from spent Ni-Cd batteries using citric acid as a leaching agent. Mater. Chem. Phys. 2018, 205, 186–194.
  • 97.
    Cheng, C.; Chang, L.; Zhang, X.; et al. Interface engineering-induced perovskite/spinel LaCoO3/Co3O4 heterostructured nanocomposites for efficient peroxymonosulfate activation to degrade levofloxacin. Environ. Res. 2023, 229, 115994. https://doi.org/10.1016/j.envres.2023.115994.
  • 98.
    Ma, Y.; Wang, D.; Xu, Y.; et al. Nonradical electron transfer-based peroxydisulfate activation by a Mn−Fe bimetallic oxide derived from spent alkaline battery for the oxidation of bisphenol A. J. Hazard. Mater. 2022, 436, 129172. https://doi.org/10.1016/j.jhazmat.2022.129172.
  • 99.
    Xu, L.; Liang, L.; Chen, C.; et al. Upcycling spent lithium battery cathodes into efficient PMS catalysts for organic contaminants degradation. J. Environ. Chem. Eng. 2023, 11, 111605. https://doi.org/10.1016/j.jece.2023.111605.
  • 100.
    Al-Madhagi, H.; Yazbik, V.; Abdelwahed, W.; et al. Magnetite nanoparticle Co-precipitation synthesis, characterization, and applications: Mini review. Bionanoscience 2023, 13, 853–859.
  • 101.
    Rocha, A.K.S.; Magnago, L.B.; Santos, J.J.; et al. Copper ferrite synthesis from spent Li-ion batteries for multifunctional application as catalyst in photo Fenton process and as electrochemical pseudocapacitor. Mater. Res. Bull. 2019, 113, 231–240. https://doi.org/10.1016/j.materresbull.2019.02.007.
  • 102.
    Moura, M.N.; Barrada, R.V.; Almeida, J.R.; et al. Synthesis, characterization and photocatalytic properties of nanostructured CoFe2O4 recycled from spent Li-ion batteries. Chemosphere 2017, 182, 339–347. https://doi.org/10.1016/j.chemosphere.2017.05.036.
  • 103.
    Betim, F.S.; Marins, A.A.L.; Coelho, E.L.D.; et al. Evaluation of photocatalytic properties of zinc and cobalt mixed oxide recycled from spent Li-ion and Zn–MnO2 batteries in photo-Fenton-like process. Mater. Res. Bull. 2023, 162, 112179. https://doi.org/10.1016/j.materresbull.2023.112179.
  • 104.
    Liang, J.; Xue, Y.; Gu, J.; et al. Sustainably recycling spent lithium-ion batteries to prepare magnetically separable cobalt ferrite for catalytic degradation of bisphenol A via peroxymonosulfate activation. J. Hazard. Mater. 2022, 427, 127910. https://doi.org/10.1016/j.jhazmat.2021.127910.
  • 105.
    Zhao, Y.; Wang, H.; Ji, J.; et al. Degradation of ciprofloxacin by peroxymonosulfate activation using catalyst derived from spent lithium-ion batteries. J. Clean. Prod. 2022, 362, 132442. https://doi.org/10.1016/j.jclepro.2022.132442.
  • 106.
    Zhao, Y.; Yuan, X.; Jiang, L.; et al. Reutilization of cathode material from spent batteries as a heterogeneous catalyst to remove antibiotics in wastewater via peroxymonosulfate activation. Chem. Eng. J. 2020, 400, 125903. https://doi.org/10.1016/j.cej.2020.125903.
  • 107.
    Gao, M.; Wei, H.; Teng, R.; et al. One-step calcination of Ni/Co/Mn ternary catalysts from spent lithium-ion batteries for iopamidol degradation via peroxymonosulfate activation. J. Water Process Eng. 2024, 59, 104996. https://doi.org/10.1016/j.jwpe.2024.104996.
  • 108.
    Xu, Y.; Ai, J.; Zhang, H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process. J. Hazard. Mater. 2016, 309, 87–96. https://doi.org/10.1016/j.jhazmat.2016.01.023.
  • 109.
