2510001653
  • Open Access
  • Letter to the Editor

Folic Acid Supplementation for Autoimmune Rheumatic Diseases—Approaches and Opportunities for Research

  • Jozélio Freire de Carvalho 1,   
  • Theresa Lynn May 2,   
  • Allain Amador Bueno 2, *

Received: 09 Sep 2025 | Revised: 29 Sep 2025 | Accepted: 01 Oct 2025 | Published: 21 Oct 2025

Abstract

Introduction: Folate, in its supplemental form as folic acid, plays a crucial role in cellular metabolism, DNA synthesis, and cell division. Folate deficiency can lead to elevated homocysteine (HHcy) levels, which contribute to endothelial dysfunction, atherosclerosis, and cardiovascular disease (CVD). Since CVD is a leading cause of mortality in patients with autoimmune rheumatic diseases (ARDs), investigating folate’s potential role in modulating disease progression and inflammatory processes is of clinical relevance. Objective: To review the current evidence on the impact of folate supplementation in patients with ARDs. Methods: A comprehensive literature search was conducted in PubMed, SciELO, and LILACS databases from 1965 to May 2023, using MeSH terms related to folic acid, folate, and various ARDs. The reference lists of selected articles were also screened to identify additional relevant studies. Results: Among all retrieved articles, only one randomized controlled trial met the inclusion criteria. The study included 26 patients, primarily women, with autoimmune hand osteoarthritis (AHO). Participants received either folate alone (6400 mg), folate plus cobalamin (6400 mg + 20 mcg), or a lactose placebo for two months. The combination of folate and cobalamin significantly improved handgrip strength compared with the other groups, achieving outcomes similar to nonsteroidal anti-inflammatory drug (NSAID) therapy but with fewer tender joints and no reported side effects. Conclusion: Current evidence on folate supplementation in ARDs remains extremely limited. The available trial suggests potential benefits of folate, particularly when combined with cobalamin, in symptom management for AHO. Given its low cost and favorable safety profile, further randomized, double-blind, placebo-controlled studies are warranted to investigate the efficacy of folate in managing pain and slowing disease progression in ARDs.

