- 1.
Ferrazzi, E.; Tiso, G.; Di Martino, D. Folic acid versus 5-methyl tetrahydrofolate supplementation in pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 253, 312–319. https://doi.org/10.1016/j.ejogrb.2020.06.012.
- 2.
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for folate. EFSA J. 2014, 12, 3893.
- 3.
Suitor, C.W.; Bailey, L.B. Dietary folate equivalents: Interpretation and application. J. Am. Diet. Assoc. 2000, 100, 88–94. https://doi.org/10.1016/S0002-8223(00)00027-4.
- 4.
EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 2010, 8, 1462.
- 5.
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA Panel); Turck, D.; Bohn, T.; et al. Scientific opinion on the tolerable upper intake level for folate. EFSA J. 2023, 21, e08353. https://doi.org/10.2903/j.efsa.2023.8353.
- 6.
Selhub, J.; Jacques, P.F.; Dallal, G.; et al. The use of blood concentrations of vitamins and their respective functional indicators to define folate and vitamin B12 status. Food Nutr. Bull. 2008, 29, S67–S73. https://doi.org/10.1177/15648265080292S110.
- 7.
Katsanos, K.H.; Tsianos, V.E.; Tsianos, E.V. Intolerance of folic acid in a patient receiving methotrexate for Crohn’s disease. J. Crohns Colitis 2012, 6, 960. https://doi.org/10.1016/j.crohns.2012.05.017.
- 8.
Folic Acid Risk Assessment [Internet]. Food Standards Agency. 2023. Available online: https://cot.food.gov.uk/Folic%20Acid%20Risk%20Assessment (accessed on 7 April 2024).
- 9.
Czeizel, A.E.; Dudás, I.; Vereczkey, A.; et al. Folate deficiency and folic acid supplementation: The prevention of neural-tube defects and congenital heart defects. Nutrients 2013, 5, 4760–4775. https://doi.org/10.3390/nu5114760.
- 10.
Bhargava, S.; Tyagi, S.C. Nutriepigenetic regulation by folate-homocysteine-methionine axis: A review. Mol. Cell. Biochem. 2014, 387, 55–61. https://doi.org/10.1007/s11010-013-1869-2.
- 11.
Grimble, R.F.; Jackson, A.A.; Persaud, C.; et al. Cysteine and glycine supplementation modulate the metabolic response to tumor necrosis factor alpha in rats fed a low protein diet. J. Nutr. 1992, 122, 2066–2073. https://doi.org/10.1093/jn/122.11.2066. Erratum in: J. Nutr. 1993, 123, 600.
- 12.
Mudd, S.H. Vascular disease and homocysteine metabolism. N. Engl. J. Med. 1985, 313, 751–753. https://doi.org/10.1056/NEJM198509193131210.
- 13.
Dudman, N.P.; Wilcken, D.E.; Wang, J.; et al. Disordered methionine/homocysteine metabolism in premature vascular disease. Its occurrence, cofactor therapy, and enzymology. Arterioscler. Thromb. 1993, 13, 1253–1260. https://doi.org/10.1161/01.atv.13.9.1253.
- 14.
Kuller, L.H.; Evans, R.W. Homocysteine, vitamins, and cardiovascular disease. Circulation 1998, 98, 196–199. https://doi.org/10.1161/01.cir.98.3.196.
- 15.
Ross, R. The pathogenesis of atherosclerosis--an update. N. Engl. J. Med. 1986, 314, 488–500. https://doi.org/10.1056/NEJM198602203140806.
- 16.
Virmani, R.; Kolodgie, F.D.; Burke, A.P.; et al. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1262–1275. https://doi.org/10.1161/01.atv.20.5.1262.
- 17.
Davignon, J.; Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004, 109, III27–III32. https://doi.org/10.1161/01.CIR.0000131515.03336.f8.
- 18.
Sitia, S.; Tomasoni, L.; Atzeni, F.; et al. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev. 2010, 12, 830–834. https://doi.org/10.1016/j.autrev.2010.07.016.
- 19.
