2512002691
  • Open Access
  • Review

Shaping the Future: Emerging Technologies and Their Role in Industry 4.0 and Beyond

  • Liuliu Qin

Received: 01 Sep 2025 | Revised: 10 Oct 2025 | Accepted: 30 Dec 2025 | Published: 20 Jan 2026

Abstract

This paper provides a comprehensive review of emerging technologies driving the transition from Industry 4.0 to Industry 5.0. It examines the foundational concepts and pillars of Industry 4.0 and explores the transformative roles of Artificial Intelligence (AI), Extended Reality (XR), Collaborative Cobots (Cobots), Brain–Computer Interfaces (BCIs), quantum technologies, and next-generation connectivity (5G/6G). By integrating technological, human-centric, and sustainability perspectives, the study outlines how these emerging technologies reshape industrial systems and enable intelligent, adaptive, and inclusive futures.

References 

  • 1.

    Chen, W.; He, W.; Shen, J.; et al. Systematic analysis of artificial intelligence in the era of industry 4.0. J. Manag. Anal. 2023, 10, 89–108.

  • 2.

    Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962.

  • 3.

    Turner, P. The Third Industrial Revolution: From Hierarchy to Matrix to Network. In the Making of the Modern Organisation: From the First to the Fourth Industrial Revolution; Springer Nature: Cham, Switzerland, 2024; pp. 117–147.

  • 4.

    Li, L. China’s manufacturing locus in 2025: With a comparison of “Made-in-China 2025” and “Industry 4.0”. Technol. Forecast. Soc. Chang. 2018, 135, 66–74.

  • 5.

    Lu, Y. Cyber physical system (CPS)-based industry 4.0: A survey. J. Ind. Integr. Manag. 2017, 2, 1750014.

  • 6.

    Khan, I.H.; Javaid, M. Role of Internet of Things (IoT) in adoption of Industry 4.0. J. Ind. Integr. Manag. 2022, 7, 515–533.

  • 7.

    Chen, H. Theoretical foundations for cyber-physical systems: A literature review. J. Ind. Integr. Manag. 2017, 2, 1750013.

  • 8.

    Bi, Z.; Cochran, D. Big data analytics with applications. J. Manag. Anal. 2014, 1, 249–265.

  • 9.

    Chen, Y.; Chen, H.; Gorkhali, A.; et al. Big data analytics and big data science: A survey. J. Manag. Anal. 2016, 3, 1–42.

  • 10.

    Kagermann, H.; Wahlster, W.; Helbig, J. Recommendations for Implementing the Strategic Initiative Industrie 4.0: Final Report of the Industrie 4.0 Working Group; Acatech-National Academy of Science and Engineering: Munich, Germany, 2013.

  • 11.

    Gorkhali, A. Industry 4.0 and enabling technologies: Integration framework and challenges. J. Ind. Integr. Manag. 2022, 7, 311–348.

  • 12.

    Duan, L.; Da Xu, L. Data analytics in industry 4.0: A survey. Inf. Syst. Front. 2024, 26, 2287–2303.

  • 13.

    Sun, Y.; He, Y.; Yu, H.; et al. An evaluation framework of IT-enabled service-oriented manufacturing. Syst. Res. Behav. Sci. 2022, 39, 657–667.

  • 14.

    Zhang, C.; Chen, Y. A review of research relevant to the emerging industry trends: Industry 4.0, IoT, blockchain, and business analytics. J. Ind. Integr. Manag. 2020, 5, 165–180.

  • 15.

    Kim, J.H. A review of cyber-physical system research relevant to the emerging IT trends: Industry 4.0, IoT, Big Data, and Cloud Computing. J. Ind. Integr. Manag. 2017, 2, 1750011.

  • 16.

    Javaid, M.; Haleem, A.; Singh, R.P.; et al. Significant applications of big data in Industry 4.0. J. Ind. Integr. Manag. 2021, 6, 429–447.

  • 17.

    Lasi, H.; Fettke, P.; Kemper, H.G.; et al. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242.

  • 18.

    Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937.

  • 19.

    Ejaz, M.R. Implementation of Industry 4.0 enabling technologies from smart manufacturing perspective. J. Ind. Integr. Manag. 2023, 8, 149–173. https://doi.org/10.1142/S242486222250021X.

  • 20.

    Dos Santos, L.M.A.L.; da Costa, M.B.; Kothe, J.V.; et al. Industry 4.0 collaborative networks for industrial performance. J. Manuf. Technol. Manag. 2021, 32, 245–265.

