2511002375
  • Open Access
  • Review

Part II: Industrial Information Integration Review 2020–2025

  • Jinzhi Li

Received: 14 Jul 2025 | Revised: 23 Oct 2025 | Accepted: 24 Nov 2025 | Published: 06 Jan 2026

Abstract

Industrial Information Integration Engineering (IIIE) has become increasingly essential for improving operational efficiency and harmonizing heterogeneous industrial systems through advanced digital integration approaches. Fueled by rapid advancements in Industry 4.0 technologies—including digital twins, artificial intelligence, immersive interfaces, and IoT infrastructures—IIIE is substantially transforming traditional enterprise architecture and integration frameworks. This systematic review synthesizes recent developments and emerging trends, with particular attention to the accelerating adoption of digital twins and the deepening convergence between operational technologies (OT) and information technologies (IT) across multiple sectors. While notable progress has been made, significant challenges persist, especially in developing resilient integration architectures and fully capitalizing on emerging capabilities such as quantum computing and next-generation communication networks. Future research directions emphasize the need to advance semantic interoperability, promote human-centric integration paradigms, and strengthen secure, decentralized information infrastructures. Collectively, these directions highlight IIIE’s pivotal role in enabling intelligent, interconnected, and sustainable industrial ecosystems.

References 

  • 1.

    Xu, L.D. Enterprise Integration and Information Architecture: A Systems Perspective on Industrial Information Integration; CRC Press: Boca Raton, FL, USA, 2015.

  • 2.

    Gil-Martín, I.; Suarez, E.; Roldán, A. Calibration Strategy for a Nondestructive Wood Characterization Tool Using Optimized Time-of-Flight Determination and Material Propagation Analysis. Meas. Sci. Technol. 2025, 36, 046134. https://doi.org/10.1088/1361-6501/adc75c.

  • 3.

    Patrakeyev, I.; Ziborov, V.; Mikhno, O. Intelligent Technology for Estimating of Urban Environment Quality. Geogr. Tech. 2020, 15, 147–160. https://doi.org/10.21163/GT_2020.152.15.

  • 4.

    Xu, L.D.; Lu, Y.; Li, L. Embedding Blockchain Technology into IoT for Security: A Survey. IEEE Internet Things J. 2021, 8, 10452–10473. https://doi.org/10.1109/JIOT.2021.3060508.

  • 5.

    Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the Art and Future Trends. Int. J. Prod. Res. 2018, 56, 2941–2962.

  • 6.

    Xu, L.-D. Engineering Informatics: State of the Art and Future Trends. Front. Eng. Manag. 2014, 1, 270–282. https://doi.org/10.15302/J-FEM-2014038.

  • 7.

    Li, L. Education Supply Chain in the Era of Industry 4.0. Syst. Res. Behav. Sci. 2020, 37, 579–592. https://doi.org/10.1002/sres.2702.

  • 8.

    Li, L.; Duan, L. Human Centric Innovation at the Heart of Industry 5.0—Exploring Research Challenges and Opportunities. Int. J. Prod. Res. 2025, 1–33. https://doi.org/10.1080/00207543.2025.2462657.

  • 9.

    Sun, Y.; Li, L.; Yu, Z.; et al. Exploring AI Models and Applications within a System Framework. Syst. Res. Behav. Sci. 2024, 41, 1389–1404. https://doi.org/10.1002/sres.3036.

  • 10.

    Ustaoglu, E.; Aydınoglu, A.C. Suitability Evaluation of Urban Construction Land in Pendik District of Istanbul, Turkey. Land Use Policy 2020, 99, 104783. https://doi.org/10.1016/j.landusepol.2020.104783.

  • 11.

    Geng, R.; Li, M.; Hu, Z.; et al. Digital Twin in Smart Manufacturing: Remote Control and Virtual Machining Using VR and AR Technologies. Struct. Multidiscip. Optim. 2022, 65, 321. https://doi.org/10.1007/s00158-022-03426-3.

  • 12.

    Patera, L.; Garbugli, A.; Bujari, A.; et al. A Layered Middleware for OT/IT Convergence to Empower Industry 5.0 Applications. Sensors 2021, 22, 190. https://doi.org/10.3390/s22010190.

  • 13.

    Chen, Y. A Survey on Industrial Information Integration 2016–2019. J. Ind. Integr. Manag. 2020, 5, 33–163. https://doi.org/10.1142/S2424862219500167.

  • 14.

    Falagas, M.E.; Kouranos, V.D.; Arencibia-Jorge, R.; et al. Comparison of SCImago Journal Rank Indicator with Journal Impact Factor. FASEB J. 2008, 22, 2623–2628. https://doi.org/10.1096/fj.08-107938.

  • 15.

    González-Pereira, B.; Guerrero-Bote, V.P.; Moya-Anegón, F. A New Approach to the Metric of Journals’ Scientific Prestige: The SJR Indicator. J. Informetr. 2010, 4, 379–391. https://doi.org/10.1016/j.joi.2010.03.002.

  • 16.

    Ante, L. Digital Twin Technology for Smart Manufacturing and Industry 4.0: A Bibliometric Analysis of the Intellectual Structure of the Research Discourse. Manuf. Lett. 2021, 27, 96–102. https://doi.org/10.1016/j.mfglet.2021.01.003.

  • 17.

    Huang, Z.; Shen, Y.; Li, J.; et al. A Survey on AI-Driven Digital Twins in Industry 4.0: Smart Manufacturing and Advanced Robotics. Sensors 2021, 21, 6340. https://doi.org/10.3390/s21196340.

  • 18.

    Aziz, A.; Chouhan, S.S.; Schelén, O.; et al. Distributed Digital Twins as Proxies-Unlocking Composability and Flexibility for Purpose-Oriented Digital Twins. IEEE Access 2023, 11, 137577–137593. https://doi.org/10.1109/ACCESS.2023.3340132.

  • 19.

    Jiang, L.; Liu, Y.; Tian, H.; et al. Resource-Efficient Federated Learning and DAG Blockchain with Sharding in Digital-Twin-Driven Industrial IoT. IEEE Internet Things J. 2024, 11, 17113–17127. https://doi.org/10.1109/JIOT.2024.3357827.

  • 20.

    Hesselink, L.; Vahdatikhaki, F.; Harmsen, Y.; et al. Usability Analysis of Virtual-Reality-Enabled Digital Twin for the Inspection of Sewage Pumping Stations. Int. J. Constr. Manag. 2024, 24, 1419–1430. https://doi.org/10.1080/15623599.2023.2219941.

  • 21.

    Longo, F.; Padovano, A.; De Felice, F.; et al. From ‘Prepare for the Unknown’ to ‘Train for What’s Coming’: A Digital Twin-Driven and Cognitive Training Approach for the Workforce of the Future in Smart Factories. J. Ind. Inf. Integr. 2023, 32, 100437. https://doi.org/10.1016/j.jii.2023.100437.

  • 22.

    Zhou, H.; Li, M.; Sun, Y.; et al. Digital Twin-Based Cyber Range for Industrial Internet of Things. IEEE Consum. Electron. Mag. 2023, 12, 66–77. https://doi.org/10.1109/MCE.2022.3203202.

  • 23.

    Sasikumar, A.; Ravi, L.; Devarajan, M.; et al. Sustainable Electronics: A Blockchain-Empowered Digital Twin-Based Governance System for Consumer Electronic Products. IEEE Trans. Consum. Electron. 2024, 70, 4968–4975. https://doi.org/10.1109/TCE.2024.3394512.

  • 24.

    Dounas, T.; Lombardi, D.; Jabi, W. Framework for Decentralised Architectural Design BIM and Blockchain Integration. Int. J. Archit. Comput. 2021, 19, 157–173. https://doi.org/10.1177/1478077120963376.

  • 25.

    Grandi, F.; Prati, E.; Peruzzini, M.; et al. Design of Ergonomic Dashboards for Tractors and Trucks: Innovative Method and Tools. J. Ind. Inf. Integr. 2022, 25, 100304. https://doi.org/10.1016/j.jii.2021.100304.

  • 26.

    Raghunathan, A.V.; Sealy, W. An Initial Approach to Industry 5.0. Manuf. Lett. 2024, 41, 1209–1215. https://doi.org/10.1016/j.mfglet.2024.09.146.

  • 27.

    Xie, J.; Liu, Y.; Wang, X.; et al. A New XR-Based Human-robot Collaboration Assembly System Based on Industrial Metaverse. J. Manuf. Syst. 2024, 74, 949–964. https://doi.org/10.1016/j.jmsy.2024.05.001.

  • 28.

    Yang, C.; Yu, H.; Zheng, Y.; et al. A Digital Twin-Driven Industrial Context-Aware System: A Case Study of Overhead Crane Operation. J. Manuf. Syst. 2025, 78, 394–409. https://doi.org/10.1016/j.jmsy.2024.12.006.

  • 29.

    Ye, X.; Hong, S.H.; Song, W.S.; et al. An Industry 4.0 Asset Administration Shell-Enabled Digital Solution for Robot-Based Manufacturing Systems. IEEE Access 2021, 9, 154448–154459. https://doi.org/10.1109/ACCESS.2021.3128580.

  • 30.

    Tao, F.; Zhang, Y.; Cheng, Y.; et al. Digital Twin and Blockchain Enhanced Smart Manufacturing Service Collaboration and Management. J. Manuf. Syst. 2022, 62, 903–914. https://doi.org/10.1016/j.jmsy.2020.11.008.

  • 31.

    Bárkányi, Á.; Chován, T.; Németh, S.; et al. Modelling for Digital Twins—Potential Role of Surrogate Models. Processes 2021, 9, 476. https://doi.org/10.3390/pr9030476.

  • 32.

    Lu, Y. The Current Status and Developing Trends of Industry 4.0: A Review. Inf. Syst. Front. 2025, 27, 215–234. https://doi.org/10.1007/s10796-021-10221-w.

  • 33.

    Singh, A.; Madaan, G.; Hr, S.; et al. Smart Manufacturing Systems: A Futuristics Roadmap towards Application of Industry 4.0 Technologies. Int. J. Comput. Integr. Manuf. 2023, 36, 411–428. https://doi.org/10.1080/0951192X.2022.2090607.

  • 34.

    Oks, S.J.; Jalowski, M.; Lechner, M.; et al. Cyber-Physical Systems in the Context of Industry 4.0: A Review, Categorization and Outlook. Inf. Syst. Front. 2024, 26, 1731–1772. https://doi.org/10.1007/s10796-022-10252-x.

  • 35.

    Xu, L.D. The Contribution of Systems Science to Industry 4.0. Syst. Res. Behav. Sci. 2020, 37, 618–631. https://doi.org/10.1002/sres.2705.

  • 36.

    Figueroa-Lorenzo, S.; Añorga, J.; Arrizabalaga, S. A Survey of IIoT Protocols: A Measure of Vulnerability Risk Analysis Based on CVSS. ACM Comput. Surv. 2021, 53, 1–53. https://doi.org/10.1145/3381038.

  • 37.

    Shahidinejad, A.; Abawajy, J. An All-Inclusive Taxonomy and Critical Review of Blockchain-Assisted Authentication and Session Key Generation Protocols for IoT. ACM Comput. Surv. 2024, 56, 1–38. https://doi.org/10.1145/3645087.

  • 38.

    Sadawi, A.A.; Hassan, M.S.; Ndiaye, M. On the Integration of Blockchain with IoT and the Role of Oracle in the Combined System: The Full Picture. IEEE Access 2022, 10, 92532–92558. https://doi.org/10.1109/ACCESS.2022.3199007.

  • 39.

    Malik, N.; Alkhatib, K.; Sun, Y.; et al. A Comprehensive Review of Blockchain Applications in Industrial Internet of Things and Supply Chain Systems. Appl. Stoch. Models Bus. Ind. 2021, 37, 391–412. https://doi.org/10.1002/asmb.2621.

  • 40.

    Leng, J.; Chen, Z.; Huang, Z.; et al. Secure Blockchain Middleware for Decentralized IIoT towards Industry 5.0: A Review of Architecture, Enablers, Challenges, and Directions. Machines 2022, 10, 858. https://doi.org/10.3390/machines10100858.

  • 41.

    Ceccarelli, A.; Cinque, M.; Esposito, C.; et al. FUSION—Fog Computing and Blockchain for Trusted Industrial Internet of Things. IEEE Trans. Eng. Manag. 2022, 69, 2944–2958. https://doi.org/10.1109/TEM.2020.3024105.

  • 42.

    Li, X.; Xu, L.D. A Review of Internet of Things—Resource Allocation. IEEE Internet Things J. 2021, 8, 8657–8666. https://doi.org/10.1109/JIOT.2020.3035542.

  • 43.

    Gorkhali, A.; Li, L.; Shrestha, A. Blockchain: A Literature Review. J. Manag. Anal. 2020, 7, 321–343. https://doi.org/10.1080/23270012.2020.1801529.

  • 44.

    Viriyasitavat, W.; Xu, L.D.; Niyato, D.; et al. Applications of Blockchain in Business Processes: A Comprehensive Review. IEEE Access 2022, 10, 118900–118925. https://doi.org/10.1109/ACCESS.2022.3217794.

  • 45.

    Albshaier, L.; Budokhi, A.; Aljughaiman, A. A Review of Security Issues When Integrating IoT with Cloud Computing and Blockchain. IEEE Access 2024, 12, 109560–109595. https://doi.org/10.1109/ACCESS.2024.3435845.

  • 46.

    Guo, S.; Qi, Y.; Jin, Y.; et al. Endogenous Trusted DRL-Based Service Function Chain Orchestration for IoT. IEEE Trans. Comput. 2022, 71, 397–406. https://doi.org/10.1109/TC.2021.3051681.

  • 47.

    Han, D.; Liu, Y.; Cao, R.; et al. A Lightweight Blockchain Architecture with Smart Collaborative and Progressive Evolution for Privacy-Preserving 6G IoT. IEEE Wirel. Commun. 2024, 31, 148–154. https://doi.org/10.1109/MWC.013.2300491.

  • 48.

    Fang, X.; Li, M. Privacy-Preserving Process Mining: A Blockchain-Based Privacy-Aware Reversible Shared Image Approach. Appl. Artif. Intell. 2024, 38, 2321556. https://doi.org/10.1080/08839514.2024.2321556.

  • 49.

    Ural, O.; Yoshigoe, K. Survey on Blockchain-Enhanced Machine Learning. IEEE Access 2023, 11, 145331–145362. https://doi.org/10.1109/ACCESS.2023.3344669.

  • 50.

    Viriyasitavat, W.; Xu, L.; Bi, Z.; et al. User-Oriented Selections of Validators for Trust of Internet-of-Thing Services. IEEE Trans. Ind. Inform. 2022, 18, 4859–4867. https://doi.org/10.1109/TII.2021.3136928.

  • 51.

    Dawod, A.; Georgakopoulos, D.; Jayaraman, P.P.; et al. IoT Device Integration and Payment via an Autonomic Blockchain-Based Service for IoT Device Sharing. Sensors 2022, 22, 1344. https://doi.org/10.3390/s22041344.

  • 52.

    Assaqty, M.I.S.; Gao, Y.; Hu, X.; et al. Private-Blockchain-Based Industrial IoT for Material and Product Tracking in Smart Manufacturing. IEEE Netw. 2020, 34, 91–97. https://doi.org/10.1109/MNET.011.1900537.

  • 53.

    Koppu, S.; Kumar, K.; Somayaji, S.R.K.; et al. Fusion of Blockchain, IoT and Artificial Intelligence—A Survey. IEICE Trans. Inf. Syst. 2022, 105, 300–308. https://doi.org/10.1587/transinf.2021BCR0001.

  • 54.

    Bhattacharya, P.; Saraswat, D.; Dave, A.; et al. Coalition of 6G and Blockchain in AR/VR Space: Challenges and Future Directions. IEEE Access 2021, 9, 168455–168484. https://doi.org/10.1109/ACCESS.2021.3136860.

  • 55.

    Chen, Y.; Jian, P.; Zhang, Y.; et al. A Systematic Solution of Distributed and Trusted Chain-Network Integration. J. Ind. Inf. Integr. 2024, 41, 100664. https://doi.org/10.1016/j.jii.2024.100664.

  • 56.

    Chen, Y. Information Integration in Libraries. Libr. Hi Tech 2020, 38, 210–219. https://doi.org/10.1108/LHT-11-2017-0232.

  • 57.

    Pivoto, D.G.S.; De Almeida, L.F.F.; Da Rosa Righi, R.; et al. Cyber-Physical Systems Architectures for Industrial Internet of Things Applications in Industry 4.0: A Literature Review. J. Manuf. Syst. 2021, 58, 176–192. https://doi.org/10.1016/j.jmsy.2020.11.017.

  • 58.

    Mekala, S.H.; Baig, Z.; Anwar, A.; et al. Cybersecurity for Industrial IoT (IIoT): Threats, Countermeasures, Challenges and Future Directions. Comput. Commun. 2023, 208, 294–320. https://doi.org/10.1016/j.comcom.2023.06.020.

  • 59.

    Habib, K.; Saad, M.H.M.; Hussain, A.; et al. An Aggregated Data Integration Approach to the Web and Cloud Platforms through a Modular REST-Based OPC UA Middleware. Sensors 2022, 22, 1952. https://doi.org/10.3390/s22051952.

  • 60.

    Hsiao, C.-H.; Lee, W.-P. OPIIoT: Design and Implementation of an Open Communication Protocol Platform for Industrial Internet of Things. Internet Things 2021, 16, 100441. https://doi.org/10.1016/j.iot.2021.100441.

  • 61.

    Pinheiro, J.; Oliveira, D.; Neto, L.; et al. Development of an IEEE 1451 Plug-and-Play Module for Smart Transducers in Industrial Environments. Sensors 2022, 22, 7880. https://doi.org/10.3390/s22207880.

  • 62.

    Klaina, H.; Picallo, I.; Lopez-Iturri, P.; et al. IIoT Low-Cost ZigBee-Based WSN Implementation for Enhanced Production Efficiency in a Solar Protection Curtains Manufacturing Workshop. Sensors 2024, 24, 712. https://doi.org/10.3390/s24020712.

