2601002919
  • Open Access
  • Review

CNC-Inspired Robotic Hair Cutting: A Comprehensive Survey on Precision Personal Care Automation

  • Ameer Tamoor Khan 1,   
  • Shuai Li 2

Received: 21 Nov 2025 | Revised: 14 Jan 2026 | Accepted: 23 Jan 2026 | Published: 29 Jan 2026

Abstract

The development of haircutting robots has gained significant attention for applications in personal grooming and healthcare, driven by population aging, labor shortages, and increased demand for contactless interaction. Existing efforts, however, remain fragmented, addressing perception, hair modeling, or motion planning in isolation without a systematic framework. This survey provides a comprehensive review of robotic haircutting through the lens of Computer Numerical Control (CNC) machining principles, proposing a unified framework that treats hair manipulation with industrial manufacturing rigor. We systematically analyze the field across five key dimensions: system architectures including gantry-based, manipulator-based, and hybrid configurations; sensing modalities encompassing vision, force, proximity, and tactile feedback; hair modeling techniques from physics-based simulation to neural reconstruction methods; toolpath planning strategies adapted from CNC machining including coverage planning and multi-pass optimization; and control approaches for precision execution and safety assurance. We present detailed comparisons of existing prototypes and commercial systems, identify key technical challenges including head motion compensation, hair property variability, and safety-critical control, and outline promising research directions. This survey bridges the gap between service robotics and precision manufacturing, providing researchers with a structured foundation for advancing haircutting robot technology toward practical deployment.

References 

  • 1.

    Gerstell, E.; Marchessou, S.; Schmidt, J.; et al. How COVID-19 Is Changing the World of Beauty; McKinsey & Company: Chicago, IL, USA, 2020.

  • 2.

    Li, S. Haircutting Robots; Springer Nature: Berlin/Heidelberg, Germany, 2025.

  • 3.

    Li, S. Haircutting Robots: From Theory to Practice. Automation 2025, 6, 47.

  • 4.

    Huang, Z.; Li, S.; Rning, J. Safety in Robotic Haircutting. J. Field Robot. 2025, in press.

  • 5.

    Ward, K.; Bertails, F.; Kim, T.Y.; et al. A Survey on Hair Modeling: Styling, Simulation, and Rendering. IEEE Trans. Vis. Comput. Graph. 2007, 13, 213–234.

  • 6.

    Haddadin, S.; Albu-Schffer, A.; Hirzinger, G. Requirements for Safe Robots: Measurements, Analysis and New Insights. Int. J. Robot. Res. 2009, 28, 1507–1527.

  • 7.

    Da Costa, D. Textured Tresses: The Ultimate Guide to Maintaining and Styling Natural Hair; Simon and Schuster: New York, NY, USA, 2007.

  • 8.

    Harrison, S.; Sinclair, R. Hair Colouring, Permanent Styling and Hair Structure. J. Cosmet. Dermatol. 2003, 2, 180–185.

  • 9.

    Lasemi, A.; Xue, D.; Gu, P. Recent Development in CNC Machining of Freeform Surfaces: A State-of-the-Art Review. Comput.-Aided Des. 2010, 42, 641–654.

  • 10.

    Choset, H.; Pignon, P. Coverage Path Planning: The Boustrophedon Cellular Decomposition. In Field and Service Robotics; Springer: London, UK, 1998; pp. 203–209.

  • 11.

    Gabriely, Y.; Rimon, E. Spanning-Tree Based Coverage of Continuous Areas by a Mobile Robot. Ann. Math. Artif. Intell. 2001, 31, 77–98.

  • 12.

    Gronier, J. Hair-Cutting Machine. U.S. Patent 3,241,562, 22 March 1966.

  • 13.

    Wighton, S. I Built a Robot to Cut My Hair. 2020. Available online: https://www.youtube.com/watch?v=7zBrbdU_y0s (accessed on 21 November 2025).

  • 14.

    Stuff Made Here. Cutting Hair with a Robot Arm—Feat. Allen Pan. 2021. Available online: https://www.youtube.com/watch?v=jY_gpi_gsRI(accessed on 21 November 2025).

  • 15.

    Panasonic. Panasonic Shampoo and Head Massage Robot. 2012. Available online: https://www.youtube.com/watch?v=aWxF_ZXs-_o(accessed on 21 November 2025).

  • 16.

    Aladabbah, M. Automatic Hair Cutter Robot. WO 2023/080812 A1, 11 May 2023

  • 17.

    Kim, S.; Kanazawa, N.; Hasegawa, S.; et al. Front Hair Styling Robot System Using Path Planning for Root-Centric Strand Adjustment. In Proceedings of the IEEE/SICE International Symposium on System Integration (SII), Munich, Germany, 21–24 January 2025; pp. 544–549.