  • 21.

    de Melo Santos, C.J.; Barbosa, A.S.; Sant’Anna, A.M.O. Machine Learning-integrated digital twins for process optimization in Industry 5.0. J. Ind. Inf. Integr. 2025, 47, 100920.

  • 22.

    Mendhurwar, S.; Mishra, R. ‘Un’-blocking the industry 4.0 value chain with cyber-physical social thinking. Enterp. Inf. Syst. 2023, 17, 1930189.

  • 23.

    Fernandez-Viagas, V.; Framinan, J.M. Exploring the benefits of scheduling with advanced and real-time information integration in Industry 4.0: A computational study. J. Ind. Inf. Integr. 2022, 27, 100281.

  • 24.

    Bianchini, D.; Fapanni, T.; Garda, M.; et al. Digital thread for smart products: A survey on technologies, challenges and opportunities in service-oriented supply chains. IEEE Access 2024, 12, 125284–125305.

  • 25.

    Sajjad, A.; Ahmad, W.; Hussain, S.; et al. Development of innovative operational flexibility measurement model for smart systems in industry 4.0 paradigm. IEEE Access 2021, 10, 6760–6774.

  • 26.

    Wu, W.; Lu, J.; Zhang, H. A fractal-theory-based multi-agent model of the cyber physical production system for customized products. J. Manuf. Syst. 2023, 67, 143–154.

  • 27.

    Wang, S.; Wan, J.; Li, D.; et al. Implementing smart factory of industrie 4.0: An outlook. Int. J. Distrib. Sens. Netw. 2016, 12, 3159805.

  • 28.

    Zhai, C.; Zou, Z.; Chen, Q.; et al. Delay-aware and reliability-aware contention-free MF–TDMA protocol for automated RFID monitoring in industrial IoT. J. Ind. Inf. Integr. 2016, 3, 8–19.

  • 29.

    Li, L. Technology designed to combat fakes in the global supply chain. Bus. Horiz. 2013, 56, 167–177.

  • 30.

    Da Xu, L.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243.

  • 31.

    Bag, G.; Pang, Z.; Johansson, M.E.; et al. Engineering friendly tool to estimate battery life of a wireless sensor node. J. Ind. Inf. Integr. 2016, 4, 8–14.

  • 32.

    Alyahya, S.; Wang, Q.; Bennett, N. Application and integration of an RFID-enabled warehousing management system–a feasibility study. J. Ind. Inf. Integr. 2016, 4, 15–25.

  • 33.

    He, W.; Da Xu, L. Integration of distributed enterprise applications: A survey. IEEE Trans. Ind. Inform. 2012, 10, 35–42.

  • 34.

    Liu, Y.; Han, W.; Zhang, Y.; et al. An Internet-of-Things solution for food safety and quality control: A pilot project in China. J. Ind. Inf. Integr. 2016, 3, 1–7.

  • 35.

    Wortmann, F.; Flüchter, K. Internet of things: Technology and value added. Bus. Inf. Syst. Eng. 2015, 57, 221–224.

  • 36.

    Lu, Y. Industrial integration: A literature review. J. Ind. Integr. Manag. 2016, 1, 1650007.

  • 37.

    Lu, Y.; Da Xu, L. Internet of Things (IoT) cybersecurity research: A review of current research topics. IEEE Internet Things J. 2018, 6, 2103–2115.

  • 38.

    Zheng, X.; Martin, P.; Brohman, K.; et al. Cloud service negotiation in internet of things environment: A mixed approach. IEEE Trans. Ind. Inform. 2014, 10, 1506–1515.

  • 39.

    Mitra, A.; Kundu, A.; Chattopadhyay, M.; et al. A cost-efficient one time password-based authentication in cloud environment using equal length cellular automata. J. Ind. Inf. Integr. 2017, 5, 17–25.

  • 40.

    He, W.; Xu, L. A state-of-the-art survey of cloud manufacturing. Int. J. Comput. Integr. Manuf. 2015, 28, 239–250.

  • 41.

    Jiang, L.; Da Xu, L.; Cai, H.; et al. An IoT-oriented data storage framework in cloud computing platform. IEEE Trans. Ind. Inform. 2014, 10, 1443–1451.

  • 42.

    Branger, J.; Pang, Z. From automated home to sustainable, healthy and manufacturing home: A new story enabled by the Internet-of-Things and Industry 4.0. J. Manag. Anal. 2015, 2, 314–332.

  • 43.

    Wang, C.; Bi, Z.; Da Xu, L. IoT and cloud computing in automation of assembly modeling systems. IEEE Trans. Ind. Inform. 2014, 10, 1426–1434.