  • 63.

    Lin, B. Research on Data Release and Location Monitoring Technology of Sensor Network Based on Internet of Things. J. Web Eng. 2021, 20, 689–712. https://doi.org/10.13052/jwe1540-9589.2036.

  • 64.

    Fedullo, T.; Morato, A.; Tramarin, F.; et al. A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems. Sensors 2022, 22, 1638. https://doi.org/10.3390/s22041638.

  • 65.

    Giustozzi, F.; Saunier, J.; Zanni-Merk, C. A Semantic Framework for Condition Monitoring in Industry 4.0 Based on Evolving Knowledge Bases. Semant. Web 2024, 15, 583–611. https://doi.org/10.3233/SW-233481.

  • 66.

    Amin, F.; Abbasi, R.; Mateen, A.; et al. A Step toward Next-Generation Advancements in the Internet of Things Technologies. Sensors 2022, 22, 8072. https://doi.org/10.3390/s22208072.

  • 67.

    Alanhdi, A.; Toka, L. A Survey on Integrating Edge Computing with AI and Blockchain in Maritime Domain, Aerial Systems, IoT, and Industry 4.0. IEEE Access 2024, 12, 28684–28709. https://doi.org/10.1109/ACCESS.2024.3367118.

  • 68.

    Munín-Doce, A.; Díaz-Casás, V.; Trueba, P.; et al. Industrial Internet of Things in the Production Environment of a Shipyard 4.0. Int. J. Adv. Manuf. Technol. 2020, 108, 47–59. https://doi.org/10.1007/s00170-020-05229-6.

  • 69.

    Hosseini Dehshiri, S.J.; Mostafaeipour, A.; Amiri, M. Evaluating Challenges of Circular Economy and Internet of Things in Renewable Energy Supply Chain through a Hybrid Decision-Making Framework. J. Environ. Manag. 2024, 370, 122785. https://doi.org/10.1016/j.jenvman.2024.122785.

  • 70.

    Kovtun, V.; Kovtun, O.; Grochla, K.; et al. The Quality of Service Assessment of eMBB and mMTC Traffic in a Clustered 5G Ecosystem of a Smart Factory. Egypt. Inform. J. 2025, 29, 100598. https://doi.org/10.1016/j.eij.2024.100598.

  • 71.

    Bhardwaj, A.; Bharany, S.; Rehman, A.U.; et al. Securing Cyber-Physical Robotic Systems for Enhanced Data Security and Real-Time Threat Mitigation. EURASIP J. Inf. Secur. 2025, 2025, 1. https://doi.org/10.1186/s13635-025-00186-7.

  • 72.

    Dhamija, P. South Africa in the Era of Industry 4.0: An Insightful Investigation. Scientometrics 2022, 127, 5083–5110. https://doi.org/10.1007/s11192-022-04461-z.

  • 73.

    Scholz, J.; Bernstein, W.Z.; Radkowski, R. Research Directions for Merging Geospatial Technologies with Smart Manufacturing Systems. Smart Sustain. Manuf. Syst. 2022, 6, 228–246. https://doi.org/10.1520/SSMS20220004.

  • 74.

    Jagatheesaperumal, S.K.; Rahouti, M.; Ahmad, K.; et al. The Duo of Artificial Intelligence and Big Data for Industry 4.0: Applications, Techniques, Challenges, and Future Research Directions. IEEE Internet Things J. 2022, 9, 12861–12885. https://doi.org/10.1109/JIOT.2021.3139827.

  • 75.

    Boopathy, P.; Deepa, N.; Maddikunta, P.K.R.; et al. The Metaverse for Industry 5.0 in NextG Communications: Potential Applications and Future Challenges. IEEE Open J. Comput. Soc. 2025, 6, 4–24. https://doi.org/10.1109/OJCS.2024.3497335.

  • 76.

    Liu, S.; Xie, J.; Wang, X. QoE Enhancement of the Industrial Metaverse Based on Mixed Reality Application Optimization. Displays 2023, 79, 102463. https://doi.org/10.1016/j.displa.2023.102463.

  • 77.

    Longhi, N.; Amorosa, L.M.; Cavallero, S.; et al. 5G Architectures Enabling Remaining Useful Life Estimation for Industrial IoT: A Holistic Study. IEEE Open J. Commun. Soc. 2025, 6, 1016–1029. https://doi.org/10.1109/OJCOMS.2025.3530094.

  • 78.

    Krafft, M.; Sajtos, L.; Haenlein, M. Challenges and Opportunities for Marketing Scholars in Times of the Fourth Industrial Revolution. J. Interact. Mark. 2020, 51, 1–8. https://doi.org/10.1016/j.intmar.2020.06.001.

  • 79.

    French, A.; Shim, J.P.; et al. The 4th Industrial Revolution Powered by the Integration of AI, Blockchain, and 5G. Commun. Assoc. Inf. Syst. 2021, 49, 266–286. https://doi.org/10.17705/1CAIS.04910.

  • 80.

    Serey, J.; Alfaro, M.; Fuertes, G.; et al. Framework for the Strategic Adoption of Industry 4.0: A Focus on Intelligent Systems. Processes 2023, 11, 2973. https://doi.org/10.3390/pr11102973.

  • 81.

    Veile, J.W.; Schmidt, M.-C.; Müller, J.M.; et al. Relationship Follows Technology! How Industry 4.0 Reshapes Future Buyer-Supplier Relationships. J. Manuf. Technol. Manag. 2021, 32, 1245–1266. https://doi.org/10.1108/JMTM-09-2019-0318.

  • 82.

    Suresh, S.; Chakaravarthi, G. RFID Technology and Its Diverse Applications: A Brief Exposition with a Proposed Machine Learning Approach. Measurement 2022, 195, 111197. https://doi.org/10.1016/j.measurement.2022.111197.

  • 83.

    Li, K.; Zhou, T.; Liu, B.-h. Internet-Based Intelligent and Sustainable Manufacturing: Developments and Challenges. Int. J. Adv. Manuf. Technol. 2020, 108, 1767–1791. https://doi.org/10.1007/s00170-020-05445-0.

  • 84.

    Sun, J.; Yang, T.; Xu, Z. Assessing the Implementation Feasibility of Intelligent Production Systems Based on Cloud Computing, Industrial Internet of Things and Business Social Networks. Kybernetes 2022, 51, 2044–2064. https://doi.org/10.1108/K-04-2021-0272.

  • 85.

    Cotta, W.A.A.; Lopes, S.I.; Vassallo, R.F. Towards the Cognitive Factory in Industry 5.0: From Concept to Implementation. Smart Cities 2023, 6, 1901–1921. https://doi.org/10.3390/smartcities6040088.

  • 86.

    Quandt, M.; Freitag, M. A Systematic Review of User Acceptance in Industrial Augmented Reality. Front. Educ. 2021, 6, 700760. https://doi.org/10.3389/feduc.2021.700760.

  • 87.

    Sony, M.; Naik, S. Industry 4.0 Integration with Socio-Technical Systems Theory: A Systematic Review and Proposed Theoretical Model. Technol. Soc. 2020, 61, 101248. https://doi.org/10.1016/j.techsoc.2020.101248.

  • 88.

    Yang, J.; Wang, C.; Jiang, B.; et al. Visual Perception Enabled Industry Intelligence: State of the Art, Challenges and Prospects. IEEE Trans. Ind. Inform. 2021, 17, 2204–2219. https://doi.org/10.1109/TII.2020.2998818.

  • 89.

    Verde, S.; Marcon, M.; Milani, S.; et al. Advanced Assistive Maintenance Based on Augmented Reality and 5G Networking. Sensors 2020, 20, 7157. https://doi.org/10.3390/s20247157.

  • 90.

    De Jesus Pacheco, D.A.; Jung, C.F.; De Azambuja, M.C. Towards Industry 4.0 in Practice: A Novel RFID-Based Intelligent System for Monitoring and Optimisation of Production Systems. J. Intell. Manuf. 2023, 34, 1165–1181. https://doi.org/10.1007/s10845-021-01840-w.

  • 91.

    Cavalieri, S. A Proposal to Improve Interoperability in the Industry 4.0 Based on the Open Platform Communications Unified Architecture Standard. Computers 2021, 10, 70. https://doi.org/10.3390/computers10060070.

  • 92.

    Koprov, P.; Ramachandran, A.; Lee, Y.-S.; et al. Streaming Machine Generated Data via the MQTT Sparkplug B Protocol for Smart Factory Operations. Manuf. Lett. 2022, 33, 66–73. https://doi.org/10.1016/j.mfglet.2022.07.016.

  • 93.

    López, A.; Estévez, E.; Casquero, O.; et al. A Methodological Approach for Integrating Physical Assets in Industry 4.0. IEEE Trans. Ind. Inform. 2023, 19, 9546–9554. https://doi.org/10.1109/TII.2022.3230714.

  • 94.

    Kannisto, P.; Hästbacka, D.; Gutiérrez, T.; et al. Plant-Wide Interoperability and Decoupled, Data-Driven Process Control with Message Bus Communication. J. Ind. Inf. Integr. 2022, 26, 100253. https://doi.org/10.1016/j.jii.2021.100253.

  • 95.

    Younan, M.; Houssein, E.H.; Elhoseny, M.; et al. Challenges and Recommended Technologies for the Industrial Internet of Things: A Comprehensive Review. Measurement 2020, 151, 107198. https://doi.org/10.1016/j.measurement.2019.107198.

  • 96.

    Stój, J.; Ziębiński, A.; Cupek, R. FPGA Based Industrial Ethernet Network Analyser for Real-Time Systems Providing Openness for Industry 4.0. Enterp. Inf. Syst. 2022, 16, 1711–1731. https://doi.org/10.1080/17517575.2021.1948613.

  • 97.

    Rathore, M.M.; Shah, S.A.; Shukla, D.; et al. The Role of AI, Machine Learning, and Big Data in Digital Twinning: A Systematic Literature Review, Challenges, and Opportunities. IEEE Access 2021, 9, 32030–32052. https://doi.org/10.1109/ACCESS.2021.3060863.

  • 98.

    Lee, T.; Kim, S.; Kim, J.; et al. Recent Advances in Biomolecule–Nanomaterial Heterolayer-Based Charge Storage Devices for Bioelectronic Applications. Materials 2020, 13, 3520. https://doi.org/10.3390/ma13163520.

  • 99.

    Zhang, L.-Y.; Lin, H.-C.; Wu, K.-R.; et al. FusionTalk: An IoT-Based Reconfigurable Object Identification System. IEEE Internet Things J. 2021, 8, 7333–7345. https://doi.org/10.1109/JIOT.2020.3039518.

  • 100.

    Gur, G.; Kalla, A.; De Alwis, C.; et al. Integration of ICN and MEC in 5G and Beyond Networks: Mutual Benefits, Use Cases, Challenges, Standardization, and Future Research. IEEE Open J. Commun. Soc. 2022, 3, 1382–1412. https://doi.org/10.1109/OJCOMS.2022.3195125.

  • 101.

    Li, M.; Guo, S.; Chen, C.; et al. DecAge: Decentralized Flow Scheduling for Industrial 5G and TSN Integrated Networks. IEEE Trans. Netw. Sci. Eng. 2024, 11, 543–555. https://doi.org/10.1109/TNSE.2023.3301879.

  • 102.

    Sigov, A.; Ratkin, L.; Ivanov, L.A.; et al. Emerging Enabling Technologies for Industry 4.0 and Beyond. Inf. Syst. Front. 2024, 26, 1585–1595. https://doi.org/10.1007/s10796-021-10213-w.

  • 103.

    Peng, M.; Garg, S.; Wang, X.; et al. Learning-Based IoT Data Aggregation for Disaster Scenarios. IEEE Access 2020, 8, 128490–128497. https://doi.org/10.1109/ACCESS.2020.3008289.

  • 104.

    Vermesan, O.; Bahr, R.; Ottella, M.; et al. Internet of Robotic Things Intelligent Connectivity and Platforms. Front. Robot. AI 2020, 7, 104. https://doi.org/10.3389/frobt.2020.00104.

  • 105.

    Lumpp, F.; Panato, M.; Bombieri, N.; et al. A Design Flow Based on Docker and Kubernetes for ROS-Based Robotic Software Applications. ACM Trans. Embed. Comput. Syst. 2024, 23, 1–24. https://doi.org/10.1145/3594539.

  • 106.

    Rosa-Garcia, A.D.L.; Marrufo, Á.I.S.; Luviano-Cruz, D.; et al. Bridging Remote Operations and Augmented Reality: An Analysis of Current Trends. IEEE Access 2025, 13, 36502–36526. https://doi.org/10.1109/ACCESS.2025.3544633.

  • 107.

    Yebenes Serrano, J.; Zorrilla, M. A Data Governance Framework for Industry 4.0. IEEE Latin Am. Trans. 2021, 19, 2130–2138. https://doi.org/10.1109/TLA.2021.9480156.

  • 108.

    Zhang, Y.; Wang, P.; Wang, Q.; et al. Evolutionary Game-Based Adaptive DT Association and Transfer for Wireless Computing Power Networks. IEEE Trans. Green Commun. Netw. 2025, 9, 670–683. https://doi.org/10.1109/TGCN.2024.3442910.

  • 109.

    Fortuna, G.; Gaspar, P.D. Implementation of Industrial Traceability Systems: A Case Study of a Luxury Metal Pieces Manufacturing Company. Processes 2020, 10, 2444. https://doi.org/10.3390/pr10112444.

  • 110.

    AlShorman, O.; Irfan, M.; Bani Abdelrahman, R.; et al. Advancements in Condition Monitoring and Fault Diagnosis of Rotating Machinery: A Comprehensive Review of Image-Based Intelligent Techniques for Induction Motors. Eng. Appl. Artif. Intell. 2024, 130, 107724. https://doi.org/10.1016/j.engappai.2023.107724.

  • 111.

    Sun, Y.; Long, Y.; Xu, L.; et al. Long-Term Matching Optimization With Federated Neural Temporal Difference Learning in Mobility-on-Demand Systems. IEEE Internet Things J. 2023, 10, 1426–1445. https://doi.org/10.1109/JIOT.2022.3206491.

  • 112.

    Meng, Z.; Liu, Y.; Gao, N.; et al. Radio Frequency Identification and Sensing: Integration of Wireless Powering, Sensing, and Communication for IIoT Innovations. IEEE Commun. Mag. 2021, 59, 38–44. https://doi.org/10.1109/MCOM.001.2000463.

  • 113.

    Zhang, K.; Li, Z.; Meng, Z.; et al. UHF-HF Integrated RFID Sensor: A Novel Information Interface for Industrial Integration. IEEE Sens. J. 2022, 22, 15477–15487. https://doi.org/10.1109/JSEN.2022.3185998.

  • 114.

    Maderböck, M.; Ussmueller, T. Multicarrier Communication for UHF RFID: Increased Reliability and Coverage for UHF RFID Systems. IEEE Microw. Mag. 2023, 24, 51–58. https://doi.org/10.1109/MMM.2023.3293636.

  • 115.

    Eifert, T.; Eisen, K.; Maiwald, M.; et al. Current and Future Requirements to Industrial Analytical Infrastructure—Part 2: Smart Sensors. Anal. Bioanal. Chem. 2020, 412, 2037–2045. https://doi.org/10.1007/s00216-020-02421-1.

  • 116.

    Coito, T.; Firme, B.; Martins, M.S.E.; et al. Intelligent Sensors for Real-Time Decision-Making. Automation 2021, 2, 62–82. https://doi.org/10.3390/automation2020004.

  • 117.

    Wang, C.; Sheng, K.; Liu, Z.; et al. Incipient Fault Detection Based on Multiscale Time Series Feature Extraction. IEEE Trans. Instrum. Meas. 2025, 74, 1–10. https://doi.org/10.1109/TIM.2025.3544383.

  • 118.

    Chen, G.; Li, J.; Zhu, H.; et al. Optical Fiber Gas Sensor with Multi-Parameter Sensing and Environmental Anti-Interference Performance. J. Ind. Inf. Integr. 2024, 38, 100565. https://doi.org/10.1016/j.jii.2024.100565.

  • 119.

    Li, C.; Ma, Z.; Li, J.; et al. Development of an In-Situ Current-Carrying Friction Testing Instrument and Experimental Analysis under the Background of the Fourth Industrial Revolution. Mech. Syst. Signal Process. 2025, 223, 111936. https://doi.org/10.1016/j.ymssp.2024.111936.

  • 120.

    Qu, X.; Dong, H.; Tan, X.; et al. Real-Time Fire Detection and Response System Using Machine Vision for Industrial Safety. Int. J. Mod. Phys. C 2025, 2542004. https://doi.org/10.1142/S0129183125420045.

  • 121.

    Koulountzios, P.; Rymarczyk, T.; Soleimani, M. A Triple-Modality Ultrasound Computed Tomography Based on Full-Waveform Data for Industrial Processes. IEEE Sens. J. 2021, 21, 20896–20909. https://doi.org/10.1109/JSEN.2021.3100391.

  • 122.

    Li, C.; Hua, Y. AFP-IA: Adaptive Foreground Perception-Based Image Augmentation for Insulation Pull Rod Defects Detection. IEEE Trans. Instrum. Meas. 2025, 74, 5017211. https://doi.org/10.1109/TIM.2025.3550639.

  • 123.

    Kalker, S.; Ruppert, L.A.; Van Der Broeck, C.H.; et al. Reviewing Thermal-Monitoring Techniques for Smart Power Modules. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 1326–1341. https://doi.org/10.1109/JESTPE.2021.3063305.

  • 124.

    Zhao, L.; Tan, W.; Xu, L.; et al. Crowd-Based Cooperative Task Allocation via Multicriteria Optimization and Decision-Making. IEEE Syst. J. 2020, 14, 3904–3915. https://doi.org/10.1109/JSYST.2020.2966646.

  • 125.

    Ebadpour, M.; Jamshidi, M.; Talla, J.; et al. Digital Twin Model of Electric Drives Empowered by EKF. Sensors 2023, 23, 2006. https://doi.org/10.3390/s23042006.