    Chen, H.; Wei, Y.; Han, C.; et al. Peroxymonosulfate activation by CoO@C catalyst from integrated recycling of spent lithium-ion battery: Performance and mechanism. Sep. Purif. Technol. 2025, 355, 129658. https://doi.org/10.1016/j.seppur.2024.129658.
  • 110.
    Zhou, D.; Tang, R.; Min, Y.; et al. External electric field-assisted electronic restructuring of transition metal oxides derived from spent lithium-ion batteries to enhance persulfate activation. Appl. Surf. Sci. 2023, 625, 157120. https://doi.org/10.1016/j.apsusc.2023.157120.
  • 111.
    Deng, B.; Wang, Z.; Chen, W.; et al. Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nat. Commun. 2022, 13, 262. https://doi.org/10.1038/s41467-021-27878-1.
  • 112.
    Dong, Q.; Yao, Y.; Cheng, S.; et al. Programmable heating and quenching for efficient thermochemical synthesis. Nature 2022, 605, 470–476. https://doi.org/10.1038/s41586-022-04568-6.
  • 113.
    Yu, F.; Jia, C.; Wu, X.; et al. Rapid self-heating synthesis of Fe-based nanomaterial catalyst for advanced oxidation. Nat. Commun. 2023, 14, 4975. https://doi.org/10.1038/s41467-023-40691-2.
  • 114.
    Shang, H.; Yang, W.; He, Z.; et al. Flash Joule Heating Upgraded Li Leaching of Residues from Spent LiFePO4 Cathodes for Superior Catalytic Degradation of Pollutants. ACS ES&T Eng. 2025, 5, 724–731.
  • 115.
    Yan, X.; Wang, B.; Ji, M.; et al. In-Situ Synthesis of CQDs/BiOBr Material via Mechanical Ball Milling with Enhanced Photocatalytic Performances. Chin. J. Struct. Chem. 2022, 41, 2208044–2208051. https://doi.org/10.14102/j.cnki.0254-5861.2022-0141.
  • 116.
    Joy, J.; Krishnamoorthy, A.; Tanna, A.; et al. Recent developments on the synthesis of nanocomposite materials via ball milling approach for energy storage applications. Appl. Sci. 2022, 12, 9312.
  • 117.
    Qin, H.; Liu, Y.; Liu, H.; et al. Application and Research Progress of Nanomaterials as Adsorbents in Environment Field. In Carbon Nanomaterials and their Composites as Adsorbents; Springer: Cham, Switzerland, 2024; pp. 105-134.
  • 118.
    Chen, Z.; Han, G.-F.; Mahmood, A.; et al. Mechanosynthesized electroactive materials for sustainable energy and environmental applications: A critical review. Prog. Mater. Sci. 2024, 145, 101299.
  • 119.
    Wei, L.K.; Abd Rahim, S.Z.; Al Bakri Abdullah, M.M.; et al. Producing metal powder from machining chips using ball milling process: A review. Materials 2023, 16, 4635.
  • 120.
    Zhang, L.; Huang, S.; Ding, Y.; et al. Research progress in the preparation of sodium-ion battery anode materials using ball milling. RSC Adv. 2025, 15, 6324–6341.
  • 121.
    Yan, R.; Li, B.; Zhou, M.; et al. Highly-efficient synthesis of heavy metal adsorbents by using spent lithium-ion battery anode graphite via one-step mechanochemistry process. Resour. Conserv. Recycl. 2023, 190, 106857. https://doi.org/10.1016/j.resconrec.2022.106857.
  • 122.
    Arriola-Villaseñor, E.; Ardila Arias, A.N.; Bedoya Betancour, S.; et al. Graphene Recovery in Both Dispersed and Decanted Fractions from Lithium-Ion Battery Graphite via Sonication. Recycling 2025, 10, 119.
  • 123.
    Fernández-Martínez, R.; Ortiz, I.; Gómez-Mancebo, M.B.; et al. Transformation of Graphite Recovered from Batteries into Functionalized Graphene-Based Sorbents and Application to Gas Desulfurization. Molecules 2024, 29, 3577.
  • 124.
    Wang, Y.; Yang, Z.; Zhang, C.; et al. Fabricating carbon quantum dots of graphitic carbon nitride vis ultrasonic exfoliation for highly efficient H2O2 production. Ultrason. Sonochemistry 2023, 99, 106582.