  • 44.

    Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. J. Ind. Inf. Integr. 2020, 18, 100129.

  • 45.

    Gürdür, D.; El-Khoury, J.; Seceleanu, T.; et al. Making interoperability visible: Data visualization of cyber-physical systems development tool chains. J. Ind. Inf. Integr. 2016, 4, 26–34.

  • 46.

    Zhou, H.; Shou, Y.; Zhai, X.; et al. Supply chain practice and information quality: A supply chain strategy study. Int. J. Prod. Econ. 2014, 147, 624–633.

  • 47.

    Kaplan, J.; Sharma, S.; Weinberg, A. Meeting the Cybersecurity Challenge; Digital McKinsey: Chicago, IL, USA, 2011.

  • 48.

    Ervural, B.C.; Ervural, B. Overview of cyber security in the industry 4.0 era. In Industry 4.0: Managing the Digital Transformation; Springer International Publishing: Cham, Switzerland, 2017; pp. 267–284.

  • 49.

    Li, L.; He, W.; Xu, L.; et al. Investigating the impact of cybersecurity policy awareness on employees’ cybersecurity behavior. Int. J. Inf. Manag. 2019, 45, 13–24.

  • 50.

    Chakroun, A.; Hani, Y.; Elmhamedi, A.; et al. Digital Twin-Driven Dynamic Scheduling of Flexible Manufacturing System in the Context of Smart Factory Producing Brass Accessories. J. Ind. Integr. Manag. 2025, 10, 67–107.

  • 51.

    Qu, M.; Yao, Y.; Sun, M.; et al. Industrial Digital Twins Based on Enterprise Modeling: Architecture, Methodology, and Engineering Applications. J. Ind. Inf. Integr. 2025, 47, 100912.

  • 52.

    Liu, X.; Li, G.; Xiang, F.; et al. Expert opinion aggregation-based decision support for human-robot collaboration digital twin maturity assessment. J. Ind. Inf. Integr. 2024, 42, 100710.

  • 53.

    Mazak, A.; Huemer, C. HoVer: A Modeling Framework for Horizontal and Vertical Integration. In Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015; pp. 1642–1647.

  • 54.

    Ian Gibson, I.G. Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing. Johns. Matthey Technol. Rev. 2015, 59, 193–198.

  • 55.

    Gibson, I.; Rosen, D.; Stucker, B. Directed energy deposition processes. In Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Springer: New York, NY, USA, 2015; pp. 245–268.

  • 56.

    Berman, B. 3-D printing: The new industrial revolution. Bus. Horiz. 2012, 55, 155–162.

  • 57.

    McCarthy, J.; Minsky, M.L.; Rochester, N.; et al. A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI Mag. 2006, 27, 12.

  • 58.

    Sviokla, J.J. An examination of the impact of expert systems on the firm: The case of XCON. MIS Q. 1990, 14, 127–140.

  • 59.

    Ward, K. XpeRTD: An Expert System for Diagnosing Resistance Temperature Detectors. Available online: https://unbscholar.dspace.lib.unb.ca/server/api/core/bitstreams/8a10cb4c-9889-42e3-a56d-32c3260279a7/content (accessed on 23 May 2025).

  • 60.

    Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.

  • 61.

    Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554.

  • 62.

    LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.

  • 63.

    Goodfellow, I.; Bengio, Y.; Courville, A.; et al. Deep Learning; MIT Press: Cambridge, UK, 2016.

  • 64.

    Bommasani, R.; Hudson, D.A.; Adeli, E.; et al. On the opportunities and risks of foundation models. arXiv 2021, arXiv:2108.07258.

  • 65.

    Ouyang, L.; Wu, J.; Jiang, X.; et al. Training language models to follow instructions with human feedback. Adv. Neural Inf. Process. Syst. 2022, 35, 27730–27744.

  • 66.

    Devlin, J.; Chang, M.W.; Lee, K.; et al. Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (long and short papers), Minneapolis, MN, USA, 2–7 June2019; pp. 4171–4186.

  • 67.

    Brown, T.; Mann, B.; Ryder, N.; et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.

  • 68.

    Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260.

  • 69.

    Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117.

  • 70.

    Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; et al. A survey on contrastive self-supervised learning. Technologies 2020, 9, 2.

  • 71.

    Anderson, P.; Wu, Q.; Teney, D.; et al. Vision-and-Language Navigation: Interpreting Visually-Grounded Navigation Instructions in Real Environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3674–3683.

  • 72.