  • 126.

    Li, S.; Jiang, Q.; Xu, Y.; et al. Digital Twin-Assisted Interpretable Transfer Learning: A Novel Wavelet-Based Framework for Intelligent Fault Diagnostics from Simulated Domain to Real Industrial Domain. Adv. Eng. Inform. 2024, 62, 102681. https://doi.org/10.1016/j.aei.2024.102681.

  • 127.

    Yang, B.; Yang, S.; Lv, Z.; et al. Application of Digital Twins and Metaverse in the Field of Fluid Machinery Pumps and Fans: A Review. Sensors 2022, 22, 9294. https://doi.org/10.3390/s22239294.

  • 128.

    Wang, Z.; Zhou, Z.; Xu, W.; et al. Physics Informed Neural Networks for Fault Severity Identification of Axial Piston Pumps. J. Manuf. Syst. 2023, 71, 421–437. https://doi.org/10.1016/j.jmsy.2023.10.002.

  • 129.

    Ma, Y.; Wen, G.; Cheng, S.; et al. Multimodal Convolutional Neural Network Model with Information Fusion for Intelligent Fault Diagnosis in Rotating Machinery. Meas. Sci. Technol. 2022, 33, 125109. https://doi.org/10.1088/1361-6501/ac7eb0.

  • 130.

    Huang, C.; Wang, Q.; Zhao, M.; et al. Tactile Perception Technologies and Their Applications in Minimally Invasive Surgery: A Review. Front. Physiol. 2020, 11, 611596. https://doi.org/10.3389/fphys.2020.611596.

  • 131.

    Stein, V.; Scholz, T.M. Manufacturing Revolution Boosts People Issues: The Evolutionary Need for ‘Human-Automation Resource Management’ in Smart Factories. Eur. Manag. Rev. 2020, 17, 391–406. https://doi.org/10.1111/emre.12368.

  • 132.

    Govindan, K. Theory Building Through Corporate Social Responsibility 4.0 for Achieving SDGs: A Practical Step Toward Integration of Digitalization with Practice-Based View and Social Good Theory. IEEE Trans. Eng. Manag. 2024, 71, 2103–2120. https://doi.org/10.1109/TEM.2022.3155247.

  • 133.

    Cheng, Q.; Shan, H.; Zhuang, W.; et al. When Virtual Network Operator Meets E-Commerce Platform: Advertising via Data Reward. IEEE Trans. Mob. Comput. 2022, 22, 7370–7386. https://doi.org/10.1109/TMC.2022.3208229.

  • 134.

    Zha, J. Dilemma and Countermeasures of Community Sports Center Governance under the Background of Big Data and Internet of Things. J. Comput. Methods Sci. Eng. 2023, 23, 2069–2081. https://doi.org/10.3233/JCM-226785.

  • 135.

    Arena, M.; Di Pasquale, V.; Iannone, R.; et al. A Maintenance Driven Scheduling Cockpit for Integrated Production and Maintenance Operation Schedule. Adv. Manuf. 2022, 10, 205–219. https://doi.org/10.1007/s40436-021-00380-z.

  • 136.

    Liu, Z.; Xie, K.; Li, L.; et al. A Paradigm of Safety Management in Industry 4.0. Syst. Res. Behav. Sci. 2020, 37, 632–645. https://doi.org/10.1002/sres.2706.

  • 137.

    Kok, A.; Martinetti, A.; Braaksma, J. The Impact of Integrating Information Technology with Operational Technology in Physical Assets: A Literature Review. IEEE Access 2024, 12, 111832–111845. https://doi.org/10.1109/ACCESS.2024.3442443.

  • 138.

    Vrana, J.; Singh, R. Cyber-Physical Loops as Drivers of Value Creation in NDE 4.0. J. Nondestruct. Eval. 2021, 40, 61. https://doi.org/10.1007/s10921-021-00793-7.

  • 139.

    Chou, T.-Y.; Liao, J.-P. Using MEC and FAHP to Establish an Evaluation Model for Food Processing Machinery Procurement. Math. Probl. Eng. 2020, 2020, 6395981. https://doi.org/10.1155/2020/6395981.

  • 140.

    Bauer, K.; Krinner, S.; Helm, R.; et al. Product development capabilities: exploring mediating and moderating links between international product adaptation and industrial manufacturers’ business performance. Int. J. Innov. Manag. 2020, 24, 2050084. https://doi.org/10.1142/S136391962050084X.

  • 141.

    Li, L. Reskilling and Upskilling the Future-Ready Workforce for Industry 4.0 and Beyond. Inf. Syst. Front. 2024, 26, 1697–1712. https://doi.org/10.1007/s10796-022-10308-y.

  • 142.

    Al-Zubaidi, S.Q.D.; Fantoni, G.; Failli, F. Analysis of Drivers for Solving Facility Layout Problems: A Literature Review. J. Ind. Inf. Integr. 2021, 21, 100187. https://doi.org/10.1016/j.jii.2020.100187.

  • 143.

    Locatelli, M.; Seghezzi, E.; Pellegrini, L.; et al. Exploring Natural Language Processing in Construction and Integration with Building Information Modeling: A Scientometric Analysis. Buildings 2021, 11, 583. https://doi.org/10.3390/buildings11120583.

  • 144.

    Harrison, R.; Vera, D.A.; Ahmad, B. A Connective Framework to Support the Lifecycle of Cyber–Physical Production Systems. Proc. IEEE 2021, 109, 568–581. https://doi.org/10.1109/JPROC.2020.3046525.

  • 145.

    Smadi, A.A.; Ajao, B.T.; Johnson, B.K.; et al. A Comprehensive Survey on Cyber-Physical Smart Grid Testbed Architectures: Requirements and Challenges. Electronics 2021, 10, 1043. https://doi.org/10.3390/electronics10091043.

  • 146.

    Mahdi, M.M.; Bajestani, M.S.; Noh, S.D.; et al. Digital Twin-Based Architecture for Wire Arc Additive Manufacturing Using OPC UA. Robot. Comput. Integr. Manuf. 2025, 94, 102944. https://doi.org/10.1016/j.rcim.2024.102944.

  • 147.

    Pombo, I.; Godino, L.; Sánchez, J.A.; et al. Expectations and Limitations of Cyber-Physical Systems (CPS) for Advanced Manufacturing: A View from the Grinding Industry. Future Internet 2020, 12, 159. https://doi.org/10.3390/fi12090159.

  • 148.

    Li, L.; Qu, T.; Liu, Y.; et al. Sustainability Assessment of Intelligent Manufacturing Supported by Digital Twin. IEEE Access 2020, 8, 174988–175008. https://doi.org/10.1109/ACCESS.2020.3026541.

  • 149.

    Sai, S.; Rastogi, A.; Chamola, V. Digital Twins for Consumer Electronics. IEEE Consum. Electron. Mag. 2024, 13, 11–16. https://doi.org/10.1109/MCE.2023.3322013.

  • 150.

    Rono, K.; Byiringiro, J.B.; Mharakurwa, E.T.; et al. Process Modelling of an Analytic Control Machine in Virtual Reality Platform. Int. J. Precis. Eng. Manuf. 2023, 24, 787–796. https://doi.org/10.1007/s12541-023-00778-8.

  • 151.

    Zhang, X.; Wenlei, S.; Lixin, W.; et al. Virtual Reality Integration and Credible Traceability Management Method of Transformer Coil Manufacturing Process Based on Industrial Internet and Digital Twin. Int. J. Comput. Integr. Manuf. 2025, 1–28. https://doi.org/10.1080/0951192X.2025.2452615.

  • 152.

    Saxena, D.; Singh, A.K. A Self-Healing and Fault-Tolerant Cloud-Based Digital Twin Processing Management Model. IEEE Trans. Ind. Inform. 2025, 21, 4233–4242. https://doi.org/10.1109/TII.2025.3540498.

  • 153.

    Torchio, R.; Conte, F.; Scarpa, M.; et al. Digital Twins in Power Electronics: A Comprehensive Approach to Enhance Virtual Thermal Sensing. IEEE Trans. Power Electron. 2025, 40, 6977–6987. https://doi.org/10.1109/TPEL.2025.3531695.

  • 154.

    Paszkiewicz, A.; Bolanowski, M.; Budzik, G.; et al. Process of Creating an Integrated Design and Manufacturing Environment as Part of the Structure of Industry 4.0. Processes 2020, 8, 1019. https://doi.org/10.3390/pr8091019.

  • 155.

    Binder, C.; Neureiter, C.; Lüder, A. Towards a Domain-Specific Information Architecture Enabling the Investigation and Optimization of Flexible Production Systems by Utilizing Artificial Intelligence. Int. J. Adv. Manuf. Technol. 2022, 123, 49–81. https://doi.org/10.1007/s00170-022-10141-2.

  • 156.

    Shi, D.; Liedl, P.; Bauernhansl, T. Interoperable Information Modelling Leveraging Asset Administration Shell and Large Language Model for Quality Control toward Zero Defect Manufacturing. J. Manuf. Syst. 2024, 77, 678–696. https://doi.org/10.1016/j.jmsy.2024.10.011.

  • 157.

    Li, N.; Zhao, L.; Bao, C.; et al. A Real-Time Information Integration Framework for Multidisciplinary Coupling of Complex Aircrafts: An Application of IIIE. J. Ind. Inf. Integr. 2021, 22, 100203. https://doi.org/10.1016/j.jii.2021.100203.

  • 158.

    Zheng, X.; Hu, X.; Arista, R.; et al. A Semantic-Driven Tradespace Framework to Accelerate Aircraft Manufacturing System Design. J. Intell. Manuf. 2024, 35, 175–198. https://doi.org/10.1007/s10845-022-02043-7.

  • 159.

    Ma, R.; Chen, J.; Feng, Y.; et al. TFD-Former: Time-Frequency Domain Fusion Decoders for Effective and Robust Fault Diagnosis under Time-Varying Speeds. Knowl. Based Syst. 2025, 316, 113410. https://doi.org/10.1016/j.knosys.2025.113410.

  • 160.

    Du, K.; Yang, B.; Xie, K.; et al. LLM-MANUF: An Integrated Framework of Fine-Tuning Large Language Models for Intelligent Decision-Making in Manufacturing. Adv. Eng. Inform. 2025, 65, 103263. https://doi.org/10.1016/j.aei.2025.103263.

  • 161.

    Vaghefi, E.; Hosseini, S.; Prorok, B.; et al. Geometrically-Informed Predictive Modeling of Melt Pool Depth in Laser Powder Bed Fusion Using Deep MLP-CNN and Metadata Integration. J. Manuf. Process. 2024, 119, 952–963. https://doi.org/10.1016/j.jmapro.2024.03.098.

  • 162.

    Zhao, Y.; Sun, X.; Yang, J. Automatic Recognition of Surface Defects of Hot Rolled Strip Steel Based on Deep Parallel Attention Convolution Neural Network. Mater. Lett. 2023, 353, 135313. https://doi.org/10.1016/j.matlet.2023.135313.

  • 163.

    Shao, P.; Lu, T. MLAD: Manifest and Latent Anomaly Detection Based on the Integration of Reconstruction and MLFP-KNN Methods. Meas. Sci. Technol. 2025, 36, 015431. https://doi.org/10.1088/1361-6501/ad98b4.

  • 164.

    Zhou, C.; Li, Z.; Wang, D.; et al. SSNet: Exploiting Spatial Information for Tobacco Stem Impurity Detection with Hyperspectral Imaging. IEEE Access 2024, 12, 55134–55145. https://doi.org/10.1109/ACCESS.2024.3388418.

  • 165.

    Zhao, Z.; Jiao, Y. A Fault Diagnosis Method for Rotating Machinery Based on CNN with Mixed Information. IEEE Trans. Ind. Inform. 2023, 19, 9091–9101. https://doi.org/10.1109/TII.2022.3224979.

  • 166.

    Feng, Y.; Chen, J.; Liu, Z.; et al. Full Graph Autoencoder for One-Class Group Anomaly Detection of IIoT System. IEEE Internet Things J. 2022, 9, 21886–21898. https://doi.org/10.1109/JIOT.2022.3181737.

  • 167.

    Wang, X.; Zheng, G.; Wu, Y.; et al. Automatic Image Annotation for Human Machine Interaction in Industrial IoT Flexible Manufacturing. IEEE Internet Things J. 2025, 12, 32310–32322. https://doi.org/10.1109/JIOT.2024.3521046.

  • 168.

    Hussien, M.; Nguyen, K.K.; Ranjha, A.; et al. Enabling Efficient Data Integration of Industry 5.0 Nodes Through Highly Accurate Neural CSI Feedback. IEEE Trans. Consum. Electron. 2023, 69, 813–824. https://doi.org/10.1109/TCE.2023.3294832.

  • 169.

    Ku, J.C.; Chen, S.L. The Deployment and Implementation of Cloud Platform for Remote Automatic Correction of Artificial Intelligence Models. IEEE Trans. Ind. Inform. 2025, 21, 3466–3474. https://doi.org/10.1109/TII.2025.3528563.

  • 170.

    Lin, C.-Y.; Tsai, T.-H.; Tseng, T.-L. Generative AI for Intelligent Manufacturing Virtual Assistants in the Semiconductor Industry. IEEE Robot. Autom. Lett. 2025, 10, 4132–4139. https://doi.org/10.1109/LRA.2025.3544506.

  • 171.

    Pratap, A.; Sardana, N.; Utomo, S.; et al. A Synergic Approach of Deep Learning towards Digital Additive Manufacturing: A Review. Algorithms 2022, 15, 466. https://doi.org/10.3390/a15120466.

  • 172.

    Di Cataldo, S.; Vinco, S.; Urgese, G.; et al. Optimizing Quality Inspection and Control in Powder Bed Metal Additive Manufacturing: Challenges and Research Directions. Proc. IEEE 2021, 109, 326–346. https://doi.org/10.1109/JPROC.2021.3054628.

  • 173.

    Ji, M.; Zhang, W.; Diao, X.; et al. Intelligent Automation Manufacturing for Betula Solid Timber Based on Machine Vision Detection and Optimization Grading System Applied to Building Materials. Forests 2023, 14, 1510. https://doi.org/10.3390/f14071510.

  • 174.

    Ou, F.; Wang, H.; Zhang, C.; et al. Industrial Data-Driven Machine Learning Soft Sensing for Optimal Operation of Etching Tools. Digit. Chem. Eng. 2024, 13, 100195. https://doi.org/10.1016/j.dche.2024.100195.

  • 175.

    Yu, W.; Dillon, T.; Mostafa, F.; et al. A Global Manufacturing Big Data Ecosystem for Fault Detection in Predictive Maintenance. IEEE Trans. Ind. Inform. 2020, 16, 183–192. https://doi.org/10.1109/TII.2019.2915846.

  • 176.

    Wang, S.; Zhang, L.; Cai, C.; et al. Field-Driven Data Processing Paradigm for Multi-Information Additive Manufacturing. Addit. Manuf. 2023, 61, 103352. https://doi.org/10.1016/j.addma.2022.103352.

  • 177.

    Yuan, L.; Pan, Z.; Polden, J.; et al. Integration of a Multi-Directional Wire Arc Additive Manufacturing System with an Automated Process Planning Algorithm. J. Ind. Inf. Integr. 2022, 26, 100265. https://doi.org/10.1016/j.jii.2021.100265.

  • 178.

    Jarrar, Q.; Belkadi, F.; Blanc, R.; et al. Knowledge Reuse for Decision Aid in Additive Manufacturing: Application on Cost Quotation Support. Int. J. Prod. Res. 2023, 61, 7027–7047. https://doi.org/10.1080/00207543.2022.2142861.

  • 179.

    Poka, K.; Ali, S.; Saeed, W.; et al. Design and Implementation of a Machine Log for PBF-LB/M on Basis of IoT Communication Architectures and an ETL Pipeline. Prog. Addit. Manuf. 2024, 9, 643–654. https://doi.org/10.1007/s40964-024-00660-7.

  • 180.

    Plotnikov, Y.; Henkel, D.; Burdick, J.; et al. Synchronous Multi-Sensor Monitoring for Additive Manufacturing. Mater. Eval. 2020, 78, 193–202. https://doi.org/10.32548/2020.me-04073.

  • 181.

    Ferreira, W.P.; Armellini, F.; De Santa-Eulalia, L.A.; et al. Extending the Lean Value Stream Mapping to the Context of Industry 4.0: An Agent-Based Technology Approach. J. Manuf. Syst. 2022, 63, 1–14. https://doi.org/10.1016/j.jmsy.2022.02.002.

  • 182.

    Guan, Y.; Chen, Y.; Gan, Z.; et al. Hybrid Flow-Shop Scheduling in Collaborative Manufacturing with a Multi-Crossover-Operator Genetic Algorithm. J. Ind. Inf. Integr. 2023, 36, 100514. https://doi.org/10.1016/j.jii.2023.100514.

  • 183.

    Sun, Y.; Li, L.; Shi, H.; et al. The Transformation and Upgrade of China’s Manufacturing Industry in Industry 4.0 Era. Syst. Res. Behav. Sci. 2020, 37, 734–740. https://doi.org/10.1002/sres.2714.

  • 184.

    Guo, Z.; Zhang, Y.; Liu, S.; et al. Exploring Self-Organization and Self-Adaption for Smart Manufacturing Complex Networks. Front. Eng. Manag. 2023, 10, 206–222. https://doi.org/10.1007/s42524-022-0225-1.

  • 185.

    Nounou, A.; Jaber, H.; Aydin, R. A Cyber-Physical System Architecture Based on Lean Principles for Managing Industry 4.0 Setups. Int. J. Comput. Integr. Manuf. 2022, 35, 890–908. https://doi.org/10.1080/0951192X.2022.2027016.

  • 186.

    Ibarra-Junquera, V.; Gonzalez-Potes, A.; Paredes, C.M.; et al. Component-Based Microservices for Flexible and Scalable Automation of Industrial Bioprocesses. IEEE Access 2021, 9, 58192–58207. https://doi.org/10.1109/ACCESS.2021.3072040.

