CNC-Inspired Robotic Hair Cutting: A Comprehensive Survey on Precision Personal Care Automation
Received: 21 Nov 2025 | Revised: 14 Jan 2026 | Accepted: 23 Jan 2026 | Published: 29 Jan 2026
robotic hair cutting | CNC-inspired automation | coverage path planning | precision control | personal care robotics | human-robot interaction
Gerstell, E.; Marchessou, S.; Schmidt, J.; et al. How COVID-19 Is Changing the World of Beauty; McKinsey & Company: Chicago, IL, USA, 2020.
Li, S. Haircutting Robots; Springer Nature: Berlin/Heidelberg, Germany, 2025.
Li, S. Haircutting Robots: From Theory to Practice. Automation 2025, 6, 47.
Huang, Z.; Li, S.; Rning, J. Safety in Robotic Haircutting. J. Field Robot. 2025, in press.
Ward, K.; Bertails, F.; Kim, T.Y.; et al. A Survey on Hair Modeling: Styling, Simulation, and Rendering. IEEE Trans. Vis. Comput. Graph. 2007, 13, 213–234.
Haddadin, S.; Albu-Schffer, A.; Hirzinger, G. Requirements for Safe Robots: Measurements, Analysis and New Insights. Int. J. Robot. Res. 2009, 28, 1507–1527.
Da Costa, D. Textured Tresses: The Ultimate Guide to Maintaining and Styling Natural Hair; Simon and Schuster: New York, NY, USA, 2007.
Harrison, S.; Sinclair, R. Hair Colouring, Permanent Styling and Hair Structure. J. Cosmet. Dermatol. 2003, 2, 180–185.
Lasemi, A.; Xue, D.; Gu, P. Recent Development in CNC Machining of Freeform Surfaces: A State-of-the-Art Review. Comput.-Aided Des. 2010, 42, 641–654.
Choset, H.; Pignon, P. Coverage Path Planning: The Boustrophedon Cellular Decomposition. In Field and Service Robotics; Springer: London, UK, 1998; pp. 203–209.
Gabriely, Y.; Rimon, E. Spanning-Tree Based Coverage of Continuous Areas by a Mobile Robot. Ann. Math. Artif. Intell. 2001, 31, 77–98.
Gronier, J. Hair-Cutting Machine. U.S. Patent 3,241,562, 22 March 1966.
Wighton, S. I Built a Robot to Cut My Hair. 2020. Available online: https://www.youtube.com/watch?v=7zBrbdU_y0s (accessed on 21 November 2025).
Stuff Made Here. Cutting Hair with a Robot Arm—Feat. Allen Pan. 2021. Available online: https://www.youtube.com/watch?v=jY_gpi_gsRI(accessed on 21 November 2025).
Panasonic. Panasonic Shampoo and Head Massage Robot. 2012. Available online: https://www.youtube.com/watch?v=aWxF_ZXs-_o(accessed on 21 November 2025).
Aladabbah, M. Automatic Hair Cutter Robot. WO 2023/080812 A1, 11 May 2023
Kim, S.; Kanazawa, N.; Hasegawa, S.; et al. Front Hair Styling Robot System Using Path Planning for Root-Centric Strand Adjustment. In Proceedings of the IEEE/SICE International Symposium on System Integration (SII), Munich, Germany, 21–24 January 2025; pp. 544–549.
Bai, Y.; Seita, D.; Edsinger, A.; et al. RoboWig: A Hair Brushing Robot with Visual and Tactile Sensing. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Chennai, India, 28–29 January 2022; pp. 5781–5787.
Yoo, U.; Dennler, N.; Nikolaidis, S.; et al. Moe-Hair: Toward Soft and Compliant Contact-Rich Hair Manipulation and Care. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Boulder, CO, USA, 11–15 March 2024; pp. 1163–1167.
Yoo, U.; Dennler, N.; Xing, E.; et al. Soft and Compliant Contact-Rich Hair Manipulation and Care. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), Melbourne, Australia, 4–6 March 2025; pp. 610–619.