    Harmatos, J.; Maliosz, M. Architecture integration of 5G networks and time-sensitive networking with edge computing for smart manufacturing. Electronics 2021, 10, 3085.

  • 73.

    Banabilah, S.; Aloqaily, M.; Alsayed, E.; et al. Federated learning review: Fundamentals, enabling technologies, and future applications. Inf. Process. Manag. 2022, 59, 103061.

  • 74.

    CAICT (China Academy of Information and Communications Technology); Gartner. World Artificial Intelligence Industry Development Blue Book. In Proceedings of the 2018 World Artificial Intelligence Conference, Shanghai, China, 17–19 September 2018.

  • 75.

    Krishnaswamy, N.; Pustejovsky, J. Affordance embeddings for situated language understanding. Front. Artif. Intell. 2022, 5, 774752.

  • 76.

    Feuerriegel, S.; Hartmann, J.; Janiesch, C.; et al. Generative ai. Bus. Inf. Syst. Eng. 2024, 66, 111–126.

  • 77.

    Ng, A.; Jordan, M. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. Adv. Neural Inf. Process. Syst. 2001, 14, 843–850.

  • 78.

    Ziegler, D.M.; Stiennon, N.; Wu, J.; et al. Fine-tuning language models from human preferences. arXiv 2019, arXiv:1909.08593.

  • 79.

    Johnsen, M. Large Language Models (LLMs). Available online: https://en.wikipedia.org/wiki/Large_language_model (accessed on 28 May 2025).

  • 80.

    Fischer, A.; Igel, C. An introduction to restricted Boltzmann machines. In Iberoamerican Congress on Pattern Recognition; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2012; pp. 14–36.

  • 81.

    Hinton, G.E. Deep belief networks. Scholarpedia 2009, 4, 5947.

  • 82.

    Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; et al. Generative adversarial networks. Commun. ACM 2020, 63, 139–144.

  • 83.

    Zhao, W.X.; Zhou, K.; Li, J.; et al. A survey of large language models. arXiv 2023, arXiv:2303.18223.

  • 84.

    Schölkopf, B. Causality for Machine Learning. In Probabilistic and Causal Inference: The Works of Judea Pearl; Association for Computing Machinery: New York, NY, USA, 2022; pp. 765–804.

  • 85.

    Gabriel, I. Artificial intelligence, values, and alignment. Minds Mach. 2020, 30, 411–437.

  • 86.

    Shneiderman, B. Human-centered artificial intelligence: Reliable, safe & trustworthy. Int. J. Hum. Comput. Interact. 2020, 36, 495–504.

  • 87.

    Hu, G. Challenges for enforcing editorial policies on AI-generated papers. Account. Res. 2024, 31, 978–980.

  • 88.

    Chui, M.; Roberts, R.; Yee, L. Generative AI is here: How tools like ChatGPT could change your business. In Quantum Black AI By McKinsey; McKinsey & Company: Chicago, IL, USA, 2022.

  • 89.

    Kasneci, E.; Seßler, K.; Küchemann, S.; et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 2023, 103, 102274.

  • 90.

    Mittal, U.; Sai, S.; Chamola, V. A comprehensive review on generative AI for education. IEEE Access 2024, 12, 142733–142759.

  • 91.

    Istrate, O.; Velea, S. Guidelines for Online and Blended Learning; Institute for Education: Romania, Bucharest, 2024.

  • 92.

    Recharla, M.; Chakilam, C.; Kannan, S.; et al. Revolutionizing Healthcare with Generative AI: Enhancing Patient Care, Disease Research, and Early Intervention Strategies. Am. J. Psychiatr. Rehabil. 2025, 28, 98–111.

  • 93.

    Huang, T.; Safranek, C.; Socrates, V.; et al. Patient-representing population’s perceptions of GPT-generated versus standard emergency department discharge instructions: Randomized blind survey assessment. J. Med. Internet Res. 2024, 26, e60336.

  • 94.

    Parmar, D.; Olafsson, S.; Utami, D.; et al. Designing empathic virtual agents: Manipulating animation, voice, rendering, and empathy to create persuasive agents. Auton. Agents Multi-Agent Syst. 2022, 36, 17.

  • 95.

    Gangwal, A.; Ansari, A.; Ahmad, I.; et al. Generative artificial intelligence in drug discovery: Basic framework, recent advances, challenges, and opportunities. Front. Pharmacol. 2024, 15, 1331062.

  • 96.