  • 187.

    Asgari Siahboomy, M.; Sarvari, H.; Chan, D.W.M.; et al. A Multi-Criteria Optimization Study for Locating Industrial Warehouses with the Integration of BIM and GIS Data. Archit. Eng. Des. Manag. 2021, 17, 478–495. https://doi.org/10.1080/17452007.2021.1881880.

  • 188.

    Ge, J.; Wang, F.; Sun, H.; et al. Research on the Maturity of Big Data Management Capability of Intelligent Manufacturing Enterprise. Syst. Res. Behav. Sci. 2020, 37, 646–662. https://doi.org/10.1002/sres.2707.

  • 189.

    Walter, C.; Bexten, S.; Felsch, T.; et al. Safety Considerations for Autonomous, Modular Robotics in Aerospace Manufacturing. Front. Robot. AI 2022, 9, 1024594. https://doi.org/10.3389/frobt.2022.1024594.

  • 190.

    Sverko, M.; Grbac, T.G.; Mikuc, M. SCADA Systems with Focus on Continuous Manufacturing and Steel Industry: A Survey on Architectures, Standards, Challenges and Industry 5.0. IEEE Access 2022, 10, 109395–109430. https://doi.org/10.1109/ACCESS.2022.3211288.

  • 191.

    Li, J.; Shi, Y.; Sun, X.; et al. A Complexity Assessment Framework with Structure Entropy for a Cloud-edge Collaborative Manufacturing System. IET Collab. Intell. Manuf. 2023, 5, e12077. https://doi.org/10.1049/cim2.12077.

  • 192.

    Deng, W.; Fan, W.; Li, Z.; et al. Security of Cyber-Physical Systems of Chemical Manufacturing Industries Based on Blockchain. Processes 2023, 11, 2707. https://doi.org/10.3390/pr11092707.

  • 193.

    Wicaksono, H.; Trat, M.; Bashyal, A.; et al. Artificial-Intelligence-Enabled Dynamic Demand Response System for Maximizing the Use of Renewable Electricity in Production Processes. Int. J. Adv. Manuf. Technol. 2025, 138, 247–271. https://doi.org/10.1007/s00170-024-13372-7.

  • 194.

    Sun, Y.; He, Y.; Yu, H.; et al. An Evaluation Framework of IT-enabled Service-oriented Manufacturing. Syst. Res. Behav. Sci. 2022, 39, 657–667. https://doi.org/10.1002/sres.2869.

  • 195.

    Yuan, H.; Jiang, X.; Tao, H.; et al. Information Technology Integration and the Competitiveness of Textile Industry in China. Ind. Text. 2021, 72, 426–433. https://doi.org/10.35530/IT.072.04.1715.

  • 196.

    Yiyan, W.; Zakaria, N. Technology Integration to Promote Circular Economy Transformation of the Garment Industry: A Systematic Literature Review. AUTEX Res. J. 2023, 24, 20230006. https://doi.org/10.1515/aut-2023-0006.

  • 197.

    Li, L.; Gu, F.; Li, H.; et al. Digital Twin Bionics: A Biological Evolution-Based Digital Twin Approach for Rapid Product Development. IEEE Access 2021, 9, 121507–121521. https://doi.org/10.1109/ACCESS.2021.3108218.

  • 198.

    Geng, J.; Wang, Y.; Cheng, Y.; et al. Systematic AR-Based Assembly Guidance for Small-Scale, High-Density Industrial Components. J. Manuf. Syst. 2025, 79, 86–100. https://doi.org/10.1016/j.jmsy.2025.01.002.

  • 199.

    Zhou, P.; Zhang, R.; Xie, J.; et al. Data-Driven Monitoring and Diagnosing of Abnormal Furnace Conditions in Blast Furnace Ironmaking: An Integrated PCA-ICA Method. IEEE Trans. Ind. Electron. 2021, 68, 622–631. https://doi.org/10.1109/TIE.2020.2967708.

  • 200.

    Chen, X.; Hu, Y.; Liu, C.; et al. Dynamic Spatio-Temporal Graph Network Based on Multi-Level Feature Interaction for Sinter TFe Prediction. J. Process Control 2025, 148, 103401. https://doi.org/10.1016/j.jprocont.2025.103401.

  • 201.

    Li, T.; Lockett, H.; Lawson, C. Using Requirement-Functional-Logical-Physical Models to Support Early Assembly Process Planning for Complex Aircraft Systems Integration. J. Manuf. Syst. 2020, 54, 242–257. https://doi.org/10.1016/j.jmsy.2020.01.001.

  • 202.

    Longo, J.P.N.; Galvao, J.R.; Antes, T.; et al. Sensing Hydrates in Pipes by a Combined Electrical and Optical Fiber Sensor. IEEE Sens. J. 2020, 20, 5012–5018. https://doi.org/10.1109/JSEN.2020.2966086.

  • 203.

    Carvalho De Souza, J.P.; Costa, C.M.; Rocha, L.F.; et al. Reconfigurable Grasp Planning Pipeline with Grasp Synthesis and Selection Applied to Picking Operations in Aerospace Factories. Robot. Comput. Integr. Manuf. 2021, 67, 102032. https://doi.org/10.1016/j.rcim.2020.102032.

  • 204.

    Yu, Z.; Khan, S.A.R.; Umar, M. Circular Economy Practices and Industry 4.0 Technologies: A Strategic Move of Automobile Industry. Bus. Strategy Environ. 2022, 31, 796–809. https://doi.org/10.1002/bse.2918.

  • 205.

    Li, C.-Y.; Chen, Z.-H.; Kao, H.-Y.; et al. Design and Development of a Low-Power Wireless MEMS Lead-Free Piezoelectric Accelerometer System. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. https://doi.org/10.1109/TIM.2023.3242016.

  • 206.

    Sarivan, I.-M.; Madsen, O.; Wæhrens, B.V. Automatic Welding-Robot Programming Based on Product-Process-Resource Models. Int. J. Adv. Manuf. Technol. 2024, 132, 1931–1950. https://doi.org/10.1007/s00170-024-13409-x.

  • 207.

    Schuchter, T.; Till, M.; Stetter, R.; et al. Digital Integrated Design and Assembly Planning Processes for Sports Vehicles Using the Example of a Skateboard. Vehicles 2025, 7, 22. https://doi.org/10.3390/vehicles7010022.

  • 208.

    Liu, Z.; Lang, Z.-Q.; Gui, Y.; et al. Digital Twin-Based Anomaly Detection for Real-Time Tool Condition Monitoring in Machining. J. Manuf. Syst. 2024, 75, 163–173. https://doi.org/10.1016/j.jmsy.2024.06.004.

  • 209.

    Ruane, P.; Walsh, P.; Cosgrove, J. Development of a Digital Model and Metamodel to Improve the Performance of an Automated Manufacturing Line. J. Manuf. Syst. 2022, 65, 538–549. https://doi.org/10.1016/j.jmsy.2022.10.011.

  • 210.

    Yin, Y.; Wang, L.; Hoang, D.T.; et al. Sparse Attention-Driven Quality Prediction for Production Process Optimization in Digital Twins. IEEE Internet Things J. 2024, 11, 38569–38584. https://doi.org/10.1109/JIOT.2024.3448256.

  • 211.

    Ruppert, T.; Abonyi, J. Integration of Real-Time Locating Systems into Digital Twins. J. Ind. Inf. Integr. 2020, 20, 100174. https://doi.org/10.1016/j.jii.2020.100174.

  • 212.

    Zhuang, C.; Zhang, L.; Liu, S.; et al. Digital Twin-Based Smart Shop-Floor Management and Control: A Review. Adv. Eng. Inform. 2025, 65, 103102. https://doi.org/10.1016/j.aei.2024.103102.

  • 213.

    Sun, M.; Cai, Z.; Zhao, N. Design of Intelligent Manufacturing System Based on Digital Twin for Smart Shop Floors. Int. J. Comput. Integr. Manuf. 2023, 36, 542–566. https://doi.org/10.1080/0951192X.2022.2128212.

  • 214.

    Park, K.-T.; Park, Y.H.; Park, M.-W.; et al. Architectural Framework of Digital Twin-Based Cyber-Physical Production System for Resilient Rechargeable Battery Production. J. Comput. Des. Eng. 2023, 10, 809–829. https://doi.org/10.1093/jcde/qwad024.

  • 215.

    Uhlenkamp, J.-F.; Hauge, J.B.; Broda, E.; et al. Digital Twins: A Maturity Model for Their Classification and Evaluation. IEEE Access 2022, 10, 69605–69635. https://doi.org/10.1109/ACCESS.2022.3186353.

  • 216.

    Javaid, W.; Ullah, S. Data Driven Simulation Based Optimization Model for Job-Shop Production Planning and Scheduling: An Application in a Digital Twin Shop Floor. J. Simul. 2025, 1–15. https://doi.org/10.1080/17477778.2025.2469687.

  • 217.

    Liu, Z.; Wang, M.; Li, C.; et al. A Dual-Branch Balance Saliency Model Based on Discriminative Feature for Fabric Defect Detection. Int. J. Cloth. Sci. Technol. 2022, 34, 451–466. https://doi.org/10.1108/IJCST-02-2021-0017.

  • 218.

    Li, G.; Zhao, S.; Li, M.; et al. IDP-Net: Industrial Defect Perception Network Based on Cross-Layer Semantic Information Guidance and Context Concentration Enhancement. Eng. Appl. Artif. Intell. 2024, 130, 107677. https://doi.org/10.1016/j.engappai.2023.107677.

  • 219.

    Hakam, N.; Benfriha, K. Enhancement of Industrial Information Systems through AI Models to Simulate the Vibrational and Acoustic Behavior of Machining Operations. J. Ind. Inf. Integr. 2025, 43, 100744. https://doi.org/10.1016/j.jii.2024.100744.

  • 220.

    Wang, Z.; Zhao, W.; Pu, Y.; et al. ParSGCN: Bridging the Gap Between Emulation Partitioning and Scheduling. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2025, 44, 1180–1192. https://doi.org/10.1109/TCAD.2024.3453199.

  • 221.

    Villalba-Diez, J.; González-Marcos, A.; Ordieres-Meré, J. Quantum Cyber-Physical Systems. Sci. Rep. 2022, 12, 7964. https://doi.org/10.1038/s41598-022-11691-x.

  • 222.

    Liu, Y.; Yang, B.; Ren, X.; et al. E2MS: An Efficient and Economical Microservice Migration Strategy for Smart Manufacturing. IEEE Trans. Serv. Comput. 2024, 17, 1519–1532. https://doi.org/10.1109/TSC.2024.3376207.

  • 223.

    Montori, F.; Zyrianoff, I.; Gigli, L.; et al. An IoT Toolchain Architecture for Planning, Running and Managing a Complete Condition Monitoring Scenario. IEEE Access 2023, 11, 6837–6856. https://doi.org/10.1109/ACCESS.2023.3237971.

  • 224.

    Yahya, M.; Ali, A.; Mehmood, Q.; et al. A Benchmark Dataset with Knowledge Graph Generation for Industry 4.0 Production Lines. Semant. Web 2024, 15, 461–479. https://doi.org/10.3233/SW-233431.

  • 225.

    Horváth, L. Developing Strategies in System Level Model of Smart Cyber Physical System. ACTA Polytech. Hung. 2021, 18, 55–76. https://doi.org/10.12700/APH.18.5.2021.5.5.

  • 226.

    Yan, F.; Yang, C.; Kong, L.; et al. DAMPNN: Dynamic Adaptive Message Passing Neural Network for Industrial Soft Sensor. IEEE Trans. Ind. Inform. 2025, 21, 1190–1199. https://doi.org/10.1109/TII.2024.3475419.

  • 227.

    Ali, H.; Safdar, R.; Rasool, M.H.; et al. Advance Industrial Monitoring of Physio-Chemical Processes Using Novel Integrated Machine Learning Approach. J. Ind. Inf. Integr. 2024, 42, 100709. https://doi.org/10.1016/j.jii.2024.100709.

  • 228.

    Naqvi, S.M.R.; Ghufran, M.; Varnier, C.; et al. Enhancing Semantic Search Using Ontologies: A Hybrid Information Retrieval Approach for Industrial Text. J. Ind. Inf. Integr. 2025, 45, 100835. https://doi.org/10.1016/j.jii.2025.100835.

  • 229.

    Jaenal, A.; Ruiz-Sarmiento, J.-R.; Gonzalez-Jimenez, J. MachNet, a General Deep Learning Architecture for Predictive Maintenance within the Industry 4.0 Paradigm. Eng. Appl. Artif. Intell. 2024, 127, 107365. https://doi.org/10.1016/j.engappai.2023.107365.

  • 230.

    Ruiz-Sarmiento, J.-R.; Monroy, J.; Moreno, F.-A.; et al. A Predictive Model for the Maintenance of Industrial Machinery in the Context of Industry 4.0. Eng. Appl. Artif. Intell. 2020, 87, 103289. https://doi.org/10.1016/j.engappai.2019.103289.

  • 231.

    Al-Dulaimi, A.; Zabihi, S.; Asif, A.; et al. NBLSTM: Noisy and Hybrid Convolutional Neural Network and BLSTM-Based Deep Architecture for Remaining Useful Life Estimation. J. Comput. Inf. Sci. Eng. 2020, 20, 021012. https://doi.org/10.1115/1.4045491.

  • 232.

    Wei, L.; Peng, X.; Cao, Y. Remaining Useful Life Prediction of Rolling Bearings Using a Residual Attention Network with Multi-Scale Feature Extraction and Temporal Dependency Enhancement. Nondestruct. Test. Eval. 2025, 40, 5945–5967. https://doi.org/10.1080/10589759.2025.2451772.

  • 233.

    Ni, M.; Li, S. A Data-Driven LSTMSCBLS Model for Soft Sensor of Industrial Process. Meas. Sci. Technol. 2024, 35, 106201. https://doi.org/10.1088/1361-6501/ad5ab8.

  • 234.

    Jiang, D.; Chu, T.; Li, W. Research on Industrial Sensor Self-Diagnosis Method Based on Redundancy Relationship Analysis. IEEE Trans. Instrum. Meas. 2025, 74, 3527614. https://doi.org/10.1109/TIM.2025.3556179.

  • 235.

    Goodarzi, P.; Schauer, J.; Schütze, A. Robust Distribution-Aware Ensemble Learning for Multi-Sensor Systems. Sensors 2025, 25, 831. https://doi.org/10.3390/s25030831.

  • 236.

    Liang, J.; Liu, D.; Zhan, Y.; et al. Nonlinear Dynamic Process Monitoring Based on Discriminative Denoising Autoencoder and Canonical Variate Analysis. Actuators 2024, 13, 440. https://doi.org/10.3390/act13110440.

  • 237.

    Huo, K.; Huang, D.; Yang, F.; et al. Dynamic-Inner White Component Analysis: A New Latent Variable Model for Dynamic Data Analytics and Process Monitoring. IEEE Trans. Autom. Sci. Eng. 2025, 22, 5614–5626. https://doi.org/10.1109/TASE.2024.3426092.

  • 238.

    Gutierrez-Rojas, D.; Kalalas, C.; Christou, I.; et al. Detection and Classification of Anomalies in WSN-Enabled Cyber-Physical Systems. IEEE Sens. J. 2025, 25, 7193–7204. https://doi.org/10.1109/JSEN.2024.3520507.

  • 239.

    Pang, J.; Pu, X.; Li, C. A Hybrid Algorithm Incorporating Vector Quantization and One-Class Support Vector Machine for Industrial Anomaly Detection. IEEE Trans. Ind. Inform. 2022, 18, 8786–8796. https://doi.org/10.1109/TII.2022.3145834.

  • 240.

    Cerquitelli, T.; Ventura, F.; Apiletti, D.; et al. Enhancing Manufacturing Intelligence through an Unsupervised Data-Driven Methodology for Cyclic Industrial Processes. Expert Syst. Appl. 2021, 182, 115269. https://doi.org/10.1016/j.eswa.2021.115269.

  • 241.

    Li, Q.; Qin, L.; Xu, H.; et al. Transparent Information Fusion Network: An Explainable Network for Multi-Source Bearing Fault Diagnosis via Self-Organized Neural-Symbolic Nodes. Adv. Eng. Inform. 2025, 65, 103156. https://doi.org/10.1016/j.aei.2025.103156.

  • 242.

    Jose, S.; Nguyen, K.T.P.; Medjaher, K.; et al. Advancing Multimodal Diagnostics: Integrating Industrial Textual Data and Domain Knowledge with Large Language Models. Expert Syst. Appl. 2024, 255, 124603. https://doi.org/10.1016/j.eswa.2024.124603.

  • 243.

    Zhang, Y.; Zhang, S.; Jia, X.; et al. A Novel Integrated Fault Diagnosis Method of Chemical Processes Based on Deep Learning and Information Propagation Hysteresis Analysis. J. Taiwan Inst. Chem. Eng. 2023, 142, 104676. https://doi.org/10.1016/j.jtice.2023.104676.

  • 244.

    Guan, X.; Huang, F.; Ma, X.; et al. Few-Shot Fault Diagnosis of Harmonic Reducer of Industrial Robot Based on TCIFMN. IEEE Sens. J. 2024, 24, 38298–38308. https://doi.org/10.1109/JSEN.2024.3467162.

  • 245.

    Cuentas, S.; García, E.; Peñabaena-Niebles, R. An SVM-GA Based Monitoring System for Pattern Recognition of Autocorrelated Processes. Soft Comput. 2022, 26, 5159–5178. https://doi.org/10.1007/s00500-022-06955-7.

  • 246.

    Wang, X.; Zhang, L.; Liu, Y.; et al. Logistics-Involved Task Scheduling in Cloud Manufacturing with Offline Deep Reinforcement Learning. J. Ind. Inf. Integr. 2023, 34, 100471. https://doi.org/10.1016/j.jii.2023.100471.

  • 247.