Dennler, N.; Shin, E.; Mataric, M.; et al. Design and Evaluation of a Hair Combing System Using a General-Purpose Robotic Arm. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Prague, Czech Republic, 27 September–1 October 2021; pp. 3739–3746.
Robots Guide. Roomba. Available online: https://robotsguide.com/robots/roomba (accessed on 21 November 2025).
Husqvarna AB. Husqvarna Automower: Product History and Innovation. Available online: https://www.husqvarna.com/se/robotgrasklippare/ (accessed on 21 November 2025).
Lanfranco, A.R.; Castellanos, A.E.; Desai, J.P.; et al. Robotic Surgery: A Current Perspective. Ann. Surg. 2004, 239, 14–21.
Albu-Schffer, A.; Haddadin, S.; Ott, C.; et al. The DLR Lightweight Robot: Design and Control Concepts for Robots in Human Environments. Ind. Robot. Int. J. 2007, 34, 376–385.
Xu, Z.; Zhan, X.; Xiu, Y.; et al. Onboard Dynamic-Object Detection and Tracking for Autonomous Robot Navigation with RGB-D Camera. IEEE Robot. Autom. Lett. 2023, 9, 651–658.
Olson, E. AprilTag: A Robust and Flexible Visual Fiducial System. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 3400–3407.
Wang, J.; Olson, E. AprilTag 2: Efficient and Robust Fiducial Detection. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 4193–4198.
Blanz, V.; Vetter, T. Face Recognition Based on Fitting a 3D Morphable Model. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1063–1074.
Deng, Z.; Luo, H.; Gao, X.; et al. Fusion-Based Localization System Integrating UWB, IMU, and Vision. Appl. Sci. 2025, 15, 6501.
Fraundorfer, F.; Scaramuzza, D. Visual Odometry: Part II: Matching, Robustness, Optimization, and Applications. IEEE Robot. Autom. Mag. 2012, 19, 78–90.
Yousif, K.; Bab-Hadiashar, A.; Hoseinnezhad, R. An Overview to Visual Odometry and Visual SLAM: Applications to Mobile Robotics. Intell. Ind. Syst. 2015, 1, 289–311.
Guizilini, V.; Lee, K.H.; Ambrus¸, R.; et al. Learning Optical Flow, Depth, and Scene Flow Without Real-World Labels. IEEE Robot. Autom. Lett. 2022, 7, 3491–3498.
Alatise, M.B.; Hancke, G.P. Pose Estimation of a Mobile Robot Based on Fusion of IMU Data and Vision Data Using an Extended Kalman Filter. Sensors 2017, 17, 2164.
Roumeliotis, S.I.; Bekey, G.A. Bayesian Estimation and Kalman Filtering: A Unified Framework for Mobile Robot Localization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, USA, 24–28 April 2000; Volume 3, pp. 2985–2992.
Ahmad, H.; Namerikawa, T. Extended Kalman Filter-Based Mobile Robot Localization with Intermittent Measurements. Syst. Sci. Control. Eng. 2013, 1, 113–126.
Naab, C.; Zheng, Z. Application of the Unscented Kalman Filter in Position Estimation: A Case Study on a Robot for Precise Positioning. Robot. Auton. Syst. 2022, 147, 103904.
Raja, G.; Suresh, S.; Anbalagan, S.; et al. PFIN: An Efficient Particle Filter-Based Indoor Navigation Framework for UAVs. IEEE Trans. Veh. Technol. 2021, 70, 4984–4992.
Kaess, M.; Ranganathan, A.; Dellaert, F. iSAM: Incremental Smoothing and Mapping. IEEE Trans. Robot. 2008, 24, 1365–1378.
Li, Y.; Zhu, S.; Yu, Y.; et al. An Improved Graph-Based Visual Localization System for Indoor Mobile Robot Using Newly Designed Markers. Int. J. Adv. Robot. Syst. 2018, 15. https://doi.org/10.1177/1729881418769191.