    Chui, M.; Hazan, E.; Roberts, R.; et al. The Economic Potential of Generative AI. Available online: https://cloudeurope.nl/images/Downloads/the-economic-potential-of-generative-ai-the-next-productivity-frontier.pdf (accessed on 6 June 2025).

  • 97.

    Ali, I.; Saleem, M.U.; Khan, A.A.; et al. An Enhanced Artificial Intelligence Generated Virtual Influencer Framework: Examining the Effects of Emotional Display on User Engagement based on Convolutional Neural Networks (CNNs). Annu. Methodol. Arch. Res. Rev. 2025, 3, 184–209.

  • 98.

    Davenport, T.H.; Miller, S.M. Working with AI: Real Stories of Human-Machine Collaboration; MIT Press: Cambridge, MA, USA, 2022.

  • 99.

    Basole, R.C.; Major, T. Generative AI for visualization: Opportunities and challenges. IEEE Comput. Graph. Appl. 2024, 44, 55–64.

  • 100.

    Lankes, M.; Stockl, A. Ai-powered game design: Experts employing ChatGPT in the game design process. Eurasia Proc. Sci. Technol. Eng. Math. 2023, 24, 1–9.

  • 101.

    Milgram, P.; Kishino, F. A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 1994, 77, 1321–1329.

  • 102.

    Ibarra Kwick, J.M.; Hernández-Uribe, Ó.; Cárdenas-Robledo, L.A.; et al. Extended Reality Applications for CNC Machine Training: A Systematic Review. Multimodal Technol. Interact. 2024, 8, 80.

  • 103.

    Rubio-Tamayo, J.L.; Gertrudix Barrio, M.; García García, F. Immersive environments and virtual reality: Systematic review and advances in communication, interaction and simulation. Multimodal Technol. Interact. 2017, 1, 21.

  • 104.

    Novacek, T.; Jirina, M. Overview of controllers of user interface for virtual reality. PRESENCE Virtual Augment. Real. 2020, 29, 37–90.

  • 105.

    Arena, F.; Collotta, M.; Pau, G.; et al. An overview of augmented reality. Computers 2022, 11, 28.

  • 106.

    Rejeb, A.; Keogh, J.G.; Leong, G.K.; et al. Potentials and challenges of augmented reality smart glasses in logistics and supply chain management: A systematic literature review. Int. J. Prod. Res. 2021, 59, 3747–3776.

  • 107.

    Suzuki, R.; Karim, A.; Xia, T.; et al. Augmented Reality and Robotics: A Survey and Taxonomy for Ar-enhanced Human-Robot Interaction and Robotic Interfaces. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022; pp. 1–33.

  • 108.

    Liu, W.; Duinkharjav, B.; Sun, Q.; et al. Fovealnet: Advancing ai-driven gaze tracking solutions for efficient foveated rendering in virtual reality. IEEE Trans. Vis. Comput. Graph. 2025, 31, 3183–3193.

  • 109.

    Pfeuffer, K.; Gellersen, H.; Gonzalez-Franco, M. Design principles and challenges for gaze+ pinch interaction in xr. IEEE Comput. Graph. Appl. 2024, 44, 74–81.

  • 110.

    Sadeghi Milani, A.; Cecil-Xavier, A.; Gupta, A.; et al. A systematic review of human–computer interaction (HCI) research in medical and other engineering fields. Int. J. Hum. Comput. Interact. 2024, 40, 515–536.

  • 111.

    Lavric, T.; Bricard, E.; Preda, M.; et al. A low-cost AR training system for manual assembly operations. Comput. Sci. Inf. Syst. 2022, 19, 1047–1073.

  • 112.

    Karagiannis, P.; Togias, T.; Michalos, G.; et al. Operators training using simulation and VR technology. Procedia CIRP 2021, 96, 290–294.

  • 113.

    Yazdi, M. Augmented Reality (AR) and Virtual Reality (VR) in Maintenance Training. In Advances in Computational Mathematics for Industrial System Reliability and Maintainability; Springer Nature: Cham, Switzerland, 2024; pp. 169–183.

  • 114.

    Gong, L.; Berglund, J.; Fast-Berglund, Å.; et al. Development of virtual reality support to factory layout planning. Int. J. Interact. Des. Manuf. 2019, 13, 935–945.

  • 115.

    Rane, N.; Choudhary, S.; Rane, J. Enhanced product design and development using artificial intelligence (AI), virtual reality (VR), augmented reality (AR), 4D/5D/6D printing, internet of things (IoT), and blockchain: A review. Virtual Real. Augment. Real. D 2023, 4, 24. https://doi.org/10.2139/ssrn.4644059.