  • 18.

    Bai, Y.; Seita, D.; Edsinger, A.; et al. RoboWig: A Hair Brushing Robot with Visual and Tactile Sensing. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Chennai, India, 28–29 January 2022; pp. 5781–5787.

  • 19.

    Yoo, U.; Dennler, N.; Nikolaidis, S.; et al. Moe-Hair: Toward Soft and Compliant Contact-Rich Hair Manipulation and Care. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Boulder, CO, USA, 11–15 March 2024; pp. 1163–1167.

  • 20.

    Yoo, U.; Dennler, N.; Xing, E.; et al. Soft and Compliant Contact-Rich Hair Manipulation and Care. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), Melbourne, Australia, 4–6 March 2025; pp. 610–619.

  • 21.

    Dennler, N.; Shin, E.; Mataric, M.; et al. Design and Evaluation of a Hair Combing System Using a General-Purpose Robotic Arm. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Prague, Czech Republic, 27 September–1 October 2021; pp. 3739–3746.

  • 22.

    Robots Guide. Roomba. Available online: https://robotsguide.com/robots/roomba (accessed on 21 November 2025).

  • 23.

    Husqvarna AB. Husqvarna Automower: Product History and Innovation. Available online: https://www.husqvarna.com/se/robotgrasklippare/ (accessed on 21 November 2025).

  • 24.

    Lanfranco, A.R.; Castellanos, A.E.; Desai, J.P.; et al. Robotic Surgery: A Current Perspective. Ann. Surg. 2004, 239, 14–21.

  • 25.

    Albu-Schffer, A.; Haddadin, S.; Ott, C.; et al. The DLR Lightweight Robot: Design and Control Concepts for Robots in Human Environments. Ind. Robot. Int. J. 2007, 34, 376–385.

  • 26.

    Xu, Z.; Zhan, X.; Xiu, Y.; et al. Onboard Dynamic-Object Detection and Tracking for Autonomous Robot Navigation with RGB-D Camera. IEEE Robot. Autom. Lett. 2023, 9, 651–658.

  • 27.

    Olson, E. AprilTag: A Robust and Flexible Visual Fiducial System. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 3400–3407.

  • 28.

    Wang, J.; Olson, E. AprilTag 2: Efficient and Robust Fiducial Detection. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 4193–4198.

  • 29.

    Blanz, V.; Vetter, T. Face Recognition Based on Fitting a 3D Morphable Model. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1063–1074.

  • 30.

    Deng, Z.; Luo, H.; Gao, X.; et al. Fusion-Based Localization System Integrating UWB, IMU, and Vision. Appl. Sci. 2025, 15, 6501.

  • 31.

    Fraundorfer, F.; Scaramuzza, D. Visual Odometry: Part II: Matching, Robustness, Optimization, and Applications. IEEE Robot. Autom. Mag. 2012, 19, 78–90.

  • 32.

    Yousif, K.; Bab-Hadiashar, A.; Hoseinnezhad, R. An Overview to Visual Odometry and Visual SLAM: Applications to Mobile Robotics. Intell. Ind. Syst. 2015, 1, 289–311.

  • 33.

    Guizilini, V.; Lee, K.H.; Ambrus¸, R.; et al. Learning Optical Flow, Depth, and Scene Flow Without Real-World Labels. IEEE Robot. Autom. Lett. 2022, 7, 3491–3498.

  • 34.

    Alatise, M.B.; Hancke, G.P. Pose Estimation of a Mobile Robot Based on Fusion of IMU Data and Vision Data Using an Extended Kalman Filter. Sensors 2017, 17, 2164.

  • 35.

    Roumeliotis, S.I.; Bekey, G.A. Bayesian Estimation and Kalman Filtering: A Unified Framework for Mobile Robot Localization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, USA, 24–28 April 2000; Volume 3, pp. 2985–2992.

  • 36.

    Ahmad, H.; Namerikawa, T. Extended Kalman Filter-Based Mobile Robot Localization with Intermittent Measurements. Syst. Sci. Control. Eng. 2013, 1, 113–126.

  • 37.

    Naab, C.; Zheng, Z. Application of the Unscented Kalman Filter in Position Estimation: A Case Study on a Robot for Precise Positioning. Robot. Auton. Syst. 2022, 147, 103904.

  • 38.

    Raja, G.; Suresh, S.; Anbalagan, S.; et al. PFIN: An Efficient Particle Filter-Based Indoor Navigation Framework for UAVs. IEEE Trans. Veh. Technol. 2021, 70, 4984–4992.

  • 39.

    Kaess, M.; Ranganathan, A.; Dellaert, F. iSAM: Incremental Smoothing and Mapping. IEEE Trans. Robot. 2008, 24, 1365–1378.