  • 125.
    Wen, Y.; Liu, H.; Jiang, X. Preparation of graphene by exfoliation and its application in lithium-ion batteries. J. Alloys Compd. 2023, 961, 170885.
  • 126.
    Wang, S.; Yu, Y.; Meng, J. A Review of the Sonication-Assisted Exfoliation Methods for MoX2 (X: S, Se, Te) Using Water and Ethanol. Arch. Acoust. 2025, 50, 137–145.
  • 127.
    Ayub, M.N.; Shahzad, U.; Saeed, M.; et al. Modern innovations in the provision and efficient application of 2D inorganic nanoscale materials. Rev. Inorg. Chem. 2025, 45, 175–206.
  • 128.
    An, C.; Wang, T.; Wang, S.; et al. Ultrasonic-assisted preparation of two-dimensional materials for electrocatalysts. Ultrason. Sonochemistry 2023, 98, 106503.
  • 129.
    Budiarso, I.J.; Dabur, V.A.; Rachmantyo, R.; et al. Carbon nitride-and graphene-based materials for the photocatalytic degradation of emerging water pollutants. Mater. Adv. 2024, 5, 2668.
  • 130.
    Haris, M.; Usman, M.; Saleem, A.; et al. Synthesis of conch-like layered carbon nanosheets by ball-milling assisted ultrasonic exfoliation for highly selective removal of Cd (II) from multiple water matrices. Sep. Purif. Technol. 2023, 325, 124756.
  • 131.
    Premathilake, D.S.; Colombi, F.; Botelho Junior, A.B.; et al. Recycling lithium-ion battery graphite: Synthesis of adsorbent materials for highly efficient removal of dye and metal ions from wastewater. Results Eng. 2024, 22, 102232. https://doi.org/10.1016/j.rineng.2024.102232.
  • 132.
    Feng, L.; Liao, X.; Wu, M.; et al. Enhanced removal of ammonia induced by the co-existing halogenated organics in wastewater via reutilization of spent lithium-ion batteries for peroxymonosulfate activation. Chem. Eng. J. 2023, 470, 144430. https://doi.org/10.1016/j.cej.2023.144430.
  • 133.
    Chiao, Y.-W.; Liao, W.; Krisbiantoro, P.A.; et al. Waste-battery-derived multifunctional zinc catalysts for glycolysis and decolorization of polyethylene terephthalate. Appl. Catal. B Environ. 2023, 325, 122302. https://doi.org/10.1016/j.apcatb.2022.122302.
  • 134.
    Shrestha, A.B.; Amarasekara, A.S. The sustainable and green management of spent lithium-ion batteries through hydroxy acid recycling and direct regeneration of active positive electrode material: A review. Batteries 2025, 11, 68.
  • 135.
    Schmitz, D.; Prasetyo, H.; Birich, A.; et al. Co-Precipitation of Metal Oxalates from Organic Leach Solution Derived from Spent Lithium-Ion Batteries (LIBs). Metals 2024, 14, 80.
  • 136.
    Quirino, A.G.C.; Viana, G.C.C.; Cahino, A.M.; et al. Catalysts from post-consumer batteries waste for photodegradation of contaminants: a systematic analysis. Rev. Gestão Soc. E Ambient. 2025, 19, 1–18.
  • 137.
    Wang, P.; Guo, Y.; Guan, J.; et al. Applications of spent lithium battery electrode materials in catalytic decontamination: A review. Catalysts 2023, 13, 189.
  • 138.
    González-Fernández, C.; Bringas, E.; Rivero, M.J.; et al. Revealing the role of magnetic materials in light-driven advanced oxidation processes: Enhanced degradation of contaminants and facilitated magnetic recovery. Front. Chem. Eng. 2024, 6, 1430773.
  • 139.
    Gasim, M.F.; Lim, J.-W.; Low, S.-C.; et al. Can biochar and hydrochar be used as sustainable catalyst for persulfate activation? Chemosphere 2022, 287, 132458.
  • 140.
    Li, N.; Wu, S.; Dai, H.; et al. Thermal activation of persulfates for organic wastewater purification: Heating modes, mechanism and influencing factors. Chem. Eng. J. 2022, 450, 137976.