  • 116.

    Windhausen, A.; Heller, J.; Hilken, T.; et al. Exploring the impact of augmented reality smart glasses on worker well-being in warehouse order picking. Comput. Hum. Behav. 2024, 155, 108153.

  • 117.

    Akhtar, Z.B.; Rawol, A.T. A biomedical engineering (BME) perspective investigation analysis: Artificial intelligence (AI) and extended reality (XR). Eng. Adv 2024, 4, 143–154.

  • 118.

    Linte, C.A.; White, J.; Eagleson, R.; et al. Virtual and augmented medical imaging environments: Enabling technology for minimally invasive cardiac interventional guidance. IEEE Rev. Biomed. Eng. 2010, 3, 25–47.

  • 119.

    Villani, V.; Pini, F.; Leali, F.; et al. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics 2018, 55, 248–266.

  • 120.

    Sherwani, F.; Asad, M.M.; Ibrahim, B.S.K.K. Collaborative Robots and Industrial Revolution 4.0 (ir 4.0). In Proceedings of the 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), Karachi, Pakistan, 26–27 March 2020; pp. 1–5.

  • 121.

    Dmytriyev, Y.; Carnevale, M.; Giberti, H. Enhancing flexibility and safety: Collaborative robotics for material handling in end-of-line industrial operations. Procedia Comput. Sci. 2024, 232, 2588–2597.

  • 122.

    Rosenstrauch, M.J.; Krüger, J. Safe human-robot-collaboration-introduction and experiment using ISO/TS 15066. In Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 24–26 April 2017; pp. 740–744.

  • 123.

    Taesi, C.; Aggogeri, F.; Pellegrini, N. COBOT applications—Recent advances and challenges. Robotics 2023, 12, 79.

  • 124.

    George, P.; Cheng, C.T.; Pang, T.Y.; et al. Task complexity and the skills dilemma in the programming and control of collaborative robots for manufacturing. Appl. Sci. 2023, 13, 4635.

  • 125.

    El Zaatari, S.; Marei, M.; Li, W.; et al. Cobot programming for collaborative industrial tasks: An overview. Robot. Auton. Syst. 2019, 116, 162–180. 

  • 126.

    Pizoń, J.; Cioch, M.; Kański, Ł.; et al. Cobots implementation in the era of Industry 5.0 using modern business and management solutions. Adv. Sci. Technol. Res. J. 2022, 16, 166–178.

  • 127.

    Zafar, M.H.; Langås, E.F.; Sanfilippo, F. Exploring the synergies between collaborative robotics, digital twins, augmentation, and industry 5.0 for smart manufacturing: A state-of-the-art review. Robot. Comput. Integr. Manuf. 2024, 89, 102769.

  • 128.

    Ajoudani, A.; Zanchettin, A.M.; Ivaldi, S.; et al. Progress and prospects of the human-robot collaboration. Auton. Robot. 2018, 42, 957–975.

  • 129.

    Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211–1279.

  • 130.

    Maiseli, B.; Abdalla, A.T.; Massawe, L.V.; et al. Brain–computer interface: Trend, challenges, and threats. Brain Inform. 2023, 10, 20.

  • 131.

    Birbaumer, N. Breaking the silence: Brain–computer interfaces (BCI) for communication and motor control. Psychophysiology 2006, 43, 517–532.

  • 132.

    Cruz, M.V.; Jamal, S.; Sethuraman, S.C. A Comprehensive Survey of Brain–Computer Interface Technology in Health care: Research Perspectives. J. Med. Signals Sens. 2025, 15, 16.

  • 133.

    Jaipriya, D.; Sriharipriya, K.C. Brain computer interface-based signal processing techniques for feature extraction and classification of motor imagery using EEG: A literature review. Biomed. Mater. Devices 2024, 2, 601–613.

  • 134.

    Hong, K.S.; Khan, M.J. Hybrid brain–computer interface techniques for improved classification accuracy and increased number of commands: A review. Front. Neurorobotics 2017, 11, 35.

  • 135.

    George, A.S. Protecting Brain Privacy in the Age of Neurotechnology: Policy Responses and Remaining Challenges. Partn. Univers. Innov. Res. Publ. 2024, 2, 18–33.

  • 136.

    Ma, Z.Z.; Wu, J.J.; Cao, Z.; et al. Motor imagery-based brain–computer interface rehabilitation programs enhance upper extremity performance and cortical activation in stroke patients. J. Neuroeng. Rehabil. 2024, 21, 91.

  • 137.