Zhang, Y.; Hsiao, M.; Dong, J.; et al. MR-iSAM2: Incremental Smoothing and Mapping with Multi-Root Bayes Tree for Multi-Robot SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Prague, Czech Republic, 27 September–1 October 2021; pp. 8671–8678.
Liu, W.; Hu, J.; Zhang, H.; et al. A Novel Graph-Based Motion Planner of Multi-Mobile Robot Systems with Formation and Obstacle Constraints. IEEE Trans. Robot. 2023, 40, 714–728.
Selle, A.; Lentine, M.; Fedkiw, R. A Mass Spring Model for Hair Simulation. ACM Trans. Graph. 2008, 27, 64.
Zhou, Y.; Hu, L.; Xing, J.; et al. HairNet: Single-View Hair Reconstruction Using Convolutional Neural Networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 235–251.
Chai, M.; Shao, T.; Wu, H.; et al. AutoHair: Fully Automatic Hair Modeling from a Single Image. ACM Trans. Graph. 2016, 35, 116.
Sklyarova, V.; Chelishev, J.; Dogaru, A.; et al. Neural Haircut: Prior-Guided Strand-Based Hair Reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Paris, France, 2–6 October 2023; pp. 19762–19773.
Zakharov, E.; Sklyarova, V.; Black, M.; et al. Human Hair Reconstruction with Strand-Aligned 3D Gaussians. In Proceedings of the European Conference on Computer Vision (ECCV), Milan, Italy, 29 September–4 October 2024; pp. 409–425.
Bhnemann, R.; Lawrance, N.; Chung, J.J.; et al. Revisiting Boustrophedon Coverage Path Planning as a Generalized Traveling Salesman Problem. In Field and Service Robotics; Springer: Singapore, 2021; pp. 277–290.
Cabreira, T.M.; Di Franco, C.; Ferreira, P.R.; et al. Energy-Aware Spiral Coverage Path Planning for UAV Photogrammetric Applications. IEEE Robot. Autom. Lett. 2018, 3, 3662–3668.
Han, B.; Qu, T.; Tong, X.; et al. Grid-Optimized UAV Indoor Path Planning Algorithms in a Complex Environment. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102857.
Thimbleby, H. The Directed Chinese Postman Problem. Softw. Pract. Exp. 2003, 33, 1081–1096.
Kavraki, L.E.; Kolountzakis, M.N.; Latombe, J.C. Analysis of Probabilistic Roadmaps for Path Planning. IEEE Trans. Robot. Autom. 1998, 14, 166–171.
Umari, H.; Mukhopadhyay, S. Autonomous Robotic Exploration Based on Multiple Rapidly-Exploring Randomized Trees. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 1396–1402.
Lamini, C.; Benhlima, S.; Elbekri, A. Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning. Procedia Comput. Sci. 2018, 127, 180–189.
Lin, S.; Liu, A.; Wang, J.; et al. An Intelligence-Based Hybrid PSO-SA for Mobile Robot Path Planning in Warehouse. J. Comput. Sci. 2023, 67, 101938.
Hua, C.; Xu, J.; Huang, Z.; et al. Optimization-Based Finite-Time Multi-Robot Formation: A Zeroing Neurodynamics Method. Tsinghua Sci. Technol. 2026, 31, 162–179.
Khan, A.T.; Cao, X.; Li, Z.; et al. Evolutionary Computation Based Real-Time Robot Arm Path-Planning Using Beetle Antennae Search. EAI Endorsed Trans. Robot. 2022, 1, e3.
Huang, Z.; Zhang, Z.; Hua, C.; et al. Leveraging Enhanced Egret Swarm Optimization Algorithm and Artificial Intelligence- Driven Prompt Strategies for Portfolio Selection. Sci. Rep. 2024, 14, 26681.
Chaumette, F.; Hutchinson, S. Visual Servo Control. I. Basic Approaches. IEEE Robot. Autom. Mag. 2006, 13, 82–90.
Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. J. Dyn. Syst. Meas. Control. 1985, 107, 1–7.
Haddadin, S.; Croft, E. Physical Human–Robot Interaction. In Springer Handbook of Robotics; Springer: Cham, Switzerland, 2016; pp. 1835–1874.
