2511002271
  • Open Access
  • Review

Quantum Information Systems: Foundations, Intelligent Algorithms, and Cross-Industry Applications

  • Fengyi Wang *,   
  • Yang Lu

Received: 15 Aug 2025 | Revised: 30 Oct 2025 | Accepted: 13 Nov 2025 | Published: 07 Jan 2026

Abstract

Quantum Information Systems (QIS) have emerged as a transformative paradigm, integrating the principles of quantum mechanics with advanced computational and communication technologies to address complex problems beyond the capabilities of classical systems. This review provides a comprehensive synthesis of current developments, beginning with the foundational principles that define QIS, including its theoretical underpinnings, quantum state representations, and computational frameworks. It then examines advances in quantum computing for QIS, with a focus on hardware architectures, the design and optimization of core algorithms, and the computational advantages over classical approaches. The discussion extends to quantum machine learning for QIS, exploring hybrid quantum–classical learning models, quantum data encoding techniques, and optimization strategies. Finally, it surveys diverse application domains, such as finance, industrial information integration, energy systems, healthcare, and intelligent transportation. In addition, the paper highlights pressing technological, data-centric, algorithmic, and ecosystem-level challenges, and discusses future trajectories shaped by innovations such as quantum blockchain, quantum artificial intelligence, and decentralized QIS. Through a structured and integrative analysis, this work aims to provide a roadmap for researchers and practitioners navigating the rapidly evolving QIS landscape. 

References 

  • 1.

    Cross, A.W.; Bishop, L.S.; Sheldon, S.; et al. Validating quantum computers using randomized model circuits. Phys. Rev. A 2019, 100, 032328.

  • 2.

    Melucci, M. Quantum mechanics and information retrieval. In Introduction to Information Retrieval and Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2015; pp. 101–188.

  • 3.

    Nimbe, P.; Weyori, B.A.; Adekoya, A.F. Models in quantum computing: A systematic review. Quantum Inf. Process. 2021, 20, 80.

  • 4.

    De Leon, N.P.; Itoh, K.M.; Kim, D.; et al. Materials challenges and opportunities for quantum computing hardware. Science 2021, 372, eabb2823.

  • 5.

    Lu, Y.; Sigov, A.; Ratkin, L.; et al. Quantum computing and industrial information integration: A review. J. Ind. Inf. Integr. 2023, 35, 100511.

  • 6.

    Ohyama, T.; Kawamoto, Y.; Kato, N. Intelligent reflecting surface (IRS) allocation scheduling method using combinatorial optimization by quantum computing. IEEE Trans. Emerg. Top. Comput. 2021, 10, 1633–1644.

  • 7.

    Weigold, M.; Barzen, J.; Leymann, F.; et al. Data encoding patterns for quantum computing. In Proceedings of the 27th Conference on Pattern Languages of Programs, Virtual, 12–16 October 2020.

  • 8.

    Lu, W.; Lu, Y.; Li, J.; et al. Quantum machine learning: Classifications, challenges, and solutions. J. Ind. Inf. Integr. 2024, 42, 100736.

  • 9.

    Liu, C.Y.; Kuo, E.J.; Abraham Lin, C.H.; et al. Quantum-train: Rethinking hybrid quantum-classical machine learning in the model compression perspective. Quantum Mach. Intell. 2025, 7, 80.

  • 10.

    Lu, Y.; Yang, J. Quantum financing system: A survey on quantum algorithms, potential scenarios and open research issues. J. Ind. Inf. Integr. 2024, 41, 100663.

  • 11.

    Sigov, A.; Ratkin, L.; Ivanov, L.A. Quantum information technology. J. Ind. Inf. Integr. 2022, 28, 100365.

  • 12.

    Ajagekar, A.; You, F. Quantum computing for energy systems optimization: Challenges and opportunities. Energy 2019, 179, 76–89.

  • 13.

    Aggarwal, L.; Sachdeva, S.; Goswami, P. Quantum healthcare computing using precision based granular approach. Appl. Soft Comput. 2023, 144, 110458.

  • 14.

    Wang, S.; Pei, Z.; Wang, C.; et al. Shaping the future of the application of quantum computing in intelligent transportation system. Intell. Converg. Netw. 2021, 2, 259–276.

  • 15.

    Aasen, D.; Hell, M.; Mishmash, R.V.; et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 2016, 6, 031016.

  • 16.

    Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization. Comput. Meth. Appl. Mech. Eng. 2022, 392, 114616.

  • 17.

    Childs, A.M.; Maslov, D.; Nam, Y.; et al. Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci. USA 2018, 115, 9456–9461.

  • 18.

    Deng, W.; Shang, S.; Cai, X.; et al. Quantum differential evolution with cooperative coevolution framework and hybrid mutation strategy for large scale optimization. Knowl. Based Syst. 2021, 224, 107080.

  • 19.

    Zhang, Z.; Hong, W.C. Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and support vector regression with quantumbased dragonfly algorithm. Nonlinear Dyn. 2019, 98, 1107–1136.