    Kübler, A. The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome. Neuroethics 2020, 13, 163–180.

  • 138.

    Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010.

  • 139.

    Schleich, W.P.; Ranade, K.S.; Anton, C.; et al. Quantum technology: From research to application. Appl. Phys. B 2016, 122, 130.

  • 140.

    He, Y.; He, W. Quantum Computing and Technologies: State-of-Art and Future Prospects. In Proceedings of the ICIS 2021 TREOs, Austin, TX, USA, 12–15 December 2021.

  • 141.

    Shor, P.W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134.

  • 142.

    Grover, L.K. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, Pennsylvania, 22–24 May 1996; pp. 212–219.

  • 143.

    Arute, F.; Arya, K.; Babbush, R.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510.

  • 144.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79.

  • 145.

    Bayerstadler, A.; Becquin, G.; Binder, J.; et al. Industry quantum computing applications. EPJ Quantum Technol. 2021, 8, 25.

  • 146.

    D-Wave Systems Inc. & DENSO Corporation. DENSO: Imagining an Optimized Future with Quantum Computing. Available online: https://www.dwavequantum.com/media/rhelg04q/dwave_denso_case_story_v6.pdf (accessed on 20 June 2025).

  • 147.

    Bova, F.; Goldfarb, A.; Melko, R.G. Commercial applications of quantum computing. EPJ Quantum Technol. 2021, 8, 2.

  • 148.

    Gyongyosi, L.; Imre, S. A survey on quantum computing technology. Comput. Sci. Rev. 2019, 31, 51–71.

  • 149.

    Pirandola, S.; Andersen, U.L.; Banchi, L.; et al. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236.

  • 150.

    Nguyen, H.T.; Krishnan, P.; Krishnaswamy, D.; et al. Quantum cloud computing: A review, open problems, and future directions. arXiv 2024, arXiv:2404.11420.

  • 151.

    Degen, C.L.; Reinhard, F.; Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 2017, 89, 035002.

  • 152.

    Pirandola, S.; Bardhan, B.R.; Gehring, T.; et al. Advances in photonic quantum sensing. Nat. Photonics 2018, 12, 724–733.

  • 153.

    Orzechowska, Z. Magnetic Resonance Spectroscopy at the Nanoscale Utilizing Nitrogen-Vacancy Centers in Diamond. Doctoral Dissertation, Institute of Physics, London, UK, 2024.

  • 154.

    Barzanjeh, S.; Xuereb, A.; Gröblacher, S.; et al. Optomechanics for quantum technologies. Nat. Phys. 2022, 18, 15–24. 

  • 155.

    Crawford, S.E.; Shugayev, R.A.; Paudel, H.P.; et al. Quantum sensing for energy applications: Review and perspective. Adv. Quantum Technol. 2021, 4, 2100049.

  • 156.

    US Department of Energy, National Energy Technology Laboratory. Quantum Sensing and Enhanced Sensors for Natural Gas Infrastructure Monitoring. Available online: https://netl.doe.gov/node/14093 (accessed on 2 July 2025).

  • 157.

    Center for Strategic & International Studies. Progress toward Practical Areas of Quantum Technology; CSIS: Washington, DC, USA, 2025.

  • 158.

    Bennett, C.H.; Brassard, G.; Mermin, N.D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 1992, 68, 557.

  • 159.

    Gisin, N.; Ribordy, G.; Tittel, W.; et al. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145.

  • 160.

    Cozzolino, D.; Da Lio, B.; Bacco, D.; et al. High-dimensional quantum communication: Benefits, progress, and future challenges. Adv. Quantum Technol. 2019, 2, 1900038.

  • 161.

    Sidhu, J.S.; Joshi, S.K.; Gündoğan, M.; et al. Advances in space quantum communications. IET Quantum Commun. 2021, 2, 182–217.

  • 162.

    Suhail, S.; Hussain, R.; Khan, A.; et al. On the role of hash-based signatures in quantum-safe internet of things: Current solutions and future directions. IEEE Internet Things J. 2020, 8, 1–17.

  • 163.

    Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9.

  • 164.

    Sigov, A.; Ratkin, L.; Ivanov, L.A.; et al. Emerging enabling technologies for industry 4.0 and beyond. Inf. Syst. Front. 2024, 26, 1585–1595.

  • 165.

    Redondi, A.E.; Innamorati, C.; Gallucci, S.; et al. A survey on future millimeter-wave communication applications. IEEE Access 2024, 12, 133165–133182.

  • 166.