    Zhang, C.; Zhou, G.; Li, J.; et al. KAiPP: An Interaction Recommendation Approach for Knowledge Aided Intelligent Process Planning with Reinforcement Learning. Knowl. Based Syst. 2022, 258, 110009. https://doi.org/10.1016/j.knosys.2022.110009.

  • 248.

    Zhao, W.; Hu, J.; Lu, J.; et al. Cyber-Physical Scheduling System for Multiobjective Scheduling Optimization of a Suspension Chain Workshop Using the Improved Non-Dominated Sorting Genetic Algorithm II. Machines 2024, 12, 666. https://doi.org/10.3390/machines12090666.

  • 249.

    Tan, W.; Zhao, L.; Li, B.; et al. Multiple Cooperative Task Allocation in Group-Oriented Social Mobile Crowdsensing. IEEE Trans. Serv. Comput. 2022, 15, 3387–3401. https://doi.org/10.1109/TSC.2021.3086097.

  • 250.

    Hu, E.; He, J.; Shen, S. A Hybrid Discrete State Transition Algorithm for Combinatorial Optimization Problems. Front. Energy Res. 2023, 11, 1148011. https://doi.org/10.3389/fenrg.2023.1148011.

  • 251.

    Guo, K.; Hu, S.; Zhu, H.; et al. Industrial Information Integration Method to Vehicle Routing Optimization Using Grey Target Decision. J. Ind. Inf. Integr. 2022, 27, 100336. https://doi.org/10.1016/j.jii.2022.100336.

  • 252.

    Psarommatis, F.; Danishvar, M.; Mousavi, A.; et al. Cost-Based Decision Support System: A Dynamic Cost Estimation of Key Performance Indicators in Manufacturing. IEEE Trans. Eng. Manag. 2024, 71, 702–714. https://doi.org/10.1109/TEM.2021.3133619.

  • 253.

    Yang, Y.; Li, Z.; He, L.; et al. A Systematic Study of Reward for Reinforcement Learning Based Continuous Integration Testing. J. Syst. Softw. 2020, 170, 110787. https://doi.org/10.1016/j.jss.2020.110787.

  • 254.

    Reshma, P.; Sudha, V. Cell Edge Throughput Enhancement in V2X Communications Using Graph-Based Advanced Deep Learning Scheduling Algorithms. IETE J. Res. 2024, 70, 7121–7136. https://doi.org/10.1080/03772063.2024.2351544.

  • 255.

    Hu, J.; Fan, S.; Zhang, B.; et al. Optimal Design of Heat Pump Integrated Low-Grade Heat Utilization Systems. Energy Convers. Manag. 2022, 260, 115619. https://doi.org/10.1016/j.enconman.2022.115619.

  • 256.

    Jung, W.-K.; Song, Y.; Suh, E.S. Garment Production Line Optimization Using Production Information Based on Real-time Power Monitoring Data. Syst. Eng. 2024, 27, 338–353. https://doi.org/10.1002/sys.21724.

  • 257.

    Mishra, A.R.; Mardani, A.; Rani, P.; et al. A New Intuitionistic Fuzzy Combinative Distance-Based Assessment Framework to Assess Low-Carbon Sustainable Suppliers in the Maritime Sector. Energy 2021, 237, 121500. https://doi.org/10.1016/j.energy.2021.121500.

  • 258.

    Fang, J. Industrial Product Design Method Using Feature Expression and Multi-view Learning in ICN. Internet Technol. Lett. 2023, 6, e348. https://doi.org/10.1002/itl2.348.

  • 259.

    Herrera-Vidal, G.; Coronado-Hernández, J.R.; Martínez Paredes, B.P.; et al. Systematic Configurator for Complexity Management in Manufacturing Systems. Entropy 2024, 26, 747. https://doi.org/10.3390/e26090747.

  • 260.

    Liu, Y.; Wang, Y.; Yang, Q. Spatio-Temporal Generative Adversarial Network Based Power Distribution Network State Estimation with Multiple Time-Scale Measurements. IEEE Trans. Ind. Inform. 2023, 19, 9790–9797. https://doi.org/10.1109/TII.2023.3234624.

  • 261.

    Andrich, W.; Daniotti, B.; Pavan, A.; et al. Check and Validation of Building Information Models in Detailed Design Phase: A Check Flow to Pave the Way for BIM Based Renovation and Construction Processes. Buildings 2022, 12, 154. https://doi.org/10.3390/buildings12020154.

  • 262.

    Wang, S.; Cheng, N.; Hu, Y. Comprehensive Environmental Monitoring System for Industrial and Mining Enterprises Using Multimodal Deep Learning and CLIP Model. IEEE Access 2025, 13, 19964–19978. https://doi.org/10.1109/ACCESS.2025.3533537.

  • 263.

    Mu, G.; Chen, J.; Liu, J.; et al. State Prediction of Distributed Parameter Systems Based on Multi-Source Spatiotemporal Information. J. Process Control 2022, 119, 55–67. https://doi.org/10.1016/j.jprocont.2022.09.009.

  • 264.

    Liu, Y.; Yu, F.R.; Li, X.; et al. Blockchain and Machine Learning for Communications and Networking Systems. IEEE Commun. Surv. Tutor. 2020, 22, 1392–1431. https://doi.org/10.1109/COMST.2020.2975911.

  • 265.

    Wei, C.; Zuo, L.; Zhang, X.; et al. Hessian Semisupervised Scatter Regularized Classification Model with Geometric and Discriminative Information for Nonlinear Process. IEEE Trans. Cybern. 2022, 52, 8862–8875. https://doi.org/10.1109/TCYB.2021.3062058.

  • 266.

    Li, H.; Jia, Y.; Cong, R.; et al. Superpixel Segmentation Based on Spatially Constrained Subspace Clustering. IEEE Trans. Ind. Inform. 2021, 17, 7501–7512. https://doi.org/10.1109/TII.2020.3044068.

  • 267.

    Huang, W.; Wen, J.; Gan, W.; et al. Neighborhood Correlation Enhancement Network for PCB Defect Classification. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. https://doi.org/10.1109/TIM.2023.3243670.

  • 268.

    Mustafaev, B.; Kim, S.; Kim, E. Enhancing Metal Surface Defect Recognition Through Image Patching and Synthetic Defect Generation. IEEE Access 2023, 11, 113339–113359. https://doi.org/10.1109/ACCESS.2023.3322734.

  • 269.

    Wang, X.; Gao, S.; Guo, J.; et al. Deep Learning-Based Integrated Circuit Surface Defect Detection: Addressing Information Density Imbalance for Industrial Application. Int. J. Comput. Intell. Syst. 2024, 17, 29. https://doi.org/10.1007/s44196-024-00423-w.

  • 270.

    Lu, J.; Wei, S.; Dong, J.; et al. An Inverter Nonlinearity Identification Method Based on Physics-Informed Network for Different Working Conditions. Electr. Eng. 2025, 107, 9419–9429. https://doi.org/10.1007/s00202-025-02981-4.

  • 271.

    Liu, Y.; Wang, W.; Wu, Y. TiTAD: Time-Invariant Transformer for Multivariate Time Series Anomaly Detection. Electronics 2025, 14, 1401. https://doi.org/10.3390/electronics14071401.

  • 272.

    Shi, X.; Du, K.; Xiong, W.; et al. Time-Aware Rotary Transformer for Soft Sensing of Irregularly Sampled Industrial Time Sequences. IEEE Internet Things J. 2025, 12, 25008–25019. https://doi.org/10.1109/JIOT.2025.3558021.

  • 273.

    Khan, A.R.; Yasin, A.; Usman, S.M.; et al. Exploring Lightweight Deep Learning Solution for Malware Detection in IoT Constraint Environment. Electronics 2022, 11, 4147. https://doi.org/10.3390/electronics11244147.

  • 274.

    Ramathulasi, T.; Babu, M.R. Assessing User Interest in Web API Recommendation Using Deep Learning Probabilistic Matrix Factorization. Int. J. Adv. Comput. Sci. Appl. 2023, 14. https://doi.org/10.14569/IJACSA.2023.0140182.

  • 275.

    Wang, H.; Amagata, D.; Makeawa, T.; et al. A DNN-Based Cross-Domain Recommender System for Alleviating Cold-Start Problem in E-Commerce. IEEE Open J. Ind. Electron. Soc. 2020, 1, 194–206. https://doi.org/10.1109/OJIES.2020.3012627.

  • 276.

    Jiang, M.; Qiang, F.; Xu, L.D.; et al. Multilingual Interoperation in Cross-Country Industry 4.0 System for One Belt and One Road. Inf. Syst. Front. 2024, 26, 2239–2254. https://doi.org/10.1007/s10796-021-10159-z.

  • 277.

    Ding, D.; He, F.; Yuan, L.; et al. The First Step towards Intelligent Wire Arc Additive Manufacturing: An Automatic Bead Modelling System Using Machine Learning through Industrial Information Integration. J. Ind. Inf. Integr. 2021, 23, 100218. https://doi.org/10.1016/j.jii.2021.100218.

  • 278.

    Li, J.; Zhou, G.; Zhang, C.; et al. Defining a Feature-Level Digital Twin Process Model by Extracting Machining Features from MBD Models for Intelligent Process Planning. J. Intell. Manuf. 2025, 36, 3227–3248. https://doi.org/10.1007/s10845-024-02406-2.

  • 279.

    Xiang, Y.; Wang, Z.; Zhang, S.; et al. A Three-Directional Stress-Strain Model-Based Physics-Embedded Prediction Framework for Metal Tube Full-Bent Cross-Sectional Characteristics. Comput. Ind. 2024, 163, 104153. https://doi.org/10.1016/j.compind.2024.104153.

  • 280.

    Kovtun, V.; Izonin, I.; Gregus, M. Formalization of the Metric of Parameters for Quality Evaluation of the Subject-System Interaction Session in the 5G-IoT Ecosystem. Alex. Eng. J. 2022, 61, 7941–7952. https://doi.org/10.1016/j.aej.2022.01.054.

  • 281.

    Cui, X.; Çıtmacı, B.; Peters, D.; et al. Estimation-Based Model Predictive Control of an Electrically-Heated Steam Methane Reforming Process. Digit. Chem. Eng. 2024, 11, 100153. https://doi.org/10.1016/j.dche.2024.100153.

  • 282.

    Szega, M. Methodology of Advanced Data Validation and Reconciliation Application in Industrial Thermal Processes. Energy 2020, 198, 117326. https://doi.org/10.1016/j.energy.2020.117326.

  • 283.

    Farlessyost, W.; Singh, S. Reduced Order Dynamical Models for Complex Dynamics in Manufacturing and Natural Systems Using Machine Learning. Nonlinear Dyn. 2022, 110, 1613–1631. https://doi.org/10.1007/s11071-022-07695-x.

  • 284.

    Denimal, E.; Sinou, J.-J.; Nacivet, S. Generalized Modal Amplitude Stability Analysis for the Prediction of the Nonlinear Dynamic Response of Mechanical Systems Subjected to Friction-Induced Vibrations. Nonlinear Dyn. 2020, 100, 3121–3144. https://doi.org/10.1007/s11071-020-05627-1.

  • 285.

    Ayoub, A.; Ariu, V.; Nusbaumer, O. A Fast and Robust Bayesian Update of Components Failure Rates in a Nuclear Power Plant. Prog. Nucl. Energy 2020, 118, 103067. https://doi.org/10.1016/j.pnucene.2019.103067.

  • 286.

    Xu, C.; Wang, D.; Xu, F.; et al. Prediction of Bruising Susceptibility in White Radish (Raphanus sativus L.) Using FEA-RSM Technique. Postharvest Biol. Technol. 2023, 206, 112565. https://doi.org/10.1016/j.postharvbio.2023.112565.

  • 287.

    Manca, G.; Fay, A. Detection of Historical Alarm Subsequences Using Alarm Events and a Coactivation Constraint. IEEE Access 2021, 9, 46851–46873. https://doi.org/10.1109/ACCESS.2021.3067837.

  • 288.

    Rathee, G.; Ahmad, F.; Iqbal, R.; et al. Cognitive Automation for Smart Decision-Making in Industrial Internet of Things. IEEE Trans. Ind. Inform. 2021, 17, 2152–2159. https://doi.org/10.1109/TII.2020.3013618.

  • 289.

    Josphineleela, R.; Pellakuri, V.; Thanuja, R.; et al. Secure Internet of Thing Based Data Communication in Blockchain Model Using Novel Teaching-learning Optimized Fuzzy Approach. Trans. Emerg. Telecommun. Technol. 2023, 34, e4793. https://doi.org/10.1002/ett.4793.

  • 290.

    Chen, X.; Wang, J.; Ding, S.X. Complex System Monitoring Based on Distributed Least Squares Method. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1892–1900. https://doi.org/10.1109/TASE.2020.3022924.

  • 291.

    Contreras-Ropero, J.E.; García-Martínez, J.B.; Barajas-Solano, A.F. Integration of Mathematical and Experimental Modeling for Sustainable Phycobiliprotein Production via Fed-Batch Cultures. S. Afr. J. Chem. Eng. 2025, 51, 35–44. https://doi.org/10.1016/j.sajce.2024.10.009.

  • 292.

    Arazzi, M.; Nocera, A.; Storti, E. The SemIoE Ontology: A Semantic Model Solution for an IoE-Based Industry. IEEE Internet Things J. 2024, 11, 40376–40387. https://doi.org/10.1109/JIOT.2024.3452945.

  • 293.

    Corradi, A.; Di Modica, G.; Foschini, L.; et al. SIRDAM4.0: A Support Infrastructure for Reliable Data Acquisition and Management in Industry 4.0. IEEE Trans. Emerg. Top. Comput. 2022, 10, 1605–1620. https://doi.org/10.1109/TETC.2021.3111974.

  • 294.

    Rathee, G.; Kerrache, C.A.; Calafate, C.T.; et al. SecureBlock: An ML-Blockchain Consumer-Centric Sustainable Solution for Industry 5.0. IEEE Trans. Consum. Electron. 2024, 70, 1452–1462. https://doi.org/10.1109/TCE.2023.3325419.

  • 295.

    Kuhn, M.; Franke, J. Data Continuity and Traceability in Complex Manufacturing Systems: A Graph-Based Modeling Approach. Int. J. Comput. Integr. Manuf. 2021, 34, 549–566. https://doi.org/10.1080/0951192X.2021.1901320.

  • 296.

    Gomez-Omella, M.; Sierra, B.; Ferreiro, S. On the Evaluation, Management and Improvement of Data Quality in Streaming Time Series. IEEE Access 2022, 10, 81458–81475. https://doi.org/10.1109/ACCESS.2022.3195338.

  • 297.

    Lopez-de-Ipina, K.; Iradi, J.; Fernandez, E.; et al. HUMANISE: Human-Inspired Smart Management, towards a Healthy and Safe Industrial Collaborative Robotics. Sensors 2023, 23, 1170. https://doi.org/10.3390/s23031170.

  • 298.

    Wellsandt, S.; Klein, K.; Hribernik, K.; et al. Hybrid-Augmented Intelligence in Predictive Maintenance with Digital Intelligent Assistants. Annu. Rev. Control 2022, 53, 382–390. https://doi.org/10.1016/j.arcontrol.2022.04.001.

  • 299.

    Liu, X.L.; Wang, W.M.; Guo, H.; et al. Industrial Blockchain Based Framework for Product Lifecycle Management in Industry 4.0. Robot. Comput. Integr. Manuf. 2020, 63, 101897. https://doi.org/10.1016/j.rcim.2019.101897.

  • 300.

    Zhang, S.; Zheng, C. Quantum Secure Direct Communication Technology-Enhanced Time-Sensitive Networks. Entropy 2025, 27, 221. https://doi.org/10.3390/e27030221.

  • 301.

    Yang, M.; Huang, G.; Liao, Y.; et al. Smart Industrial Information Integration: A Lightweight Privacy Protection Model in an Intelligent Manufacturing Architecture. J. Eng. Des. 2024, 35, 1339–1366. https://doi.org/10.1080/09544828.2024.2377069.

  • 302.

    Ghidoni, A.; Massa, F.C.; Noventa, G.; et al. Assessment of an Adaptive Time Integration Strategy for a High-order Discretization of the Unsteady RANS Equations. Int. J. Numer. Methods Fluids 2022, 94, 1923–1963. https://doi.org/10.1002/fld.5131.

  • 303.

    Li, T.; Cao, Y.; Ye, Q.; et al. Generative Adversarial Networks (GAN) Model for Dynamically Adjusted Weld Pool Image toward Human-Based Model Predictive Control (MPC). J. Manuf. Process. 2025, 141, 210–221. https://doi.org/10.1016/j.jmapro.2025.02.053.

  • 304.

    Chen, Z.; Zhang, W.; Li, L.; et al. Evaluation of Urban Industry-Education Integration Based on Improved Fuzzy Linguistic Approach. Math. Probl. Eng. 2021, 2021, 6610367. https://doi.org/10.1155/2021/6610367.

  • 305.

    Vaclavova, A.; Strelec, P.; Horak, T.; et al. Proposal for an IIoT Device Solution According to Industry 4.0 Concept. Sensors 2022, 22, 325. https://doi.org/10.3390/s22010325.

  • 306.

    Wang, G.; Wang, Y.; Wu, Y.; et al. Design and Research of Numerical Control Simulation Platform in Discrete Manufacturing Disturbed by Vibration. Sound Vib. 2024, 59, 1944. https://doi.org/10.59400/sv1944.

  • 307.

    Wang, L.; Nie, Q.; Zhang, Z.; et al. Probing an Easy-to-Deploy Multi-Agent Manufacturing System Based on Agent Computing Node: Architecture, Implementation, and Case Study. J. Comput. Inf. Sci. Eng. 2024, 24, 041008. https://doi.org/10.1115/1.4064409.

  • 308.

    Sun, J.; Zhou, S.; Veeramani, D.; et al. Prediction of Condition Monitoring Signals Using Scalable Pairwise Gaussian Processes and Bayesian Model Averaging. IEEE Trans. Autom. Sci. Eng. 2025, 22, 2746–2757. https://doi.org/10.1109/TASE.2024.3383811.

  • 309.