Jang, E.; Irpan, A.; Khansari, M.; et al. BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning. In Proceedings of the Conference on Robot Learning (CoRL), Auckland, New Zealand, 14–18 December 2022; pp. 991–1002.
Kim, H.; Ohmura, Y.; Nagakubo, A.; et al. Training Robots Without Robots: Deep Imitation Learning for Master-to-Robot Policy Transfer. IEEE Robot. Autom. Lett. 2023, 8, 2906–2913.
Zare, M.; Kebria, P.M.; Khosravi, A.; et al. A Survey of Imitation Learning: Algorithms, Recent Developments, and Challenges. IEEE Trans. Cybern. 2024, 54, 7173–7192.
Hua, J.; Zeng, L.; Li, G.; et al. Learning for a Robot: Deep Reinforcement Learning, Imitation Learning, Transfer Learning. Sensors 2021, 21, 1278.
Zhu, K.; Zhang, T. Deep Reinforcement Learning Based Mobile Robot Navigation: A Review. Tsinghua Sci. Technol. 2021, 26, 674–691.
Ibarz, J.; Tan, J.; Finn, C.; et al. How to Train Your Robot with Deep Reinforcement Learning: Lessons We Have Learned. Int. J. Robot. Res. 2021, 40, 698–721.
Han, D.H.; Mulyana, B.; Stankovic, V.; et al. A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation. Sensors 2023, 23, 3762.
Ma, Y.; Song, Z.; Zhuang, Y.; et al. A Survey on Vision-Language-Action Models for Embodied AI. arXiv 2024, arXiv:2405.14093.
Kim, M.J.; Pertsch, K.; Karamcheti, S.; et al. OpenVLA: An Open-Source Vision-Language-Action Model. arXiv 2024, arXiv:2406.09246.
Zitkovich, B.; Yu, T.; Xu, S.; et al. RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control. In Proceedings of the Conference on Robot Learning (CoRL), Atlanta, GA, USA, 6–9 November 2023; pp. 2165–2183.
Muhammad, K.; Ullah, A.; Lloret, J.; et al. Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4316–4336.
Grigorescu, S.; Trasnea, B.; Cocias, T.; et al. A Survey of Deep Learning Techniques for Autonomous Driving. J. Field Robot. 2020, 37, 362–386.
Alan, A.; Taylor, A.J.; He, C.R.; et al. Control Barrier Functions and Input-to-State Safety with Application to Automated Vehicles. IEEE Trans. Control. Syst. Technol. 2023, 31, 2744–2759.
Williams, G.; Drews, P.; Goldfain, B.; et al. Information-Theoretic Model Predictive Control: Theory and Applications to Autonomous Driving. IEEE Trans. Robot. 2018, 34, 1603–1622.
Cui, C.; Ma, Y.; Cao, X.; et al. A Survey on Multimodal Large Language Models for Autonomous Driving. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2024; pp. 958–979.
Fu, D.; Li, X.; Wen, L.; et al. Drive Like a Human: Rethinking Autonomous Driving with Large Language Models. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 1–6 January 2024; pp. 910–919.
Tsiakas, K.; Tsardoulias, E.; Symeonidis, A.L. Autonomous Full 3D Coverage Using an Aerial Vehicle, Performing Localization, Path Planning, and Navigation Towards Indoors Inventorying for the Logistics Domain. Robotics 2024, 13, 83.
Zhao, L.; Wang, W.; Hu, X.; et al. Visual–Inertial Autonomous UAV Navigation in Complex Illumination and Highly Cluttered Under-Canopy Environments. Drones 2025, 9, 27.
Li, Q.; Gama, F.; Ribeiro, A.; et al. Graph Neural Networks for Decentralized Multi-Robot Path Planning. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 11785–11792.
Zhao, G.; Zhu, M. Pareto Optimal Multirobot Motion Planning. IEEE Trans. Autom. Control. 2020, 66, 3984–3999.

This work is licensed under a Creative Commons Attribution 4.0 International License.