  • 40.

    Li, Y.; Zhu, S.; Yu, Y.; et al. An Improved Graph-Based Visual Localization System for Indoor Mobile Robot Using Newly Designed Markers. Int. J. Adv. Robot. Syst. 2018, 15. https://doi.org/10.1177/1729881418769191.

  • 41.

    Zhang, Y.; Hsiao, M.; Dong, J.; et al. MR-iSAM2: Incremental Smoothing and Mapping with Multi-Root Bayes Tree for Multi-Robot SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Prague, Czech Republic, 27 September–1 October 2021; pp. 8671–8678.

  • 42.

    Liu, W.; Hu, J.; Zhang, H.; et al. A Novel Graph-Based Motion Planner of Multi-Mobile Robot Systems with Formation and Obstacle Constraints. IEEE Trans. Robot. 2023, 40, 714–728.

  • 43.

    Selle, A.; Lentine, M.; Fedkiw, R. A Mass Spring Model for Hair Simulation. ACM Trans. Graph. 2008, 27, 64.

  • 44.

    Zhou, Y.; Hu, L.; Xing, J.; et al. HairNet: Single-View Hair Reconstruction Using Convolutional Neural Networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 235–251.

  • 45.

    Chai, M.; Shao, T.; Wu, H.; et al. AutoHair: Fully Automatic Hair Modeling from a Single Image. ACM Trans. Graph. 2016, 35, 116.

  • 46.

    Sklyarova, V.; Chelishev, J.; Dogaru, A.; et al. Neural Haircut: Prior-Guided Strand-Based Hair Reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Paris, France, 2–6 October 2023; pp. 19762–19773.

  • 47.

    Zakharov, E.; Sklyarova, V.; Black, M.; et al. Human Hair Reconstruction with Strand-Aligned 3D Gaussians. In Proceedings of the European Conference on Computer Vision (ECCV), Milan, Italy, 29 September–4 October 2024; pp. 409–425.

  • 48.

    Bhnemann, R.; Lawrance, N.; Chung, J.J.; et al. Revisiting Boustrophedon Coverage Path Planning as a Generalized Traveling Salesman Problem. In Field and Service Robotics; Springer: Singapore, 2021; pp. 277–290.

  • 49.

    Cabreira, T.M.; Di Franco, C.; Ferreira, P.R.; et al. Energy-Aware Spiral Coverage Path Planning for UAV Photogrammetric Applications. IEEE Robot. Autom. Lett. 2018, 3, 3662–3668.

  • 50.

    Han, B.; Qu, T.; Tong, X.; et al. Grid-Optimized UAV Indoor Path Planning Algorithms in a Complex Environment. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102857.

  • 51.

    Thimbleby, H. The Directed Chinese Postman Problem. Softw. Pract. Exp. 2003, 33, 1081–1096.

  • 52.

    Kavraki, L.E.; Kolountzakis, M.N.; Latombe, J.C. Analysis of Probabilistic Roadmaps for Path Planning. IEEE Trans. Robot. Autom. 1998, 14, 166–171.

  • 53.

    Umari, H.; Mukhopadhyay, S. Autonomous Robotic Exploration Based on Multiple Rapidly-Exploring Randomized Trees. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 1396–1402.

  • 54.

    Lamini, C.; Benhlima, S.; Elbekri, A. Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning. Procedia Comput. Sci. 2018, 127, 180–189.

  • 55.

    Lin, S.; Liu, A.; Wang, J.; et al. An Intelligence-Based Hybrid PSO-SA for Mobile Robot Path Planning in Warehouse. J. Comput. Sci. 2023, 67, 101938.

  • 56.

    Hua, C.; Xu, J.; Huang, Z.; et al. Optimization-Based Finite-Time Multi-Robot Formation: A Zeroing Neurodynamics Method. Tsinghua Sci. Technol. 2026, 31, 162–179.

  • 57.

    Khan, A.T.; Cao, X.; Li, Z.; et al. Evolutionary Computation Based Real-Time Robot Arm Path-Planning Using Beetle Antennae Search. EAI Endorsed Trans. Robot. 2022, 1, e3.

  • 58.

    Huang, Z.; Zhang, Z.; Hua, C.; et al. Leveraging Enhanced Egret Swarm Optimization Algorithm and Artificial Intelligence- Driven Prompt Strategies for Portfolio Selection. Sci. Rep. 2024, 14, 26681.

  • 59.

    Chaumette, F.; Hutchinson, S. Visual Servo Control. I. Basic Approaches. IEEE Robot. Autom. Mag. 2006, 13, 82–90.

  • 60.

    Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. J. Dyn. Syst. Meas. Control. 1985, 107, 1–7.