Stamler, J.S.; Osborne, J.A.; Jaraki, O.; et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J. Clin. Investig. 1993, 91, 308–318. https://doi.org/10.1172/JCI116187.
- 20.
Woo, K.S.; Chook, P.; Lolin, Y.I.; et al. Hyperhomocyst(e)inemia is a risk factor for arterial endothelial dysfunction in humans. Circulation 1997, 96, 2542–2544. https://doi.org/10.1161/01.cir.96.8.2542.
- 21.
Wang, G.O.K. Homocysteine stimulates the expression of monocyte chemoattractant protein-1 receptor (CCR2) in human monocytes: Possible involvement of oxygen free radicals. Biochem. J. 2001, 357, 233–240. https://doi.org/10.1042/0264-6021:3570233.
- 22.
Schroecksnadel, K.; Frick, B.; Kaser, S.; et al. Moderate hyperhomocysteinaemia and immune activation in patients with rheumatoid arthritis. Clin. Chim. Acta 2003, 338, 157–164. https://doi.org/10.1016/j.cccn.2003.09.003.
- 23.
Bagi, Z.; Ungvari, Z.; Koller, A. Xanthine oxidase-derived reactive oxygen species convert flow-induced arteriolar dilation to constriction in hyperhomocysteinemia: Possible role of peroxynitrite. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 28–33. https://doi.org/10.1161/hq0102.101127.
- 24.
Yang, X.; Gao, F.; Liu, Y. Association of homocysteine with immunological-inflammatory and metabolic laboratory markers and factors in relation to hyperhomocysteinaemia in rheumatoid arthritis. Clin. Exp. Rheumatol. 2015, 33, 900–903.
- 25.
Meune, C.; Touzé, E.; Trinquart, L.; et al. Trends in cardiovascular mortality in patients with rheumatoid arthritis over 50 years: A systematic review and meta-analysis of cohort studies. Rheumatology 2009, 48, 1309–1313. https://doi.org/10.1093/rheumatology/kep252.
- 26.
Barber, C.E.; Smith, A.; Esdaile, J.M.; et al. Best practices for cardiovascular disease prevention in rheumatoid arthritis: A systematic review of guideline recommendations and quality indicators. Arthritis Care Res. 2015, 67, 169–179. https://doi.org/10.1002/acr.22419.
- 27.
Krüger, K.; Nüßlein, H. Kardiovaskuläre Komorbiditäten bei rheumatoider Arthritis [Cardiovascular comorbidities in rheumatoid arthritis]. Z. Rheumatol. 2019, 78, 221–227. https://doi.org/10.1007/s00393-018-0584-5.
- 28.
Głuszek, J.; Wierzowiecka, M.; Niklas, K.; et al. The importance of homocysteine in the development of cardiovascular complications in patients with rheumatoid arthritis. Reumatologia 2020, 58, 282–288. https://doi.org/10.5114/reum.2020.99732.
- 29.
Devalia, V.; Hamilton, M.S.; Molloy, A.M.; et al. Guidelines for the diagnosis and treatment of cobalamin and folate disorders. Br. J. Haematol. 2014, 166, 496–513. https://doi.org/10.1111/bjh.12959.
- 30.
Mangoni, A.A. Folic acid, inflammation, and atherosclerosis: False hopes or the need for better trials? Clin. Chim Acta 2006, 367, 11–19. https://doi.org/10.1016/j.cca.2005.11.016.
- 31.
Flynn, M.A.; Irvin, W.; Krause, G. The effect of folate and cobalamin on osteoarthritic hands. J. Am. Coll. Nutr. 1994, 13, 351–356. https://doi.org/10.1080/07315724.1994.10718421.
- 32.
Shea, B.; Swinden, M.V.; Tanjong Ghogomu, E.; et al. Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. Cochrane Database Syst. Rev. 2013, 31, CD000951. https://doi.org/10.1002/14651858.CD000951.pub2.
- 33.
Schnyder, G.; Roffi, M.; Flammer, Y.; et al. Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: The Swiss Heart study: A randomized controlled trial. JAMA 2002, 288, 973–979. https://doi.org/10.1001/jama.288.8.973.