    Wang, X.; Yang, L.T.; Wang, Y.; et al. ADTT: A Highly Efficient Distributed Tensor-Train Decomposition Method for IIoT Big Data. IEEE Trans. Ind. Inform. 2021, 17, 1573–1582. https://doi.org/10.1109/TII.2020.2967768.

  • 310.

    Zheng, J.; Yang, T.; Liu, H.; et al. Efficient Data Transmission Strategy for IIoTs with Arbitrary Geometrical Array. IEEE Trans. Ind. Inform. 2021, 17, 3460–3468. https://doi.org/10.1109/TII.2020.2993586.

  • 311.

    Li, X.; Pu, W.; Rong, J.; et al. Terrain Visualization Information Integration in Agent-Based Military Industrial Logistics Simulation. J. Ind. Inf. Integr. 2022, 25, 100260. https://doi.org/10.1016/j.jii.2021.100260.

  • 312.

    Sinchuk, O.; Kupin, A.; Sinchuk, I.; et al. Certain Aspects Concerning the Development of a Functioning Scheme of the Auto-Mated System to Control Energy Flows of Underground Iron-Ore Enterprises. Mining Miner. Depos. 2020, 14, 101–111. https://doi.org/10.33271/mining14.03.101.

  • 313.

    Culchesk, A.M.; Gava, V.L.; Facin, A.L.F.; et al. Exploring the Context of Industry 4.0, Continuous Processes, and Mining Industry: A Systematic Literature Review and Research Directions. IEEE Access 2025, 13, 43666–43697. https://doi.org/10.1109/ACCESS.2025.3546242.

  • 314.

    Liang, R.; Huang, C.; Zhang, C.; et al. Exploring the Fusion Potentials of Data Visualization and Data Analytics in the Process of Mining Digitalization. IEEE Access 2023, 11, 40608–40628. https://doi.org/10.1109/ACCESS.2023.3267813.

  • 315.

    Hasidi, O.; Abdelwahed, E.H.; El Alaoui-Chrifi, M.A.; et al. Digital Twin of Minerals Processing Operations for an Advanced Monitoring and Supervision: Froth Flotation Process Case Study. Int. J. Adv. Manuf. Technol. 2024, 132, 1031–1049. https://doi.org/10.1007/s00170-024-13384-3.

  • 316.

    Pérez, M.; Estay, R.; Encina, V. Sustainable Logistic Plan for the Dynamic Distribution of Massive Mining Waste. Bol. Geol. Min. 2021, 132, 509–521. https://doi.org/10.21701/bolgeomin.132.4.008.

  • 317.

    Hao, W.; Yang, T.; Yang, Q. Hybrid Statistical-Machine Learning for Real-Time Anomaly Detection in Industrial Cyber–Physical Systems. IEEE Trans. Autom. Sci. Eng. 2023, 20, 32–46. https://doi.org/10.1109/TASE.2021.3073396.

  • 318.

    Liu, K.; Xie, Y.; Xie, S.; et al. SecureSIS: Securing SIS Safety Functions with Safety Attributes and BPCS Information. IEEE Trans. Inf. Forensics Secur. 2025, 20, 3060–3073. https://doi.org/10.1109/TIFS.2025.3547577.

  • 319.

    Al-Abassi, A.; Karimipour, H.; Dehghantanha, A.; et al. An Ensemble Deep Learning-Based Cyber-Attack Detection in Industrial Control System. IEEE Access 2020, 8, 83965–83973. https://doi.org/10.1109/ACCESS.2020.2992249.

  • 320.

    Jadidi, Z.; Lu, Y. A Threat Hunting Framework for Industrial Control Systems. IEEE Access 2021, 9, 164118–164130. https://doi.org/10.1109/ACCESS.2021.3133260.

  • 321.

    Aftabi, N.; Li, D.; Sharkey, T.C. An Integrated Cyber-Physical Framework for Worst-Case Attacks in Industrial Control Systems. IISE Trans. 2025, 57, 1464–1482. https://doi.org/10.1080/24725854.2024.2439856.

  • 322.

    Gaggero, G.B.; Armellin, A.; Portomauro, G.; et al. Industrial Control System-Anomaly Detection Dataset (ICS-ADD) for Cyber-Physical Security Monitoring in Smart Industry Environments. IEEE Access 2024, 12, 64140–64149. https://doi.org/10.1109/ACCESS.2024.3395991.

  • 323.

    Song, H.; Yuan, Y.; Wang, Y.; et al. A Security Posture Assessment of Industrial Control Systems Based on Evidential Reasoning and Belief Rule Base. Sensors 2024, 24, 7135. https://doi.org/10.3390/s24227135.

  • 324.

    Zhao, S.; Li, S.; Qi, L.; et al. Computational Intelligence Enabled Cybersecurity for the Internet of Things. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 666–674. https://doi.org/10.1109/TETCI.2019.2941757.

  • 325.

    Xu, Q.; Li, X.; Jiang, Y.; et al. Transportation-Energy-Communication Integrated Management of Ship Cyber-Physical Systems Against Cyber Attacks. IEEE Trans. Smart Grid 2025, 16, 2518–2528. https://doi.org/10.1109/TSG.2024.3521021.

  • 326.

    Zhong, Q.; Yang, J.; Shi, K.; et al. Design of Observer-Based Discrete-Type PID Control for Reconstructed Jump Model of Interconnected Power System Under Hybrid Attacks. IEEE Trans. Smart Grid 2023, 14, 1896–1906. https://doi.org/10.1109/TSG.2022.3206329.

  • 327.

    Houmb, S.H.; Iversen, F.; Ewald, R.; et al. Intelligent Risk-Based Cybersecurity Protection for Industrial Systems Control—A Feasibility Study. SPE J. 2023, 28, 3272–3279. https://doi.org/10.2118/217430-PA.

  • 328.

    Wan, M.; Li, J.; Liu, Y.; et al. Characteristic Insights on Industrial Cyber Security and Popular Defense Mechanisms. China Commun. 2021, 18, 130–150. https://doi.org/10.23919/JCC.2021.01.012.

  • 329.

    Rodríguez-Ramos, A.; Silva Neto, A.; Llanes-Santiago, O. A Novel Integrated Fuzzy-Based Strategy for Safety and Cybersecurity in Industrial Plants. Arab. J. Sci. Eng. 2024, 50, 1–24. https://doi.org/10.1007/s13369-024-09716-w.

  • 330.

    Selim, G.E.I.; Hemdan, E.E.-D.; Shehata, A.M.; et al. Anomaly Events Classification and Detection System in Critical Industrial Internet of Things Infrastructure Using Machine Learning Algorithms. Multimed. Tools Appl. 2021, 80, 12619–12640. https://doi.org/10.1007/s11042-020-10354-1.

  • 331.

    Tomur, E.; Bilgin, Z.; Gülen, U.; et al. Intent-Based Security for Functional Safety in Cyber-Physical Systems. IEEE Trans. Emerg. Top. Comput. 2024, 12, 615–630. https://doi.org/10.1109/TETC.2023.3251031.

  • 332.

    Vulfin, A.M. Detection of Network Attacks in a Heterogeneous Industrial Network Based on Machine Learning. Program. Comput. Softw. 2023, 49, 333–345. https://doi.org/10.1134/S0361768823040126.

  • 333.

    He, Y.; Zamani, E.D.; Lloyd, S.; et al. Agile Incident Response (AIR): Improving the Incident Response Process in Healthcare. Int. J. Inf. Manag. 2022, 62, 102435. https://doi.org/10.1016/j.ijinfomgt.2021.102435.

  • 334.

    Shaked, A. A Model-Based Methodology to Support Systems Security Design and Assessment. J. Ind. Inf. Integr. 2023, 33, 100465. https://doi.org/10.1016/j.jii.2023.100465.

  • 335.

    Xiang, X.; Cao, J.; Fan, W. Lightweight Privacy-Preserving Authentication Mechanism in 5G-Enabled Industrial Cyber Physical Systems. Inf. Sci. 2024, 666, 120391. https://doi.org/10.1016/j.ins.2024.120391.

  • 336.

    Islam, M.; Rehmani, M.H.; Chen, J. Differentially Private Enhanced Permissioned Blockchain for Private Data Sharing in Industrial IoT. Inf. Sci. 2024, 658, 119997. https://doi.org/10.1016/j.ins.2023.119997.

  • 337.

    Radanliev, P.; De Roure, D.; Page, K.; et al. Cyber Risk at the Edge: Current and Future Trends on Cyber Risk Analytics and Artificial Intelligence in the Industrial Internet of Things and Industry 4.0 Supply Chains. Cybersecurity 2020, 3, 13. https://doi.org/10.1186/s42400-020-00052-8.

  • 338.

    Zhang, S.; Hu, B.; Liang, W.; et al. A Trajectory Privacy-Preserving Scheme Based on Transition Matrix and Caching for IIoT. IEEE Internet Things J. 2024, 11, 5745–5756. https://doi.org/10.1109/JIOT.2023.3308073.

  • 339.

    Miao, J.; Wang, Z.; Wang, M.; et al. Secure and Efficient Communication Approaches for Industry 5.0 in Edge Computing. Comput. Netw. 2024, 242, 110244. https://doi.org/10.1016/j.comnet.2024.110244.

  • 340.

    Rahman, M.S.; Khalil, I.; Moustafa, N.; et al. A Blockchain-Enabled Privacy-Preserving Verifiable Query Framework for Securing Cloud-Assisted Industrial Internet of Things Systems. IEEE Trans. Ind. Inform. 2022, 18, 5007–5017. https://doi.org/10.1109/TII.2021.3105527.

  • 341.

    Le, T.-V.; Hsu, C.-L.; Chen, W.-X. A Hybrid Blockchain-Based Log Management Scheme with Nonrepudiation for Smart Grids. IEEE Trans. Ind. Inform. 2022, 18, 5771–5782. https://doi.org/10.1109/TII.2021.3136580.

  • 342.

    Kelli, V.; Argyriou, V.; Lagkas, T.; et al. IDS for Industrial Applications: A Federated Learning Approach with Active Personalization. Sensors 2021, 21, 6743. https://doi.org/10.3390/s21206743.

  • 343.

    Deverajan, G.G.; Muthukumaran, V.; Hsu, C.-H.; et al. Public Key Encryption with Equality Test for Industrial Internet of Things System in Cloud Computing. Trans. Emerg. Telecommun. Technol. 2022, 33, e4202. https://doi.org/10.1002/ett.4202.

  • 344.

    Pal, S.; Jadidi, Z. Protocol-Based and Hybrid Access Control for the IoT: Approaches and Research Opportunities. Sensors 2021, 21, 6832. https://doi.org/10.3390/s21206832.

  • 345.

    Bugshan, N.; Khalil, I.; Moustafa, N.; et al. Privacy-Preserving Microservices in Industrial Internet-of-Things-Driven Smart Applications. IEEE Internet Things J. 2023, 10, 2821–2831. https://doi.org/10.1109/JIOT.2021.3098980.

  • 346.

    Lu, Y.; Wang, D.; Obaidat, M.S.; et al. Edge-Assisted Intelligent Device Authentication in Cyber–Physical Systems. IEEE Internet Things J. 2023, 10, 3057–3070. https://doi.org/10.1109/JIOT.2022.3151828.

  • 347.

    Roy, C.; Misra, S.; Pal, S. Blockchain-Enabled Safety-as-a-Service for Industrial IoT Applications. IEEE Internet Things Mag. 2020, 3, 19–23. https://doi.org/10.1109/IOTM.0001.1900080.

  • 348.

    Qu, Y.; Ma, L.; Ye, W.; et al. Towards Privacy-Aware and Trustworthy Data Sharing Using Blockchain for Edge Intelligence. Big Data Min. Anal. 2023, 6, 443–464. https://doi.org/10.26599/BDMA.2023.9020012.

  • 349.

    Zhang, W.; Zhang, H.; Fang, L.; et al. A Secure Revocable Fine-Grained Access Control and Data Sharing Scheme for SCADA in IIoT Systems. IEEE Internet Things J. 2022, 9, 1976–1984. https://doi.org/10.1109/JIOT.2021.3091760.

  • 350.

    Zhao, L.; Li, B.; Yuan, H. Cloud Edge Integrated Security Architecture of New Cloud Manufacturing System. J. Syst. Eng. Electron. 2024, 35, 1177–1189. https://doi.org/10.23919/JSEE.2024.000112.

  • 351.

    Leng, J.; Zhou, M.; Zhao, J.L.; et al. Blockchain Security: A Survey of Techniques and Research Directions. IEEE Trans. Serv. Comput. 2022, 15, 2490–2510. https://doi.org/10.1109/TSC.2020.3038641.

  • 352.

    Huan, N.T.Y.; Zukarnain, Z.A. A Survey on Addressing IoT Security Issues by Embedding Blockchain Technology Solutions: Review, Attacks, Current Trends, and Applications. IEEE Access 2024, 12, 69765–69782. https://doi.org/10.1109/ACCESS.2024.3378592.

  • 353.

    Prabadevi, B.; Deepa, N.; Pham, Q.-V.; et al. Toward Blockchain for Edge-of-Things: A New Paradigm, Opportunities, and Future Directions. IEEE Internet Things Mag. 2021, 4, 102–108. https://doi.org/10.1109/IOTM.0001.2000191.

  • 354.

    Viriyasitavat, W.; Xu, L.D.; Bi, Z. Specification Patterns of Service-Based Applications Using Blockchain Technology. IEEE Trans. Comput. Soc. Syst. 2020, 7, 886–896. https://doi.org/10.1109/TCSS.2020.2999574.

  • 355.

    Zhang, Z.; Tian, Y.; Deng, R.; et al. A Double-Benefit Moving Target Defense Against Cyber–Physical Attacks in Smart Grid. IEEE Internet Things J. 2022, 9, 17912–17925. https://doi.org/10.1109/JIOT.2022.3161790.

  • 356.

    Ragab, M.; Basheri, M.; Albogami, N.N.; et al. Artificial Intelligence Driven Cyberattack Detection System Using Integration of Deep Belief Network with Convolution Neural Network on Industrial IoT. Alex. Eng. J. 2025, 110, 438–450. https://doi.org/10.1016/j.aej.2024.10.009.

  • 357.

    Jiang, X.; Ge, Z. Information Fingerprint for Secure Industrial Big Data Analytics. IEEE Trans. Ind. Inform. 2022, 18, 2641–2650. https://doi.org/10.1109/TII.2021.3104056.

  • 358.

    Chen, X.; Cao, W.; Chen, L.; et al. iCyberGuard: A FlipIt Game for Enhanced Cybersecurity in IIoT. IEEE Trans. Comput. Soc. Syst. 2024, 11, 8005–8014. https://doi.org/10.1109/TCSS.2024.3443174.

  • 359.

    Li, L.; Xu, L.; He, W. The Effects of Antecedents and Mediating Factors on Cybersecurity Protection Behavior. Comput. Hum. Behav. Rep. 2022, 5, 100165. https://doi.org/10.1016/j.chbr.2021.100165.

  • 360.

    Rioja, U.; Batina, L.; Flores, J.L.; et al. Auto-Tune POIs: Estimation of Distribution Algorithms for Efficient Side-Channel Analysis. Comput. Netw. 2021, 198, 108405. https://doi.org/10.1016/j.comnet.2021.108405.

  • 361.

    Abbaspour Asadollah, S.; Imtiaz, S.; Dehlaghi-Ghadim, A.; et al. Enhancing Cybersecurity through Comprehensive Investigation of Data Flow-Based Attack Scenarios. J. Cybersecur. Priv. 2024, 4, 823–852. https://doi.org/10.3390/jcp4040039.

  • 362.

    Ackermann, T.; Karch, M.; Kippe, J. Integration of Cyber Threat Intelligence into Security Onion and Malcolm for the Use Case of Industrial Networks. At Autom. 2023, 71, 802–815. https://doi.org/10.1515/auto-2023-0057.

  • 363.

    Yan, R.; Wang, Y.; Dai, J.; et al. Quantum-Key-Distribution-Based Microgrid Control for Cybersecurity Enhancement. IEEE Trans. Ind. Appl. 2022, 58, 3076–3086. https://doi.org/10.1109/TIA.2022.3159314.

  • 364.

    Soner, O.; Kayisoglu, G.; Bolat, P.; et al. Risk Sensitivity Analysis of AIS Cyber Security through Maritime Cyber Regulatory Frameworks. Appl. Ocean Res. 2024, 142, 103855. https://doi.org/10.1016/j.apor.2023.103855.

  • 365.

    Jeffrey, N.; Tan, Q.; Villar, J.R. A Review of Anomaly Detection Strategies to Detect Threats to Cyber-Physical Systems. Electronics 2023, 12, 3283. https://doi.org/10.3390/electronics12153283.

  • 366.

    Yusoff, N.H.M.; Azma, N.; Hidayat, A. Design and Implementation of 6LoWPAN Application: A Performance Assessment Analysis. Int. J. Adv. Comput. Sci. Appl. 2020, 11. https://doi.org/10.14569/IJACSA.2020.0110834.

  • 367.

    Sawas, A.M.; Khani, H.; Farag, H.E.Z. On the Resiliency of Power and Gas Integration Resources Against Cyber Attacks. IEEE Trans. Ind. Inform. 2021, 17, 3099–3110. https://doi.org/10.1109/TII.2020.3007425.

  • 368.

    Qi, L.; Hu, C.; Zhang, X.; et al. Privacy-Aware Data Fusion and Prediction with Spatial-Temporal Context for Smart City Industrial Environment. IEEE Trans. Ind. Inform. 2021, 17, 4159–4167. https://doi.org/10.1109/TII.2020.3012157.

  • 369.

    Yang, B.; Yang, H.; Ye, J. A Four-Layer Cyber-Physical Security Model for Electric Machine Drives Considering Control Information Flow. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 6007–6016. https://doi.org/10.1109/JESTPE.2024.3366089.

  • 370.

    Uddin, M.; Abdelhaq, M.; Alsufyani, H.; et al. SEIMR: Secure and Ethical IoT Mixed Reality Integration Framework for Metaverse Experiences. IEEE Trans. Consum. Electron. 2025, 71, 5691–5698. https://doi.org/10.1109/TCE.2025.3547870.