  • 61.

    Haddadin, S.; Croft, E. Physical Human–Robot Interaction. In Springer Handbook of Robotics; Springer: Cham, Switzerland, 2016; pp. 1835–1874.

  • 62.

    Jang, E.; Irpan, A.; Khansari, M.; et al. BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning. In Proceedings of the Conference on Robot Learning (CoRL), Auckland, New Zealand, 14–18 December 2022; pp. 991–1002.

  • 63.

    Kim, H.; Ohmura, Y.; Nagakubo, A.; et al. Training Robots Without Robots: Deep Imitation Learning for Master-to-Robot Policy Transfer. IEEE Robot. Autom. Lett. 2023, 8, 2906–2913.

  • 64.

    Zare, M.; Kebria, P.M.; Khosravi, A.; et al. A Survey of Imitation Learning: Algorithms, Recent Developments, and Challenges. IEEE Trans. Cybern. 2024, 54, 7173–7192.

  • 65.

    Hua, J.; Zeng, L.; Li, G.; et al. Learning for a Robot: Deep Reinforcement Learning, Imitation Learning, Transfer Learning. Sensors 2021, 21, 1278.

  • 66.

    Zhu, K.; Zhang, T. Deep Reinforcement Learning Based Mobile Robot Navigation: A Review. Tsinghua Sci. Technol. 2021, 26, 674–691.

  • 67.

    Ibarz, J.; Tan, J.; Finn, C.; et al. How to Train Your Robot with Deep Reinforcement Learning: Lessons We Have Learned. Int. J. Robot. Res. 2021, 40, 698–721.

  • 68.

    Han, D.H.; Mulyana, B.; Stankovic, V.; et al. A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation. Sensors 2023, 23, 3762.

  • 69.

    Ma, Y.; Song, Z.; Zhuang, Y.; et al. A Survey on Vision-Language-Action Models for Embodied AI. arXiv 2024, arXiv:2405.14093.

  • 70.

    Kim, M.J.; Pertsch, K.; Karamcheti, S.; et al. OpenVLA: An Open-Source Vision-Language-Action Model. arXiv 2024, arXiv:2406.09246.

  • 71.

    Zitkovich, B.; Yu, T.; Xu, S.; et al. RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control. In Proceedings of the Conference on Robot Learning (CoRL), Atlanta, GA, USA, 6–9 November 2023; pp. 2165–2183.

  • 72.

    Muhammad, K.; Ullah, A.; Lloret, J.; et al. Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4316–4336.

  • 73.

    Grigorescu, S.; Trasnea, B.; Cocias, T.; et al. A Survey of Deep Learning Techniques for Autonomous Driving. J. Field Robot. 2020, 37, 362–386.

  • 74.

    Alan, A.; Taylor, A.J.; He, C.R.; et al. Control Barrier Functions and Input-to-State Safety with Application to Automated Vehicles. IEEE Trans. Control. Syst. Technol. 2023, 31, 2744–2759.

  • 75.

    Williams, G.; Drews, P.; Goldfain, B.; et al. Information-Theoretic Model Predictive Control: Theory and Applications to Autonomous Driving. IEEE Trans. Robot. 2018, 34, 1603–1622.

  • 76.

    Cui, C.; Ma, Y.; Cao, X.; et al. A Survey on Multimodal Large Language Models for Autonomous Driving. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2024; pp. 958–979.

  • 77.

    Fu, D.; Li, X.; Wen, L.; et al. Drive Like a Human: Rethinking Autonomous Driving with Large Language Models. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 1–6 January 2024; pp. 910–919.

  • 78.

    Tsiakas, K.; Tsardoulias, E.; Symeonidis, A.L. Autonomous Full 3D Coverage Using an Aerial Vehicle, Performing Localization, Path Planning, and Navigation Towards Indoors Inventorying for the Logistics Domain. Robotics 2024, 13, 83.

  • 79.

    Zhao, L.; Wang, W.; Hu, X.; et al. Visual–Inertial Autonomous UAV Navigation in Complex Illumination and Highly Cluttered Under-Canopy Environments. Drones 2025, 9, 27.

  • 80.

    Li, Q.; Gama, F.; Ribeiro, A.; et al. Graph Neural Networks for Decentralized Multi-Robot Path Planning. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 11785–11792.

  • 81.

    Zhao, G.; Zhu, M. Pareto Optimal Multirobot Motion Planning. IEEE Trans. Autom. Control. 2020, 66, 3984–3999.

Share this article:
How to Cite
Khan, A. T.; Li, S. CNC-Inspired Robotic Hair Cutting: A Comprehensive Survey on Precision Personal Care Automation. Journal of Artificial Intelligence for Automation 2026, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.