  • 141.
    Gujar, S.K.; Divyapriya, G.; Gogate, P.R.; et al. Environmental applications of ultrasound activated persulfate/peroxymono-sulfate oxidation process in combination with other activating agents. Crit. Rev. Environ. Sci. Technol. 2023, 53, 780–802.
  • 142.
    Qian, X.; Ji, J.; Zhao, Y.; et al. Rational design of waste anode graphite-derived carbon catalyst to activate peroxymonosulfate for atrazine degradation. Environ. Res. 2024, 257, 119296. https://doi.org/10.1016/j.envres.2024.119296.
  • 143.
    Wang, Z.; Ma, Y.; Lin, H.; et al. Zn-Mn bimetallic oxide derived from waste battery to activate peroxymonosulfate for bisphenol A removal under visible light irradiation. J. Environ. Chem. Eng. 2024, 12, 113351. https://doi.org/10.1016/j.jece.2024.113351.
  • 144.
    De-Nasri, S.J.; Nagarajan, S.; Robertson, P.K.; et al. Quantification of hydroxyl radicals in photocatalysis and acoustic cavitation: Utility of coumarin as a chemical probe. Chem. Eng. J. 2021, 420, 127560.
  • 145.
    Dai, M.; Niu, Q.; Wu, S.; et al. Hydroxyl radicals in ozone-based advanced oxidation of organic contaminants: A review. Environ. Chem. Lett. 2024, 22, 3059–3106.
  • 146.
    Mancipe, S.; Romanelli, G.P.; Martínez, J.J.; et al. Formation of Hydroxyl Radicals in Advanced Oxidation Processes for the Degradation of Contaminated Organic Matter. Curr. Green Chem. 2025, 12, 117–137.
  • 147.
    Sun, W.; Dong, H.; Wang, Y.; et al. Ultraviolet (UV)-based advanced oxidation processes for micropollutant abatement in water treatment: Gains and problems. J. Environ. Chem. Eng. 2023, 11, 110425.
  • 148.
    Guan, J.; Li, Z.; Chen, S.; et al. Zero-valent iron supported on expanded graphite from spent lithium-ion battery anodes and ferric chloride for the degradation of 4-chlorophenol in water. Chemosphere 2022, 290, 133381. https://doi.org/10.1016/j.chemosphere.2021.133381.
  • 149.
    Xu, Z.; Wang, J.; Sun, S.; et al. Simple route for graphite recycling from waste lithium-ion batteries to environmental functional materials. ACS Sustain. Chem. Eng. 2022, 10, 13435–13443.
  • 150.
    Bayat, N.; Sheibani, S. Efficient photocatalytic activity of ZnMn2O4 nanopowder synthesized by mechano-thermal recycling of alkaline and Zn/C spent batteries. Ceram. Int. 2024, 50, 14757–14772. https://doi.org/10.1016/j.ceramint.2024.01.390.
  • 151.
    Kékedy-Nagy, L.; English, L.; Anari, Z.; et al. Electrochemical nutrient removal from natural wastewater sources and its impact on water quality. Water Res. 2022, 210, 118001.
  • 152.
    Wang, Y.; Lin, Y.; He, S.; et al. Singlet oxygen: Properties, generation, detection, and environmental applications. J. Hazard. Mater. 2024, 461, 132538.
  • 153.
    Xie, Z.-H.; He, C.-S.; Pei, D.-N.; et al. Review of characteristics, generation pathways and detection methods of singlet oxygen generated in advanced oxidation processes (AOPs). Chem. Eng. J. 2023, 468, 143778. https://doi.org/10.1016/j.cej.2023.143778.
  • 154.
    Barrios, B.; Mohrhardt, B.; Doskey, P.V.; et al. Mechanistic insight into the reactivities of aqueous-phase singlet oxygen with organic compounds. Environ. Sci. Technol. 2021, 55, 8054–8067.
  • 155.
    Wen, Y.; Zhou, J.; He, L.; et al. Oxygen-deficient MnCO3 based on waste alkaline Zn-MnO2 battery as an enhanced activator for peroxymonosulfate removing Oxytetracycline hydrochloride. J. Water Process Eng. 2024, 68, 106307. https://doi.org/10.1016/j.jwpe.2024.106307.