  • 371.

    Aladwan, M.N.; Awaysheh, F.M.; Alawadi, S.; et al. TrustE-VC: Trustworthy Evaluation Framework for Industrial Connected Vehicles in the Cloud. IEEE Trans. Ind. Inform. 2020, 16, 6203–6213. https://doi.org/10.1109/TII.2020.2966288.

  • 372.

    Demertzi, V.; Demertzis, S.; Demertzis, K. An Overview of Privacy Dimensions on the Industrial Internet of Things (IIoT). Algorithms 2023, 16, 378. https://doi.org/10.3390/a16080378.

  • 373.

    Tran, M.-Q.; Elsisi, M.; Liu, M.-K.; et al. Reliable Deep Learning and IoT-Based Monitoring System for Secure Computer Numerical Control Machines Against Cyber-Attacks with Experimental Verification. IEEE Access 2022, 10, 23186–23197. https://doi.org/10.1109/ACCESS.2022.3153471.

  • 374.

    Bakken, M.; Soylu, A. Chrontext: Portable SPARQL Queries over Contextualised Time Series Data in Industrial Settings. Expert Syst. Appl. 2023, 226, 120149. https://doi.org/10.1016/j.eswa.2023.120149.

  • 375.

    Bruneliere, H.; Marchand De Kerchove, F.; Daniel, G.; et al. Scalable Model Views over Heterogeneous Modeling Technologies and Resources. Softw. Syst. Model. 2020, 19, 827–851. https://doi.org/10.1007/s10270-020-00794-6.

  • 376.

    Wu, L.; Li, Z.; AbouRizk, S. Automating Common Data Integration for Improved Data-Driven Decision-Support System in Industrial Construction. J. Comput. Civ. Eng. 2022, 36, 04021037. https://doi.org/10.1061/(ASCE)CP.1943-5487.0001001.

  • 377.

    Bründl, P.; Scheffler, B.; Straub, C.; et al. Geometric Deep Learning as an Enabler for Data Consistency and Interoperability in Manufacturing. J. Ind. Inf. Integr. 2025, 44, 100806. https://doi.org/10.1016/j.jii.2025.100806.

  • 378.

    Zheng, C.; Wang, Z.; Qin, X.; et al. Integrated Design for Product–Service Systems: A Focus on Multi-Disciplinary Interface. Int. J. Prod. Res. 2021, 59, 5884–5902. https://doi.org/10.1080/00207543.2020.1794077.

  • 379.

    Sagot, S.; Ostrosi, E.; Lacom, P. Computer-Assisted Culturalization Process Integration into Product-Website Design. J. Ind. Inf. Integr. 2022, 26, 100252. https://doi.org/10.1016/j.jii.2021.100252.

  • 380.

    Escalona, M.-J.; Koch, N.; Garcia-Borgoñon, L. Lean Requirements Traceability Automation Enabled by Model-Driven Engineering. PeerJ Comput. Sci. 2022, 8, e817. https://doi.org/10.7717/peerj-cs.817.

  • 381.

    Roncero, E.; Silva, A. TeqReq: A New Family of Test-Related Requirements Attributes. Softw. Qual. J. 2022, 30, 809–851. https://doi.org/10.1007/s11219-021-09577-8.

  • 382.

    Da Silva, A.; Marques Cardoso, A.J. Designing the Future of Coopetition: An IIoT Approach for Empowering SME Networks. Int. J. Adv. Manuf. Technol. 2024, 135, 747–762. https://doi.org/10.1007/s00170-024-14528-1.

  • 383.

    Bhattacharjee, S.; Alexandris, K.; Bauschert, T. Multi-Domain TSN Orchestration and Management for Large-Scale Industrial Networks. IEEE Trans. Netw. Serv. Manag. 2024, 21, 6480–6492. https://doi.org/10.1109/TNSM.2024.3447789.

  • 384.

    Song, Y.; Yu, F.R.; Zhou, L.; et al. Applications of the Internet of Things (IoT) in Smart Logistics: A Comprehensive Survey. IEEE Internet Things J. 2021, 8, 4250–4274. https://doi.org/10.1109/JIOT.2020.3034385.

  • 385.

    Kandarkar, P.C.; Ravi, V. Investigating the Impact of Smart Manufacturing and Interconnected Emerging Technologies in Building Smarter Supply Chains. J. Manuf. Technol. Manag. 2024, 35, 984–1009. https://doi.org/10.1108/JMTM-11-2023-0498.

  • 386.

    Núñez-Merino, M.; Maqueira-Marín, J.M.; Moyano-Fuentes, J.; et al. Information and Digital Technologies of Industry 4.0 and Lean Supply Chain Management: A Systematic Literature Review. Int. J. Prod. Res. 2020, 58, 5034–5061. https://doi.org/10.1080/00207543.2020.1743896.

  • 387.

    Han, L.; Hou, H.; Bi, Z.M.; et al. Functional Requirements and Supply Chain Digitalization in Industry 4.0. Inf. Syst. Front. 2024, 26, 2273–2285. https://doi.org/10.1007/s10796-021-10173-1.

  • 388.

    Wu, D.; Xie, L. From Concept to Reality: Leveraging Green Innovation and Supply Chain Management for Sustainable Corporate Performance. Environ. Sci. Pollut. Res. 2023, 30, 102574–102585. https://doi.org/10.1007/s11356-023-29351-6.

  • 389.

    Domingos, E.; Pereira, C.; Armellini, F.; et al. Enabling Technologies as a Support to Achieve Resilience in Supply Chain Operations. IEEE Trans. Eng. Manag. 2024, 71, 15292–15305. https://doi.org/10.1109/TEM.2024.3477946.

  • 390.

    Li, L.; Zhou, H. A Survey of Blockchain with Applications in Maritime and Shipping Industry. Inf. Syst. E Bus. Manag. 2021, 19, 789–807. https://doi.org/10.1007/s10257-020-00480-6.

  • 391.

    Wang, K.; Hu, Q.; Zhou, M.; et al. Multi-Aspect Applications and Development Challenges of Digital Twin-Driven Management in Global Smart Ports. Case Stud. Transp. Policy 2021, 9, 1298–1312. https://doi.org/10.1016/j.cstp.2021.06.014.

  • 392.

    Edalatpour, M.A.; Fathollahi-Fard, A.M.; Mirzapour Al-e-Hashem, S.M.J.; et al. Global Sustainable Closed-Loop Supply Chain Network Considering Incoterms Rules and Advertisement Impacts. J. Ind. Inf. Integr. 2024, 42, 100737. https://doi.org/10.1016/j.jii.2024.100737.

  • 393.

    Huang, H.-N.; Qu, T.; Qiu, X.-H.; et al. Industrial Internet Platform-Driven Decentralised Multi-Level Synchronised Reconfiguration of Assembly Supply Chains. Int. J. Prod. Res. 2025, 63, 4328–4350. https://doi.org/10.1080/00207543.2024.2448284.

  • 394.

    Brintrup, A.; Kosasih, E.; Schaffer, P.; et al. Digital Supply Chain Surveillance Using Artificial Intelligence: Definitions, Opportunities and Risks. Int. J. Prod. Res. 2024, 62, 4674–4695. https://doi.org/10.1080/00207543.2023.2270719.

  • 395.

    Isaja, M.; Nguyen, P.; Goknil, A.; et al. A Blockchain-Based Framework for Trusted Quality Data Sharing towards Zero-Defect Manufacturing. Comput. Ind. 2023, 146, 103853. https://doi.org/10.1016/j.compind.2023.103853.

  • 396.

    Shambayati, H.; Nikabadi, M.S.; Saberi, S.; et al. A Neutrosophic Optimization Model for Supply Chain Virtualization in the Circular Economy Using the Non-Dominated Sorting Genetic Algorithm II. Ann. Oper. Res. 2024, 342, 687–723. https://doi.org/10.1007/s10479-023-05791-8.

  • 397.

    Sun, X.; Yu, H.; Solvang, W.D. Towards the Smart and Sustainable Transformation of Reverse Logistics 4.0: A Conceptualization and Research Agenda. Environ. Sci. Pollut. Res. 2022, 29, 69275–69293. https://doi.org/10.1007/s11356-022-22473-3.

  • 398.

    Omoush, M.; Al-frejat, A.S.; Masa’deh, R. A Systematic Analysis of Digital Supply Chain, Big Data and Manufacturing Lean Time in Industrial Companies. Bus. Process Manag. J. 2024, 30, 1696–1715. https://doi.org/10.1108/BPMJ-06-2023-0418.

  • 399.

    Rajani, R.L.; Heggde, G.S. Review of 28 Years of Services Redesign Research—in Search of a Framework to Balance Capacity and Demand in Services Supply Chains. Int. J. Bus. Environ. 2020, 11, 144. https://doi.org/10.1504/IJBE.2020.107504.

  • 400.

    Andry, J.F.; Nurprihatin, F.; Liliana, L. Developing a Decision Support System for Supply Chain Component. Manag. Prod. Eng. Rev. 2023, 14, 124–133. https://doi.org/10.24425/mper.2023.146029.

  • 401.

    Jiang, L.; Hu, P.; Dong, K.; et al. A Multi-Objective Method Based on Tag Eigenvalues Is Used to Predict the Supply Chain for Online Retailers: Int. J. Inf. Syst. Supply Chain Manag. 2024, 17, 1–15. https://doi.org/10.4018/IJISSCM.344839.

  • 402.

    Ghode, D.J.; Yadav, V.; Jain, R.; et al. Exploring the Integration of Blockchain Technology into Supply Chain: Challenges and Performance. Bus. Process Manag. J. 2023, 29, 223–239. https://doi.org/10.1108/BPMJ-09-2022-0421.

  • 403.

    Chang, S.E.; Chen, Y. When Blockchain Meets Supply Chain: A Systematic Literature Review on Current Development and Potential Applications. IEEE Access 2020, 8, 62478–62494. https://doi.org/10.1109/ACCESS.2020.2983601.

  • 404.

    Chbaik, N.; Khiat, A.; Bahnasse, A.; et al. Blockchain-Assisted IoT Wireless Framework for Equipment Monitoring in Smart Supply Chain: A Focus on Temperature and Humidity Sensing. IEEE Access 2024, 12, 117504–117522. https://doi.org/10.1109/ACCESS.2024.3449253.

  • 405.

    Hong, Z.; Xiao, K. Digital Economy Structuring for Sustainable Development: The Role of Blockchain and Artificial Intelligence in Improving Supply Chain and Reducing Negative Environmental Impacts. Sci. Rep. 2024, 14, 3912. https://doi.org/10.1038/s41598-024-53760-3.

  • 406.

    Ismail, S.; Dandan, S.; Dawoud, D.W.; et al. A Comparative Study of Lightweight Machine Learning Techniques for Cyber-Attacks Detection in Blockchain-Enabled Industrial Supply Chain. IEEE Access 2024, 12, 102481–102491. https://doi.org/10.1109/ACCESS.2024.3432454.

  • 407.

    Öztürk, C.; Yildizbaşi, A. Barriers to Implementation of Blockchain into Supply Chain Management Using an Integrated Multi-Criteria Decision-Making Method: A Numerical Example. Soft Comput. 2020, 24, 14771–14789. https://doi.org/10.1007/s00500-020-04831-w.

  • 408.

    Omar, I.A.; Jayaraman, R.; Debe, M.S.; et al. Supply Chain Inventory Sharing Using Ethereum Blockchain and Smart Contracts. IEEE Access 2022, 10, 2345–2356. https://doi.org/10.1109/ACCESS.2021.3139829.

  • 409.

    Musamih, A.; Salah, K.; Jayaraman, R.; et al. A Blockchain-Based Approach for Drug Traceability in Healthcare Supply Chain. IEEE Access 2021, 9, 9728–9743. https://doi.org/10.1109/ACCESS.2021.3049920.

  • 410.

    Omar, I.A.; Jayaraman, R.; Salah, K.; et al. Enhancing Vendor Managed Inventory Supply Chain Operations Using Blockchain Smart Contracts. IEEE Access 2020, 8, 182704–182719. https://doi.org/10.1109/ACCESS.2020.3028031.

  • 411.

    Majeed Parry, G.; Revolidis, I.; Ellul, J.; et al. Bottling Up Trust: A Review of Blockchain Adoption in Wine Supply Chain Traceability. IEEE Access 2024, 12, 178320–178344. https://doi.org/10.1109/ACCESS.2024.3505428.

  • 412.

    Morelli, D.A.; Ignácio, P.S.D.A.; Zanutim, N.L. Blockchain-Based Lean Supply Chain: A Simulation Approach. Int. J. Innov. Technol. Manag. 2024, 21, 2450038. https://doi.org/10.1142/S021987702450038X.

  • 413.

    Yang, C.; Lan, S.; Zhao, Z.; et al. Edge-Cloud Blockchain and IoE-Enabled Quality Management Platform for Perishable Supply Chain Logistics. IEEE Internet Things J. 2023, 10, 3264–3275. https://doi.org/10.1109/JIOT.2022.3142095.

  • 414.

    Bui, T.-D.; Tseng, J.-W.; Tran, T.P.T.; et al. Circular Supply Chain Strategy in Industry 4.0: The Canned Food Industry in Vietnam. Bus. Strategy Environ. 2023, 32, 6047–6073. https://doi.org/10.1002/bse.3472.

  • 415.

    Tseng, M.-L.; Bui, T.-D.; Lim, M.K.; et al. Assessing Data-Driven Sustainable Supply Chain Management Indicators for the Textile Industry under Industrial Disruption and Ambidexterity. Int. J. Prod. Econ. 2022, 245, 108401. https://doi.org/10.1016/j.ijpe.2021.108401.

  • 416.

    Babaei, F.; Bozorgmehry Boozarjomehry, R.; Kheirkhah Ravandi, Z.; et al. Enabling Digital Transformation of Dynamic Location-Inventory-Routing Optimization in Natural Gas-to-Product and Energy Networks via a Domain-Adaptable Ontological Agent-Based Framework. Adv. Eng. Inform. 2024, 60, 102380. https://doi.org/10.1016/j.aei.2024.102380.

  • 417.

    Maldonado-Guzmán, G.; Pinzón-Castro, S.Y.; Garza-Reyes, J.A. Does the Integration of Lean Production and Industry 4.0 in Green Supply Chains Generate a Better Operational Performance? J. Manuf. Technol. Manag. 2023, 34, 1120–1140. https://doi.org/10.1108/JMTM-02-2023-0034.

  • 418.

    Wang, X.; Xue, Y.; Zhang, J.; et al. A Sustainable Supply Chain Design for Personalized Customization in Industry 5.0 Era. IEEE Trans. Ind. Inform. 2024, 20, 8786–8797. https://doi.org/10.1109/TII.2024.3367038.

  • 419.

    Jreissat, M.; Jraisat, L.; Al-Bazi, A.; et al. Structural Quality Model for New Product Development to Enhance Resilience in Closed-Loop Formulated Food Supply Chains. Jordan J. Mech. Ind. Eng. 2024, 18, 671–989. https://doi.org/10.59038/jjmie/180404.

  • 420.

    Gao, H.; Zhu, X.; Guo, B.; et al. Synchronization Optimization Model Based on Enhanced Connectivity of New Energy Vehicle Supply Chain Network. Mathematics 2025, 13, 632. https://doi.org/10.3390/math13040632.

  • 421.

    Suhail, S.; Hussain, R.; Khan, A.; et al. Orchestrating Product Provenance Story: When IOTA Ecosystem Meets Electronics Supply Chain Space. Comput. Ind. 2020, 123, 103334. https://doi.org/10.1016/j.compind.2020.103334.

  • 422.

    Cao, Z.; Zhou, L.; Lin, C.; et al. Solving an Order Batching, Picker Assignment, Batch Sequencing and Picker Routing Problem via Information Integration. J. Ind. Inf. Integr. 2023, 31, 100414. https://doi.org/10.1016/j.jii.2022.100414.

  • 423.

    Fu, L.; Pan, R.; Gu, T.; et al. IoT-Enabled Supply Chain Management from a Customer Perspective: Challenges and Opportunities. IEEE Internet Things J. 2025, 12, 1579–1589. https://doi.org/10.1109/JIOT.2024.3505412.

  • 424.

    Ahmed, I.; Alkahtani, M.; Khalid, Q.S.; et al. Improved Commodity Supply Chain Performance Through AI and Computer Vision Techniques. IEEE Access 2024, 12, 24116–24132. https://doi.org/10.1109/ACCESS.2024.3361756.

  • 425.

    Sarwar, M.; Zafar, F.; Majeed, I.A.; et al. Selection of Suppliers in Industrial Manufacturing: A Fuzzy Rough PROMETHEE Approach. Math. Probl. Eng. 2022, 2022, 6141225. https://doi.org/10.1155/2022/6141225.

  • 426.

    Khan, I.A.; Moustafa, N.; Pi, D.; et al. DFF-SC4N: A Deep Federated Defence Framework for Protecting Supply Chain 4.0 Networks. IEEE Trans. Ind. Inform. 2023, 19, 3300–3309. https://doi.org/10.1109/TII.2021.3108811.

  • 427.

    Barasti, D.; Troscia, M.; Lattuca, D.; et al. An ICT Prototyping Framework for the ‘Port of the Future’. Sensors 2021, 22, 246. https://doi.org/10.3390/s22010246.

  • 428.

    Proto, S.; Di Corso, E.; Apiletti, D.; et al. REDTag: A Predictive Maintenance Framework for Parcel Delivery Services. IEEE Access 2020, 8, 14953–14964. https://doi.org/10.1109/ACCESS.2020.2966568.

  • 429.

    Li, Y. Analysis and Research on Intelligent Logistics Data under Internet of Things and Blockchain. Appl. Artif. Intell. 2024, 38, 2413824. https://doi.org/10.1080/08839514.2024.2413824.

  • 430.

    Haitao, S. Big Data Analysis of E-Commerce Loan Risk of College Students in the Context of Network Finance. Inf. Syst. E Bus. Manag. 2020, 18, 439–454. https://doi.org/10.1007/s10257-019-00424-9.