  • 20.

    Higashigaito, K.; Euler, A.; Eberhard, M.; et al. Contrast-enhanced abdominal CT with clinical photon-counting detector CT: Assessment of image quality and comparison with energy-integrating detector CT. Acad. Radiol. 2022, 29, 689–697.

  • 21.

    McClean, J.R.; Rubin, N.C.; Sung, K.J.; et al. OpenFermion: The electronic structure package for quantum computers. Quantum Sci. Technol. 2020, 5, 034014.

  • 22.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quant. Electron. Proc. Int. Congr. 2018, 2, 79.

  • 23.

    Romero, J.; Babbush, R.; McClean, J.R.; et al. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz Quant. Sci. Technol. 2018, 4, 014008.

  • 24.

    Barends, R.; Shabani, A.; Lamata, L.; et al. Digitized adiabatic quantum computing with a superconducting circuit. Nature 2016, 534, 222–226.

  • 25.

    Yong, Y.; Cheng, X.; Bao, T.; et al. Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 2015, 9, 12451–12463.

  • 26.

    Aromí, G.; Aguila, D.; Gamez, P.; et al. Design of magnetic coordination complexes for quantum computing. Chem. Soc. Rev. 2012, 41, 537–546.

  • 27.

    Adams, C.S.; Pritchard, J.D.; Shaffer, J.P. Rydberg atom quantum technologies. J. Phys. B At. Mol. Opt. Phys. 2019, 53, 012002.

  • 28.

    Kjaergaard, M.; Schwartz, M.E.; Braumüller, J.; et al. Superconducting qubits: Current state of play. Annu. Rev. Condens. Matter Phys. 2020, 11, 369–395.

  • 29.

    Lv, Z.; Wang, Y.; Chen, J.; et al. Semiconductor quantum dots for memories and neuromorphic computing systems. Chem. Rev. 2020, 120, 3941–4006.

  • 30.

    Broecker, P.; Carrasquilla, J.; Melko, R.G.; et al. Machine learning quantum phases of matter beyond the fermion sign problem. Sci. Rep. 2017, 7, 8823.

  • 31.

    Nawaz, S.J.; Sharma, S.K.; Wyne, S.; et al. Quantum machine learning for 6G communication networks: State-of-the-art and vision for the future. IEEe Access 2019, 7, 46317–46350.

  • 32.

    He, C.; Li, J.; Liu, W.; et al. A low-complexity quantum principal component analysis algorithm. IEEE Trans. Quantum Eng. 2022, 3, 1–13.

  • 33.

    Bhattacharjee, A.; Bandyopadhyay, C.; Mukherjee, A.; et al. Efficient implementation of nearest neighbor quantum circuits using clustering with genetic algorithm. In Proceedings of the 2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL), Miyazaki, Japan, 9–11 November 2020; pp. 40–45.

  • 34.

    Qi, J.; Tejedor, J. Classical-to-quantum transfer learning for spoken command recognition based on quantum neural networks. In Proceedings of the ICASSP 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May 2022; pp. 8627–8631.

  • 35.

    Kwak, Y.; Yun, W.J.; Jung, S.; et al. Quantum neural networks: Concepts, applications, and challenges. In Proceedings of the 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN), Virtual, 17 August 2021; pp. 413–416.

  • 36.

    Delgado, A.; Hamilton, K.E.; Vlimant, J.R.; et al. Quantum computing for data analysis in high energy physics. arXiv 2022, arXiv:2203.08805.

  • 37.

    Radhabai, P.R.; Karunanidhi, S.; Srikanth, S. Machine Learning with Unsupervised Quantum Models. Quantum Machine Learning; Chapman and Hall/CRC: Boca Raton, FL, USA, 2024; pp. 97–134.

  • 38.

    Seetohul, V.; Jahankhani, H.; Kendzierskyj, S.; et al. Quantum Reinforcement Learning: Advancing AI Agents Through Quantum Computing. In Space Law Principles and Sustainable Measures; Springer: Cham, Switzerland, 2024; pp. 55–73.

  • 39.

    Khurana, S.; Nene, M.; Nene, M.J. Quantum machine learning: Unraveling a new paradigm in computational intelligence. Quantum 2024, 74, 1–24.

  • 40.

    Chatterjee, A.; Kruskopf, M.; Götz, M.; et al. Performance and stability assessment of graphene-based quantum hall devices for resistance metrology. IEEE Trans. Instrum. Meas. 2023, 72, 1–6. https://doi.org/10.1109/TIM.2023.3280523.

  • 41.

    Baheri, B.; Xu, Z.; Chaudhary, V.; et al. Pinpointing the system reliability degradation in NISQ machines. In Proceedings of the 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, Broomfield, CO, USA, 18–23 September 2022; pp. 646–652. https://doi.org/10.1109/QCE53715.2022.00087.

  • 42.

    Swathi, M.; Rudra, B. Novel encoding method for quantum error correction. In Proceedings of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, Las Vegas, NV, USA, 26–29 January 2022; pp. 1001–1005. https://doi.org/10.1109/CCWC54503.2022.9720880.