  • 156.
    Zhao, Y.; Wang, H.; Ji, J.; et al. Recycling of waste power lithium-ion batteries to prepare nickel/cobalt/manganese-containing catalysts with inter-valence cobalt/manganese synergistic effect for peroxymonosulfate activation. J. Colloid Interface Sci. 2022, 626, 564–580. https://doi.org/10.1016/j.jcis.2022.06.112.
  • 157.
    Li, B.; Ma, B.; Wei, M.; et al. Synthesis of Co-NC catalysts from spent lithium-ion batteries for fenton-like reaction: Generation of singlet oxygen with ~100% selectivity. Carbon 2022, 197, 76–86. https://doi.org/10.1016/j.carbon.2022.06.029.
  • 158.
    Kosenko, A.; Pushnitsa, K.; Pavlovskii, A.A.; et al. The Review of Existing Strategies of End-of-Life Graphite Anode Processing Using 3Rs Approach: Recovery, Recycle, Reuse. Batteries 2023, 9, 579.
  • 159.
    Zheng, Y.; Liu, X.; Liu, S.; et al. Constructing physical and chemical synergistic effect of graphene aerogels regenerated from spent graphite anode of lithium ion batteries achieves high efficient adsorption of lead in wastewater. Appl. Surf. Sci. 2023, 633, 157623. https://doi.org/10.1016/j.apsusc.2023.157623.
  • 160.
    Pang, W.; Zhai, M.; Li, C.; et al. Upcycling of Battery Separator Waste into High-Value Carbon Materials for Efficient Industrial Pollutant Adsorption. ACS Sustain. Chem. Eng. 2025, 13, 9510–9521.
  • 161.
    Aguilar, J.C.S.; Lawagon, C.P.; Gallawan, J.M.M.; et al. Hydroxyl-functionalized Graphene from Spent Batteries as Efficient Adsorbent for Amoxicillin. CET J.-Chem. Eng. Trans. 2021, 86, 331–-336
  • 162.
    Zhang, Y.; Li, X.; Chen, X.; et al. Tunnel manganese oxides prepared using recovered LiMn2O4 from spent lithium-ion batteries: Co adsorption behavior and mechanism. J. Hazard. Mater. 2022, 425, 127957. https://doi.org/10.1016/j.jhazmat.2021.127957.
  • 163.
    Hao, J.; Meng, X.; Fang, S.; et al. MnO2-functionalized amorphous carbon sorbents from spent lithium-ion batteries for highly efficient removal of cadmium from aqueous solutions. Ind. Eng. Chem. Res. 2020, 59, 10210–10220.
  • 164.
    Zhao, T.; Yao, Y.; Wang, M.; et al. Preparation of MnO2-modified graphite sorbents from spent Li-ion batteries for the treatment of water contaminated by lead, cadmium, and silver. ACS Appl. Mater. Interfaces 2017, 9, 25369–25376.
  • 165.
    Zhang, Y.; Wang, Y.; Zhang, H.; et al. Recycling spent lithium-ion battery as adsorbents to remove aqueous heavy metals: Adsorption kinetics, isotherms, and regeneration assessment. Resour. Conserv. Recycl. 2020, 156, 104688. https://doi.org/10.1016/j.resconrec.2020.104688.
  • 166.
    Zou, W.; Feng, X.; Wang, R.; et al. High-efficiency core-shell magnetic heavy-metal absorbents derived from spent-LiFePO4 Battery. J. Hazard. Mater. 2021, 402, 123583. https://doi.org/10.1016/j.jhazmat.2020.123583.
  • 167.
    Wu, J.; Liu, B.; Qian, J.; et al. Facile synthesis of aluminum-based adsorbents from spent lithium-ion batteries for efficient Li+ extraction. J. Environ. Chem. Eng. 2025, 13, 117000. https://doi.org/10.1016/j.jece.2025.117000.
Share this article:
How to Cite
Xu, Z.; Chen, Z.; Wu, Z.; Lou, X.-Y.; Liu, X.; Ni, B.-J. Spent Battery-Derived Materials for Wastewater Treatment. Innovations in Water Treatment 2025, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.