  • 431.

    Feng, B.; Ye, Q. Operations Management of Smart Logistics: A Literature Review and Future Research. Front. Eng. Manag. 2021, 8, 344–355. https://doi.org/10.1007/s42524-021-0156-2.

  • 432.

    Jahid, A.; Alsharif, M.H.; Hall, T.J. The Convergence of Blockchain, IoT and 6G: Potential, Opportunities, Challenges and Research Roadmap. J. Netw. Comput. Appl. 2023, 217, 103677. https://doi.org/10.1016/j.jnca.2023.103677.

  • 433.

    Yadav, M.; Agarwal, U.; Rishiwal, V.; et al. Exploring Synergy of Blockchain and 6G Network for Industrial Automation. IEEE Access 2023, 11, 137163–137187. https://doi.org/10.1109/ACCESS.2023.3338861.

  • 434.

    Masaracchia, A.; Sharma, V.; Canberk, B.; et al. Digital Twin for 6G: Taxonomy, Research Challenges, and the Road Ahead. IEEE Open J. Commun. Soc. 2022, 3, 2137–2150. https://doi.org/10.1109/OJCOMS.2022.3219015.

  • 435.

    Blika, A.; Palmos, S.; Doukas, G.; et al. Federated Learning for Enhanced Cybersecurity and Trustworthiness in 5G and 6G Networks: A Comprehensive Survey. IEEE Open J. Commun. Soc. 2025, 6, 3094–3130. https://doi.org/10.1109/OJCOMS.2024.3449563.

  • 436.

    Li, H.; Li, S.; Min, G. Lightweight Privacy-Preserving Predictive Maintenance in 6G Enabled IIoT. J. Ind. Inf. Integr. 2024, 39, 100548. https://doi.org/10.1016/j.jii.2023.100548.

  • 437.

    Perera, T.D.P.; Jayakody, D.N.K.; Pitas, I.; et al. Age of Information in SWIPT-Enabled Wireless Communication System for 5GB. IEEE Wirel. Commun. 2020, 27, 162–167. https://doi.org/10.1109/MWC.001.2000001.

  • 438.

    Xu, C.; Zeng, P.; Yu, H.; et al. WIA-NR: Ultra-Reliable Low-Latency Communication for Industrial Wireless Control Networks over Unlicensed Bands. IEEE Netw. 2021, 35, 258–265. https://doi.org/10.1109/MNET.011.2000308.

  • 439.

    Sun, M.; Bai, L.; Huang, Z.; et al. Multi-Modal Sensing Data-Based Real-Time Path Loss Prediction for 6G UAV-to-Ground Communications. IEEE Wirel. Commun. Lett. 2024, 13, 2462–2466. https://doi.org/10.1109/LWC.2024.3419245.

  • 440.

    Liu, H.; Huang, Y.; Wu, J. Exploring the Efficacy of Subwavelength Gratings as Short-Wavelength Infrared Filters. Discov. Nano 2024, 19, 104. https://doi.org/10.1186/s11671-024-04045-1.

  • 441.

    Mishra, D.; Zema, N.R.; Natalizio, E. A High-End IoT Devices Framework to Foster Beyond-Connectivity Capabilities in 5G/B5G Architecture. IEEE Commun. Mag. 2021, 59, 55–61. https://doi.org/10.1109/MCOM.001.2000504.

  • 442.

    Chen, H.; Li, L.; Chen, Y. Sustainable Growth Research—A Study on the Telecom Operators in China. J. Manag. Anal. 2022, 9, 17–31. https://doi.org/10.1080/23270012.2021.1980445.

  • 443.

    Roda-Sanchez, L.; Garrido-Hidalgo, C.; Royo, F.; et al. Cloud–Edge Microservices Architecture and Service Orchestration: An Integral Solution for a Real-World Deployment Experience. Internet Things 2023, 22, 100777. https://doi.org/10.1016/j.iot.2023.100777.

  • 444.

    Kong, Y. Real-Time Processing System and Internet of Things Application in the Cultural Tourism Industry Development. Soft Comput. 2023, 27, 10347–10357. https://doi.org/10.1007/s00500-023-08304-8.

  • 445.

    Zeng, M.; Shen, S.; Gu, J. How Does the Integration of Cultural and Tourism Industries Impact the Value Added to Tourism Value Chain: Evidences from Jiangsu Province of China. PLoS ONE 2023, 18, e0287610. https://doi.org/10.1371/journal.pone.0287610.

  • 446.

    Zhan, L.; Qin, N. Development of Cultural and Creative Tourism Based on IoT Sensors and Data Fusion from the Perspective of Industrial Integration. J. Comput. Methods Sci. Eng. 2025, 25, 1048–1060. https://doi.org/10.1177/14727978251321633.

  • 447.

    Ying, L.; Ziyi, Q.; Shizhuan, H.; et al. The Development of Digital Tourism in China. Cogent Soc. Sci. 2024, 10, 2347013. https://doi.org/10.1080/23311886.2024.2347013.

  • 448.

    Niu, F.; Chen, Y. Industrial Information Integration in Track Allocation Optimization in High-Speed Train Stations. J. Ind. Inf. Integr. 2021, 21, 100193. https://doi.org/10.1016/j.jii.2020.100193.

  • 449.

    Bustos, A.; Rubio, H.; Soriano-Heras, E.; et al. Methodology for the Integration of a High-Speed Train in Maintenance 4.0. J. Comput. Des. Eng. 2021, 8, 1605–1621. https://doi.org/10.1093/jcde/qwab064.

  • 450.

    Briales, E.; Urda, P.; Escalona, J.L. Track Frame Approach for Heading and Attitude Estimation in Operating Railways Using On-Board MEMS Sensor and Encoder. Measurement 2021, 184, 109898. https://doi.org/10.1016/j.measurement.2021.109898.

  • 451.

    Figueroa-Lorenzo, S.; Goya, J.; Anorga, J.; et al. Alarm Collector in Smart Train Based on Ethereum Blockchain Events-Log. IEEE Internet Things J. 2021, 8, 13306–13315. https://doi.org/10.1109/JIOT.2021.3065631.

  • 452.

    Kljaić, Z.; Pavković, D.; Cipek, M.; et al. An Overview of Current Challenges and Emerging Technologies to Facilitate Increased Energy Efficiency, Safety, and Sustainability of Railway Transport. Future Internet 2023, 15, 347. https://doi.org/10.3390/fi15110347.

  • 453.

    Brankovic, B.; Binder, C.; Neureiter, C. Enabling Cross-Domain Modeling of Complex Autonomous Vehicles in System-of-Systems Architectures: A Model-Based System Specification for the Development of Complex Automotive Architectures. SAE Int. J. Connect. Autom. Veh. 2023, 6, 221–240. https://doi.org/10.4271/12-06-02-0014.

  • 454.

    Alsharif, A.; Tan, C.W.; Ayop, R.; et al. A Comprehensive Review of Energy Management Strategy in Vehicle-to-Grid Technology Integrated with Renewable Energy Sources. Sustain. Energy Technol. Assess. 2021, 47, 101439. https://doi.org/10.1016/j.seta.2021.101439.

  • 455.

    Kumar, A.; Srikanth, P.; Nayyar, A.; et al. A Novel Simulated-Annealing Based Electric Bus System Design, Simulation, and Analysis for Dehradun Smart City. IEEE Access 2020, 8, 89395–89424. https://doi.org/10.1109/ACCESS.2020.2990190.

  • 456.

    Zhai, D.; Liu, J.; Zhang, T.; et al. EPDB: An Efficient and Privacy-Preserving Electric Charging Scheme in Internet of Robotic Things. IEEE Internet Things J. 2024, 11, 32464–32477. https://doi.org/10.1109/JIOT.2024.3426536.

  • 457.

    Pitakaso, R.; Srichok, T.; Khonjun, S.; et al. Fuzzy Logic-Enhanced Sustainable and Resilient EV Public Transit Systems for Rural Tourism. IEEE Open J. Intell. Transp. Syst. 2025, 6, 407–432. https://doi.org/10.1109/OJITS.2025.3554204.

  • 458.

    Gu, Y.; Guo, K.; Zhao, C.; et al. Fast Reactive Mechanism for Desired Trajectory Attacks on Unmanned Aerial Vehicles. IEEE Trans. Ind. Inform. 2023, 19, 8976–8984. https://doi.org/10.1109/TII.2022.3224980.

  • 459.

    Shen, K.; Wang, M.; Fu, M.; et al. Observability Analysis and Adaptive Information Fusion for Integrated Navigation of Unmanned Ground Vehicles. IEEE Trans. Ind. Electron. 2020, 67, 7659–7668. https://doi.org/10.1109/TIE.2019.2946564.

  • 460.

    Singh, M.; Aujla, G.S.; Bali, R.S. A Deep Learning-Based Blockchain Mechanism for Secure Internet of Drones Environment. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4404–4413. https://doi.org/10.1109/TITS.2020.2997469.

  • 461.

    Deng, W.; Li, K.; Zhao, H. A Flight Arrival Time Prediction Method Based on Cluster Clustering-Based Modular with Deep Neural Network. IEEE Trans. Intell. Transp. Syst. 2024, 25, 6238–6247. https://doi.org/10.1109/TITS.2023.3338251.

  • 462.

    Ding, Y.; Yang, Z.; Pham, Q.-V.; et al. Distributed Machine Learning for UAV Swarms: Computing, Sensing, and Semantics. IEEE Internet Things J. 2024, 11, 7447–7473. https://doi.org/10.1109/JIOT.2023.3341307.

  • 463.

    Ahmed, M.; Soofi, A.A.; Raza, S.; et al. Advancements in RIS-Assisted UAV for Empowering Multiaccess Edge Computing: A Survey. IEEE Internet Things J. 2025, 12, 6325–6346. https://doi.org/10.1109/JIOT.2025.3527041.

  • 464.

    Trivedi, J.D.; Mandalapu, S.D.; Dave, D.H. Vision-Based Real-Time Vehicle Detection and Vehicle Speed Measurement Using Morphology and Binary Logical Operation. J. Ind. Inf. Integr. 2022, 27, 100280. https://doi.org/10.1016/j.jii.2021.100280.

  • 465.

    Huang, O.; Rao, H.; Zhang, Z.; et al. Boosting Research for Carbon Neutral on Edge UWB Nodes Integration Communication Localization Technology of IoV. IEEE Trans. Sustain. Comput. 2024, 9, 341–353. https://doi.org/10.1109/TSUSC.2023.3266729.

  • 466.

    Sun, J.; Liu, F.; Zhou, Y.; et al. Surveillance Plane Aided Air-Ground Integrated Vehicular Networks: Architectures, Applications, and Potential. IEEE Wirel. Commun. 2020, 27, 122–128. https://doi.org/10.1109/MWC.001.2000079.

  • 467.

    Yagüe-Cuevas, D.; Paz-Sesmero, M.; Marín-Plaza, P.; et al. Organizing Planning Knowledge for Automated Vehicles and Intelligent Transportation Systems. IET Intell. Transp. Syst. 2024, 18, 2977–2994. https://doi.org/10.1049/itr2.12583.

  • 468.

    Da Silva, D.A.; De Sousa, R.T.; De Oliveira Albuquerque, R.; et al. IoT-Based Security Service for the Documentary Chain of Custody. Sustain. Cities Soc. 2021, 71, 102940. https://doi.org/10.1016/j.scs.2021.102940.

  • 469.

    Rahman, M.S.; Chamikara, M.A.P.; Khalil, I.; et al. Blockchain-of-Blockchains: An Interoperable Blockchain Platform for Ensuring IoT Data Integrity in Smart City. J. Ind. Inf. Integr. 2022, 30, 100408. https://doi.org/10.1016/j.jii.2022.100408.

  • 470.

    Huda, N.U.; Ahmed, I.; Adnan, M.; et al. Experts and Intelligent Systems for Smart Homes’ Transformation to Sustainable Smart Cities: A Comprehensive Review. Expert Syst. Appl. 2024, 238, 122380. https://doi.org/10.1016/j.eswa.2023.122380.

  • 471.

    Javed, A.R.; Shahzad, F.; Rehman, S.U.; et al. Future Smart Cities: Requirements, Emerging Technologies, Applications, Challenges, and Future Aspects. Cities 2022, 129, 103794. https://doi.org/10.1016/j.cities.2022.103794.

  • 472.

    Bolshakov, N.; Celani, A.; Badenko, V.; et al. Factories of the Future in Digitization of Industrial Urban Areas. Urban Sci. 2024, 8, 66. https://doi.org/10.3390/urbansci8020066.

  • 473.

    Deng, Z.; Weng, D.; Liu, S.; et al. A Survey of Urban Visual Analytics: Advances and Future Directions. Comput. Vis. Media 2023, 9, 3–39. https://doi.org/10.1007/s41095-022-0275-7.

  • 474.

    Wang, S.; Zhao, C.; Jiang, Q.; et al. Application of Graph Convolutional Neural Networks and Multi-Sources Data on Urban Functional Zones Identification, A Case Study of Changchun, China. Sustain. Cities Soc. 2025, 119, 106116. https://doi.org/10.1016/j.scs.2024.106116.

  • 475.

    Anugraha, A.; Chu, H.-J.; Ali, M. Social Sensing for Urban Land Use Identification. ISPRS Int. J. Geo Inf. 2020, 9, 550. https://doi.org/10.3390/ijgi9090550.

  • 476.

    Zhang, X.; Gao, F.; Liao, S.; et al. Portraying Citizens’ Occupations and Assessing Urban Occupation Mixture with Mobile Phone Data: A Novel Spatiotemporal Analytical Framework. ISPRS Int. J. Geo Inf. 2021, 10, 392. https://doi.org/10.3390/ijgi10060392.

  • 477.

    Chicherin, S.; Zhuikova, Y.; Pyanykh, T.; et al. The First Fifth-Generation District Heating and Cooling System in Kazakhstan: Planning and Design. Energies 2024, 17, 6169. https://doi.org/10.3390/en17236169.

  • 478.

    Meng, X.-N.; Xu, S.-C.; Hao, M.-G. Can Digital-Real Integration Promote Industrial Green Transformation: Fresh Evidence from China’s Industrial Sector. J. Clean. Prod. 2023, 426, 139116. https://doi.org/10.1016/j.jclepro.2023.139116.

  • 479.

    Zhu, L.; Yu, Z.; Zhan, H. Impact of Industrial Agglomeration on Regional Economy in a Simulated Intelligent Environment Based on Machine Learning. IEEE Access 2021, 9, 20695–20702. https://doi.org/10.1109/ACCESS.2020.3047830.

  • 480.

    Peng, S.; Deng, H. Does Industrial IT Adoption Affect Export Sophistication? Evidence from China’s Pilot Zones Policy for Industrial Information Integration. Emerg. Mark. Finance Trade 2025, 61, 3841–3857. https://doi.org/10.1080/1540496X.2025.2489742.

  • 481.

    Dong, W.; Wang, T. Research on Efficiency Measurement of Information Industry Chain Integration Based on Multiple Structures and Its Application in Carbon Management Industrial Park. Int. J. Low Carbon Technol. 2022, 17, 421–429. https://doi.org/10.1093/ijlct/ctac015.

  • 482.

    Huang, L.; Xiang, S.; Zheng, J. Fine-Scale Monitoring of Industrial Land and Its Intra-Structure Using Remote Sensing Images and POIs in the Hangzhou Bay Urban Agglomeration, China. Int. J. Environ. Res. Public Health 2020, 20, 226. https://doi.org/10.3390/ijerph20010226.

  • 483.

    Büyüközkan, G.; Ilıcak, Ö. Smart Urban Logistics: Literature Review and Future Directions. Socio Econ. Plan. Sci. 2022, 81, 101197. https://doi.org/10.1016/j.seps.2021.101197.

  • 484.

    Pan, M.; Wang, Y.; Su, W.; et al. Spatial Information-Aware Flight Safety Forecasting Model for Unmanned Aerial Vehicles Based on Deep Learning and Grey Analysis. IEEE Access 2024, 12, 70729–70741. https://doi.org/10.1109/ACCESS.2024.3400955.

  • 485.

    Shao, J.; Min, B. Sustainable Development Strategies for Smart Cities: Review and Development Framework. Cities 2025, 158, 105663. https://doi.org/10.1016/j.cities.2024.105663.

  • 486.

    Mei, S.; Xie, Y.; Liu, J.; et al. Physics-Based Modeling and Intelligent Optimal Decision Method for Digital Twin System towards Sustainable CNC Equipment. Robot. Comput. Integr. Manuf. 2025, 95, 103028. https://doi.org/10.1016/j.rcim.2025.103028.

  • 487.

    Park, H.; Shin, M.; Choi, G.; et al. Integration of an Exoskeleton Robotic System into a Digital Twin for Industrial Manufacturing Applications. Robot. Comput. Integr. Manuf. 2024, 89, 102746. https://doi.org/10.1016/j.rcim.2024.102746.

  • 488.

    Geda, M.W.; Tang, Y.M. Adaptive Hybrid Quantum-Classical Computing Framework for Deep Space Exploration Mission Applications. J. Ind. Inf. Integr. 2025, 44, 100803. https://doi.org/10.1016/j.jii.2025.100803.

  • 489.

    Manogaran, G.; Alazab, M.; Shakeel, P.M.; et al. Blockchain Assisted Secure Data Sharing Model for Internet of Things Based Smart Industries. IEEE Trans. Reliab. 2022, 71, 348–358. https://doi.org/10.1109/TR.2020.3047833.

  • 490.

    Zhong, W.; Su, W.; Huang, X.; et al. Joint Energy-Computation Management for Electric Vehicles Under Coordination of Power Distribution Networks and Computing Power Networks. IEEE Trans. Smart Grid 2025, 16, 1549–1561. https://doi.org/10.1109/TSG.2024.3498945.

Share this article:
How to Cite
Li, J. Part II: Industrial Information Integration Review 2020–2025. Journal of Emerging Technologies With Industrial Applications 2026, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.