  • 43.

    Srivastava, N.; Belekar, G.; Shahakar, N.; et al. The potential of quantum techniques for stock price prediction. In Proceedings of the 2023 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE), IEEE, Kerala, India, 8–11 November 2023; pp. 1–7. https://doi.org/10.1109/RASSE60029.2023.10363533.

  • 44.

    Yan, F.; Xu, M.; Xu, J.; et al. Facile synthesis of high-performance sulfur quantum dots via an effective ethylenediamine-assisted acceleration strategy for fluorescent sensing. Sens. Actuat. B Chem. 2022, 370, 132393. https://doi.org/10.1016/j.snb.2022.132393.

  • 45.

    Orús, R.; Mugel, S.; Lizaso, E. Quantum computing for finance: Overview and prospects. Rev. Phys. 2019, 4, 100028.

  • 46.

    Sigov, A.; Ratkin, L.; Ivanov, L.A. Quantum Information Technology. J. Ind. Inf. Integr. 2022, 28, 100365.

  • 47.

    Xu, L.D. Industry 4.0—Frontiers of fourth industrial revolution. Syst. Res. Behav. Sci. 2020, 37, 531–534.

  • 48.

    Kjaergaard, M.; Schwartz, M.E.; Braumüller, J.; et al. Superconducting qubits: Current state of play. Annu. Rev. Condens. Matter Phys. 2020, 11, 369–395.

  • 49.

    Zhuang, Y.; Azfar, T.; Wang, Y.; et al. Quantum computing in intelligent transportation systems: A survey. Chain 2024, 1, 138–149.

  • 50.

    Cui, W.; Yan, S. Module for arbitrary controlled rotation in gate-based quantum algorithms. Phys. A Stat. Mech. Appl. 2023, 626, 129092. https://doi.org/ 10.1016/j.physa.2023.129092.

  • 51.

    De Leon, N.P.; Itoh, K.M.; Kim, D.; et al. Materials challenges and opportunities for quantum computing hardware. Science 2021, 372, eabb2823.

  • 52.

    Chawla, P.; Gao, J.Z.; Gao, T.; et al. An interactive web-based solar energy prediction system using machine learning techniques. J. Manag. Anal. 2023, 10, 308–335.

  • 53.

    Zhang, W. Dynamic monitoring of financial security risks: A novel China financial risk index and an early warning system. Econ. Lett. 2024, 234, 111445. https://doi.org/10.1016/j.econlet.2023.111445.

  • 54.

    Albarelli, F.; Genoni, M.G. A pedagogical introduction to continuously monitored quantum systems and measurement-based feedback. Phys. Lett. A 2024, 494, 129260. https://doi.org/10.1016/j.physleta.2023.129260.

  • 55.

    Lou, S.; Yang, C.; Wu, P.; et al. Fault diagnosis of blast furnace iron-making process with a novel deep stationary kernel learning support vector machine approach. IEEE Trans. Instrum. Meas. 2022, 71, 1–13.

  • 56.

    Viszlai, J.; Tomesh, T.; Gokhale, P.; et al. Training Quantum Boltzmann Machines with Coresets. In Proceedings of the 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, USA, 18–23 September 2022; pp. 292–298.

  • 57.

    Lou, S.; Yang, C.; Wu, P.; et al. Fault diagnosis of blast furnace iron-making process with a novel deep stationary kernel learning support vector machine approach. IEEe Trans. Instrum. Meas. 2022, 71, 1–13.

  • 58.

    Kashif, M.; Rashid, M.; Al-Kuwari, S.; et al. Alleviating barren plateaus in parameterized quantum machine learning circuits: Investigating advanced parameter initialization strategies. In Proceedings of the 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 25–27 March 2024.

  • 59.

    Elvira, V.D.; Gottlieb, S.; Gutsche, O.; et al. The future of high energy physics software and computing. arXiv 2022, arXiv:2210.05822.

  • 60.

    Yi, H. Secure social internet of things based on post-quantum blockchain. IEEE Trans. Netw. Sci. Eng. 2021, 9, 950–957.

  • 61.

    Kalla, A.; De Alwis, C.; Porambage, P.; et al. A survey on the use of blockchain for future 6G: Technical aspects, use cases, challenges and research directions. J. Ind. Inf. Integr. 2022, 30, 100404.

  • 62.

    Ying, M. Quantum computation, quantum theory and AI. Artif. Intell. 2010, 174, 162–176.

  • 63.

    Dunjko, V.; Briegel, H.J. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog. Phys. 2018, 81, 074001.

  • 64.

    Coyle, B.; Henderson, M.; Le, J.C.J.; et al. Quantum versus classical generative modelling in finance. Quantum. Sci. Technol. 2021, 6, 024013.

Share this article:
How to Cite
Wang, F.; Lu, Y. Quantum Information Systems: Foundations, Intelligent Algorithms, and Cross-Industry Applications. Journal of Emerging Technologies With Industrial Applications 2026, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.