References 

  • 1.
    Ferrazzi, E.; Tiso, G.; Di Martino, D. Folic acid versus 5-methyl tetrahydrofolate supplementation in pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 253, 312–319. https://doi.org/10.1016/j.ejogrb.2020.06.012.
  • 2.
    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for folate. EFSA J. 2014, 12, 3893.
  • 3.
    Suitor, C.W.; Bailey, L.B. Dietary folate equivalents: Interpretation and application. J. Am. Diet. Assoc. 2000, 100, 88–94. https://doi.org/10.1016/S0002-8223(00)00027-4.
  • 4.
    EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 2010, 8, 1462.
  • 5.
    EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA Panel); Turck, D.; Bohn, T.; et al. Scientific opinion on the tolerable upper intake level for folate. EFSA J. 2023, 21, e08353. https://doi.org/10.2903/j.efsa.2023.8353.
  • 6.
    Selhub, J.; Jacques, P.F.; Dallal, G.; et al. The use of blood concentrations of vitamins and their respective functional indicators to define folate and vitamin B12 status. Food Nutr. Bull. 2008, 29, S67–S73. https://doi.org/10.1177/15648265080292S110.
  • 7.
    Katsanos, K.H.; Tsianos, V.E.; Tsianos, E.V. Intolerance of folic acid in a patient receiving methotrexate for Crohn’s disease. J. Crohns Colitis 2012, 6, 960. https://doi.org/10.1016/j.crohns.2012.05.017.
  • 8.
    Folic Acid Risk Assessment [Internet]. Food Standards Agency. 2023. Available online: https://cot.food.gov.uk/Folic%20Acid%20Risk%20Assessment (accessed on 7 April 2024).
  • 9.
    Czeizel, A.E.; Dudás, I.; Vereczkey, A.; et al. Folate deficiency and folic acid supplementation: The prevention of neural-tube defects and congenital heart defects. Nutrients 2013, 5, 4760–4775. https://doi.org/10.3390/nu5114760.
  • 10.
    Bhargava, S.; Tyagi, S.C. Nutriepigenetic regulation by folate-homocysteine-methionine axis: A review. Mol. Cell. Biochem. 2014, 387, 55–61. https://doi.org/10.1007/s11010-013-1869-2.
  • 11.
    Grimble, R.F.; Jackson, A.A.; Persaud, C.; et al. Cysteine and glycine supplementation modulate the metabolic response to tumor necrosis factor alpha in rats fed a low protein diet. J. Nutr. 1992, 122, 2066–2073. https://doi.org/10.1093/jn/122.11.2066. Erratum in: J. Nutr. 1993, 123, 600.
  • 12.
    Mudd, S.H. Vascular disease and homocysteine metabolism. N. Engl. J. Med. 1985, 313, 751–753. https://doi.org/10.1056/NEJM198509193131210.
  • 13.
    Dudman, N.P.; Wilcken, D.E.; Wang, J.; et al. Disordered methionine/homocysteine metabolism in premature vascular disease. Its occurrence, cofactor therapy, and enzymology. Arterioscler. Thromb. 1993, 13, 1253–1260. https://doi.org/10.1161/01.atv.13.9.1253.
  • 14.
    Kuller, L.H.; Evans, R.W. Homocysteine, vitamins, and cardiovascular disease. Circulation 1998, 98, 196–199. https://doi.org/10.1161/01.cir.98.3.196.
  • 15.
    Ross, R. The pathogenesis of atherosclerosis--an update. N. Engl. J. Med. 1986, 314, 488–500. https://doi.org/10.1056/NEJM198602203140806.
  • 16.
    Virmani, R.; Kolodgie, F.D.; Burke, A.P.; et al. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1262–1275. https://doi.org/10.1161/01.atv.20.5.1262.
  • 17.
    Davignon, J.; Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004, 109, III27–III32. https://doi.org/10.1161/01.CIR.0000131515.03336.f8.
  • 18.
    Sitia, S.; Tomasoni, L.; Atzeni, F.; et al. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev. 2010, 12, 830–834. https://doi.org/10.1016/j.autrev.2010.07.016.
  • 19.
    Stamler, J.S.; Osborne, J.A.; Jaraki, O.; et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J. Clin. Investig. 1993, 91, 308–318. https://doi.org/10.1172/JCI116187.
  • 20.
    Woo, K.S.; Chook, P.; Lolin, Y.I.; et al. Hyperhomocyst(e)inemia is a risk factor for arterial endothelial dysfunction in humans. Circulation 1997, 96, 2542–2544. https://doi.org/10.1161/01.cir.96.8.2542.
  • 21.
    Wang, G.O.K. Homocysteine stimulates the expression of monocyte chemoattractant protein-1 receptor (CCR2) in human monocytes: Possible involvement of oxygen free radicals. Biochem. J. 2001, 357, 233–240. https://doi.org/10.1042/0264-6021:3570233.
  • 22.
    Schroecksnadel, K.; Frick, B.; Kaser, S.; et al. Moderate hyperhomocysteinaemia and immune activation in patients with rheumatoid arthritis. Clin. Chim. Acta 2003, 338, 157–164. https://doi.org/10.1016/j.cccn.2003.09.003.
  • 23.
    Bagi, Z.; Ungvari, Z.; Koller, A. Xanthine oxidase-derived reactive oxygen species convert flow-induced arteriolar dilation to constriction in hyperhomocysteinemia: Possible role of peroxynitrite. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 28–33. https://doi.org/10.1161/hq0102.101127.
  • 24.
    Yang, X.; Gao, F.; Liu, Y. Association of homocysteine with immunological-inflammatory and metabolic laboratory markers and factors in relation to hyperhomocysteinaemia in rheumatoid arthritis. Clin. Exp. Rheumatol. 2015, 33, 900–903.
  • 25.
    Meune, C.; Touzé, E.; Trinquart, L.; et al. Trends in cardiovascular mortality in patients with rheumatoid arthritis over 50 years: A systematic review and meta-analysis of cohort studies. Rheumatology 2009, 48, 1309–1313. https://doi.org/10.1093/rheumatology/kep252.
  • 26.
    Barber, C.E.; Smith, A.; Esdaile, J.M.; et al. Best practices for cardiovascular disease prevention in rheumatoid arthritis: A systematic review of guideline recommendations and quality indicators. Arthritis Care Res. 2015, 67, 169–179. https://doi.org/10.1002/acr.22419.
  • 27.
    Krüger, K.; Nüßlein, H. Kardiovaskuläre Komorbiditäten bei rheumatoider Arthritis [Cardiovascular comorbidities in rheumatoid arthritis]. Z. Rheumatol. 2019, 78, 221–227. https://doi.org/10.1007/s00393-018-0584-5.
  • 28.
    Głuszek, J.; Wierzowiecka, M.; Niklas, K.; et al. The importance of homocysteine in the development of cardiovascular complications in patients with rheumatoid arthritis. Reumatologia 2020, 58, 282–288. https://doi.org/10.5114/reum.2020.99732.
  • 29.
    Devalia, V.; Hamilton, M.S.; Molloy, A.M.; et al. Guidelines for the diagnosis and treatment of cobalamin and folate disorders. Br. J. Haematol. 2014, 166, 496–513. https://doi.org/10.1111/bjh.12959.
  • 30.
    Mangoni, A.A. Folic acid, inflammation, and atherosclerosis: False hopes or the need for better trials? Clin. Chim Acta 2006, 367, 11–19. https://doi.org/10.1016/j.cca.2005.11.016.
  • 31.
    Flynn, M.A.; Irvin, W.; Krause, G. The effect of folate and cobalamin on osteoarthritic hands. J. Am. Coll. Nutr. 1994, 13, 351–356. https://doi.org/10.1080/07315724.1994.10718421.
  • 32.
    Shea, B.; Swinden, M.V.; Tanjong Ghogomu, E.; et al. Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. Cochrane Database Syst. Rev. 2013, 31, CD000951. https://doi.org/10.1002/14651858.CD000951.pub2.
  • 33.
    Schnyder, G.; Roffi, M.; Flammer, Y.; et al. Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: The Swiss Heart study: A randomized controlled trial. JAMA 2002, 288, 973–979. https://doi.org/10.1001/jama.288.8.973.
Share this article:
How to Cite
Carvalho, J. F. d.; May, T. L.; Bueno, A. A. Folic Acid Supplementation for Autoimmune Rheumatic Diseases—Approaches and Opportunities for Research. Journal of Mosaic of Autoimmunity 2025, 1 (1), 11. https://doi.org/10.53941/jmai.2025.100011.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.