    Chataut, R.; Akl, R. Massive MIMO systems for 5G and beyond networks—Overview, recent trends, challenges, and future research direction. Sensors 2020, 20, 2753.

  • 167.

    Popovski, P.; Trillingsgaard, K.F.; Simeone, O.; et al. 5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view. IEEE Access 2018, 6, 55765–55779.

  • 168.

    Bassey, M.O.; Ikpe, A.E. The Impact of 5G Wireless Technology on Smart Home Automation Systems: A Review of Recent Trends and Applications. Optimality 2024, 1, 147–163.

  • 169.

    Huseien, G.F.; Shah, K.W. A review on 5G technology for smart energy management and smart buildings in Singapore. Energy AI 2022, 7, 100116.

  • 170.

    Khanh, Q.V.; Hoai, N.V.; Manh, L.D.; et al. Wireless communication technologies for IoT in 5G: Vision, applications, and challenges. Wirel. Commun. Mob. Comput. 2022, 2022, 3229294.

  • 171.

    Garcia, M.H.C.; Molina-Galan, A.; Boban, M.; et al. A tutorial on 5G NR V2X communications. IEEE Commun. Surv. Tutor. 2021, 23, 1972–2026.

  • 172.

    Mehrabi, A.; Siekkinen, M.; Ylä-Jääski, A. Energy-aware QoE and backhaul traffic optimization in green edge adaptive mobile video streaming. IEEE Trans. Green Commun. Netw. 2019, 3, 828–839.

  • 173.

    Peralta-Ochoa, A.M.; Chaca-Asmal, P.A.; Guerrero-Vásquez, L.F.; et al. Smart healthcare applications over 5G networks: A systematic review. Appl. Sci. 2023, 13, 1469.

  • 174.

    Devi, D.H.; Duraisamy, K.; Armghan, A.; et al. 5G technology in healthcare and wearable devices: A review. Sensors 2023, 23, 2519.

  • 175.

    Lu, Y.; Ning, X. A vision of 6G–5G’s successor. J. Manag. Anal. 2020, 7, 301–320.

  • 176.

    Akyildiz, I.F.; Kak, A.; Nie, S. 6G and beyond: The future of wireless communications systems. IEEE Access 2020, 8, 133995–134030.

  • 177.

    Jiang, W.; Han, B.; Habibi, M.A.; et al. The road towards 6G: A comprehensive survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366.

  • 178.

    Tataria, H.; Shafi, M.; Molisch, A.F.; et al. 6G wireless systems: Vision, requirements, challenges, insights, and opportunities. Proc. IEEE 2021, 109, 1166–1199. 

  • 179.

    Yang, Y.; Xu, J.; Shi, G.; et al. 5G wireless systems. In Wireless Networks; Springer: Berlin/Heidelberg, Germany, 2018.

  • 180.

    Ji, B.; Han, Y.; Liu, S.; et al. Several key technologies for 6G: Challenges and opportunities. IEEE Commun. Stand. Mag. 2021, 5, 44–51.

  • 181.

    Shen, L.H.; Feng, K.T.; Hanzo, L. Five facets of 6G: Research challenges and opportunities. ACM Comput. Surv. 2023, 55, 1–39.

  • 182.

    Giordani, M.; Polese, M.; Mezzavilla, M.; et al. Toward 6G networks: Use cases and technologies. IEEE Commun. Mag. 2020, 58, 55–61.

  • 183.

    Saad, W.; Bennis, M.; Chen, M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Netw. 2019, 34, 134–142.

  • 184.

    Mahmoud, H.H.H.; Amer, A.A.; Ismail, T. 6G: A comprehensive survey on technologies, applications, challenges, and research problems. Trans. Emerg. Telecommun. Technol. 2021, 32, e4233.

  • 185.

    Peltonen, E.; Bennis, M.; Capobianco, M.; et al. 6G white paper on edge intelligence. arXiv 2020, arXiv:2004.14850.

  • 186.

    Azari, M.M.; Solanki, S.; Chatzinotas, S.; et al. Evolution of non-terrestrial networks from 5G to 6G: A survey. IEEE Commun. Surv. Tutor. 2022, 24, 2633–2672.

  • 187.

    Saad, W. 6G Wireless Systems: Challenges and Opportunities. In 5G and Beyond: Fundamentals and Standards; Springer: Cham, Switzerland, 2020; pp. 201–229.

Share this article:
How to Cite
Qin, L. Shaping the Future: Emerging Technologies and Their Role in Industry 4.0 and Beyond. Journal of Emerging Technologies With Industrial Applications 2026, 1 (1), 4.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.